Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters











Publication year range
1.
Mol Med ; 30(1): 145, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39256638

ABSTRACT

BACKGROUND: Ionizing radiation (IR), including radiotherapy, can exert lasting harm on living organisms. While liposaccharide (LPS) offers resistance to radiation damage, it also induces toxic responses. Thankfully, an LPS analogue called N-formylmethionine-leucyl-phenylalanine (fMLP) holds the potential to mitigate this toxicity, offering hope for radiation protection. METHODS: Survival of C57BL/6 mice exposed to IR after administration with fMLP/LPS/WR-2721 or saline was recorded. Cell viability and apoptosis assay of bone marrow (BMC), spleen and small intestinal epithelial (HIECs) cells were tested by Cell Counting Kit-8 (CCK-8) and flow cytometry assay. Tissue damage was evaluated by Hematoxilin and Eosin (H&E), Ki-67, and TUNEL staining. RNA sequencing was performed to reveal potential mechanisms of fMLP-mediated radiation protection. Flow cytometry and western blot were performed to verify the radiation protection mechanism of fMLP on the cell cycle. RESULTS: The survival rates of C57BL/6 mice exposed to ionizing radiation after administering fMLP increased. fMLP demonstrated low toxicity in vitro and in vivo, maintaining cell viability and mitigating radiation-induced apoptosis. Moreover, it protected against tissue damage in the hematopoietic and intestinal system. RNA sequencing shed light on fMLP's potential mechanism, suggesting its role in modulating innate immunity and cell cycling. This was evidenced by its ability to reverse radiation-induced G2/M phase arrests in HIECs. CONCLUSION: fMLP serves as a promising radioprotective agent, preserving cells and radiosensitive tissues from IR. Through its influence on the cell cycle, particularly reversing radiation-induced arrest in G2/M phases, fMLP offers protection against IR's detrimental effects.


Subject(s)
Apoptosis , Hematopoiesis , Radiation-Protective Agents , Animals , Mice , Hematopoiesis/drug effects , Hematopoiesis/radiation effects , Radiation-Protective Agents/pharmacology , Apoptosis/drug effects , Apoptosis/radiation effects , Mice, Inbred C57BL , Cell Survival/drug effects , Cell Survival/radiation effects , Radiation, Ionizing , Intestines/drug effects , Intestines/radiation effects , Intestines/pathology , Male
2.
Sci Total Environ ; 951: 175320, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39111429

ABSTRACT

Tolfenpyrad (TFP) is an extensively used pesticide that inevitably leads to human exposure to both TFP and its transformation product residues. However, the biotransformation of TFP in humans has not been elucidated, and the toxicity of TFP along with its biotransformation products remains largely unknown. In this study, the biotransformation process of TFP was investigated using human liver microsomes and human hepatic cells. Endogenous metabolic changes in the cells were studied to investigate the hepatocytotoxicity of TFP at environmentally relevant concentrations. Fourteen phase I biotransformation products and four phase II TFP products were characterized, among which twelve products were identified for the first time. The oxidative product tolfenpyrad-benzoic acid (PT-CA) was particularly abundant and stable. Further hepatotoxicity assessments and metabolic studies demonstrated comparable metabolic profiles for TFP and PT-CA in HepG2 cells, with both significantly disrupting purine and glutathione metabolism. These processes are closely associated with oxidative stress, mitochondrial damage, and cell death. Our results provide novel perspectives on the biotransformation, metabolism, and hepatotoxicity of TFP, thereby highlighting the non-negligible toxicity of its crucial biotransformation product PT-CA in environmental risk assessments.


Subject(s)
Biotransformation , Metabolomics , Microsomes, Liver , Humans , Microsomes, Liver/metabolism , Hep G2 Cells , Oxidative Stress , Liver/metabolism , Liver/drug effects
3.
Talanta ; 275: 126134, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38692044

ABSTRACT

Phosphoenolpyruvate (PEP) is an essential intermediate metabolite that is involved in various vital biochemical reactions. However, achieving the direct and accurate quantification of PEP in plasma or serum poses a significant challenge owing to its strong polarity and metal affinity. In this study, a sensitive method for the direct determination of PEP in plasma and serum based on ethylenediaminetetraacetic acid (EDTA)-facilitated hydrophilic interaction liquid chromatography-tandem mass spectrometry was developed. Superior chromatographic retention and peak shapes were achieved using a zwitterionic stationary-phase HILIC column with a metal-inert inner surface. Efficient dechelation of PEP-metal complexes in serum/plasma samples was achieved through the introduction of EDTA, resulting in a significant enhancement of the PEP signal. A PEP isotopically labelled standard was employed as a surrogate analyte for the determination of endogenous PEP, and validation assessments proved the sensitivity, selectivity, and reproducibility of this method. The method was applied to the comparative quantification of PEP in plasma and serum samples from mice and rats, as well as in HepG2 cells, HEK293T cells, and erythrocytes; the results confirmed its applicability in PEP-related biomedical research. The developed method can quantify PEP in diverse biological matrices, providing a feasible opportunity to investigate the role of PEP in relevant biomedical research.


Subject(s)
Edetic Acid , Hydrophobic and Hydrophilic Interactions , Phosphoenolpyruvate , Tandem Mass Spectrometry , Tandem Mass Spectrometry/methods , Animals , Humans , Edetic Acid/chemistry , Mice , Chromatography, Liquid/methods , Rats , Phosphoenolpyruvate/chemistry , Phosphoenolpyruvate/blood , Phosphoenolpyruvate/metabolism , HEK293 Cells , Hep G2 Cells , Rats, Sprague-Dawley , Male
4.
Bioact Mater ; 36: 157-167, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38463554

ABSTRACT

Much effort has been devoted to improving treatment efficiency for osteosarcoma (OS). However, most current approaches result in poor therapeutic responses, thus indicating the need for the development of other therapeutic options. This study developed a multifunctional nanoparticle, PDA-MOF-E-M, an aggregation of OS targeting, programmed death targeting, and near-infrared (NIR)-aided targeting. At the same time, a multifunctional nanoparticle that utilises Fe-MOFs to create a cellular iron-rich environment and erastin as a ferroptosis inducer while ensuring targeted delivery to OS cells through cell membrane encapsulation is presented. The combination of PDA-MOF-E-M and PTT increased intracellular ROS and LPO levels and induced ferroptosis-related protein expression. A PDA-based PTT combined with erastin showed significant synergistic therapeutic improvement in the anti-tumour efficiency of the nanoparticle in vitro and vivo. The multifunctional nanoparticle efficiently prevents the osteoclasia progression of OS xenograft bone tumors in vivo. Finally, this study provides guidance and a point of reference for clinical approaches to treating OS.

5.
CNS Neurosci Ther ; 30(2): e14365, 2024 02.
Article in English | MEDLINE | ID: mdl-37485782

ABSTRACT

AIMS: To verify the hypothesis that an enriched environment (EE) alleviates sleep deprivation-induced fear memory impairment by modulating the basal forebrain (BF) PIEZO1/calpain/autophagy pathway. METHODS: Eight-week-old male mice were housed in a closed, isolated environment (CE) or an EE, before 6-h total sleep deprivation. Changes in fear memory after sleep deprivation were observed using an inhibitory avoidance test. Alterations in BF PIEZO1/calpain/autophagy signaling were detected. The PIEZO1 agonist Yoda1 or inhibitor GsMTx4, the calpain inhibitor PD151746, and the autophagy inducer rapamycin or inhibitor 3-MA were injected into the bilateral BF to investigate the pathways involved in the memory-maintaining role of EE in sleep-deprived mice. RESULTS: Mice housed in EE performed better than CE mice in short- and long-term fear memory tests after sleep deprivation. Sleep deprivation resulted in increased PIEZO1 expression, full-length tropomyosin receptor kinase B (TrkB-FL) degradation, and autophagy, as reflected by increased LC3 II/I ratio, enhanced p62 degradation, increased TFEB expression and nuclear translocation, and decreased TFEB phosphorylation. These molecular changes were partially reversed by EE treatment. Microinjection of Yoda1 or rapamycin into the bilateral basal forebrain induced excessive autophagy and eliminated the cognition-protective effects of EE. Bilateral basal forebrain microinjection of GsMTx4, PD151746, or 3-MA mimicked the cognitive protective and autophagy inhibitory effects of EE in sleep-deprived mice. CONCLUSIONS: EE combats sleep deprivation-induced fear memory impairments by inhibiting the BF PIEZO1/calpain/autophagy pathway.


Subject(s)
Acrylates , Basal Forebrain , Calpain , Animals , Male , Mice , Autophagy , Basal Forebrain/metabolism , Calpain/metabolism , Fear , Memory Disorders/etiology , Memory Disorders/therapy , Signal Transduction , Sirolimus/pharmacology , Sirolimus/therapeutic use , Sleep Deprivation/complications
6.
Bioact Mater ; 20: 548-560, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35846843

ABSTRACT

Bacterial outer membrane vesicles (OMVs) are potent immuno-stimulating agents and have the potentials to be bioengineered as platforms for antitumor nanomedicine. In this study, OMVs are demonstrated as promising antitumor therapeutics. OMVs can lead to beneficial M2-to-M1 polarization of macrophages and induce pyroptosis to enhance antitumor immunity, but the therapeutic window of OMVs is narrow for its toxicity. We propose a bioengineering strategy to enhance the tumor-targeting ability of OMVs by macrophage-mediated delivery and improve the antitumor efficacy by co-loading of photosensitizer chlorin e6 (Ce6) and chemotherapeutic drug doxorubicin (DOX) into OMVs as a therapeutic platform. We demonstrate that systemic injection of the DOX/Ce6-OMVs@M therapeutic platform, providing combinational photodynamic/chemo-/immunotherapy, eradicates triple-negative breast tumors in mice without side effects. Importantly, this strategy also effectively prevents tumor metastasis to the lung. This OMVs-based strategy with bioengineering may serve as a powerful therapeutic platform for a synergic antitumor therapy.

7.
Front Immunol ; 13: 927213, 2022.
Article in English | MEDLINE | ID: mdl-36110845

ABSTRACT

Recently, Toll-like receptors (TLRs) have been extensively studied in radiation damage, but the inherent defects of high toxicity and low efficacy of most TLR ligands limit their further clinical transformation. CRX-527, as a TLR4 ligand, has rarely been reported to protect against radiation. We demonstrated that CRX-527 was safer than LPS at the same dose in vivo and had almost no toxic effect in vitro. Administration of CRX-527 improved the survival rate of total body irradiation (TBI) to 100% in wild-type mice but not in TLR4-/- mice. After TBI, hematopoietic system damage was significantly alleviated, and the recovery period was accelerated in CRX-527-treated mice. Moreover, CRX-527 induced differentiation of HSCs and the stimulation of CRX-527 significantly increased the proportion and number of LSK cells and promoted their differentiation into macrophages, activating immune defense. Furthermore, we proposed an immune defense role for hematopoietic differentiation in the protection against intestinal radiation damage, and confirmed that macrophages invaded the intestines through peripheral blood to protect them from radiation damage. Meanwhile, CRX-527 maintained intestinal function and homeostasis, promoted the regeneration of intestinal stem cells, and protected intestinal injury from lethal dose irradiation. Furthermore, After the use of mice, we found that CRX-527 had no significant protective effect on the hematopoietic and intestinal systems of irradiated TLR4-/- mice. in conclusion, CRX-527 induced differentiation of HSCs protecting the intestinal epithelium from radiation damage.


Subject(s)
Hematopoietic Stem Cells , Organophosphorus Compounds , Radiation Injuries, Experimental , Toll-Like Receptor 4 , Animals , Apoptosis , Cell Differentiation , Glucosamine/analogs & derivatives , Glucosamine/pharmacology , Hematopoietic Stem Cells/cytology , Intestinal Mucosa , Ligands , Lipopolysaccharides/pharmacology , Mice , Organophosphorus Compounds/pharmacology , Radiation Injuries, Experimental/prevention & control , Toll-Like Receptor 4/genetics
8.
Dose Response ; 20(3): 15593258221113791, 2022.
Article in English | MEDLINE | ID: mdl-35859853

ABSTRACT

Radiation-induced intestinal injury (RIII) restricts the therapeutic efficacy of radiotherapy in abdominal or pelvic malignancies. Also, intestinal injury is a major cause of death following exposure to high doses of radiation in nuclear accidents. No safe and effective prophylactics or therapeutics for RIII are currently available. Here, we reported that the apigenin, a natural dietary flavone, prolonged the survival in c57 mice after lethal irradiation. Apigenin pretreatment brought about accelerated restoration of crypt-villus structure, including enhanced regenerated crypts, more differentiated epithelium cells, and increased villus length. In addition, intestinal crypt cells in the apigenin-treated group exhibited more proliferation and less apoptosis. Furthermore, apigenin increased the expression of Nrf2 and its downstream target gene HO-1, and decreased oxidative stress after irradiation. In conclusion, our findings demonstrate the radioprotective efficacy of apigenin. Apigenin has the potential to be used as a radioprotectant in cancer therapy and nuclear accidents.

9.
Oxid Med Cell Longev ; 2022: 9137812, 2022.
Article in English | MEDLINE | ID: mdl-35770047

ABSTRACT

The testis is susceptible to ionizing radiation, and male infertility and sexual dysfunction are prevalent problems after whole-body or local radiation exposure. Currently, there is no approved agent for the prevention or treatment of radiation-induced testicular injury. Herein, we investigated the radioprotective effect of dimethyl sulfoxide (DMSO), an organosulfur compound that acts as a free radical scavenger, on testicular injury. Treatment of mice with a single dose of DMSO prior to 5 Gy irradiation restored sex hormones and attenuated the reduction in testis weight. Histological analyses revealed that DMSO alleviated the distorted architecture of seminiferous tubules and promoted seminiferous epithelium regeneration following irradiation. Moreover, DMSO provided quantitative and qualitative protection for sperm and preserved spermatogenesis and fertility in male mice. Mechanistically, DMSO treatment enhanced GFRα-1+ spermatogonial stem cell and c-Kit+ spermatogonial survival and regeneration after radiation. DMSO also alleviated radiation-induced oxidative stress and suppressed radiation-induced germ cell apoptosis in vivo and in vitro. Additionally, DMSO efficiently reduced DNA damage accumulation and induced the expression of phosph-BRCA1, BRCA1, and RAD51 proteins, indicating that DMSO facilitates DNA damage repair with a bias toward homologous recombination. In summary, our findings demonstrate the radioprotective efficacy of DMSO on the male reproductive system, which warrants further studies for future application in the preservation of male fertility during conventional radiotherapy and nuclear accidents.


Subject(s)
Radiation Injuries , Radiation-Protective Agents , Testicular Diseases , Animals , DNA , Dimethyl Sulfoxide/pharmacology , Humans , Male , Mice , Radiation Injuries/drug therapy , Radiation Injuries/prevention & control , Radiation-Protective Agents/pharmacology , Semen , Spermatogenesis , Testicular Diseases/drug therapy , Testis
10.
Biomater Sci ; 10(12): 3309-3322, 2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35588192

ABSTRACT

Radiotherapy of abdominal and pelvic tumors almost inevitably injures the intestine by oxidative stress and causes inflammation. Regrettably, traditional radioprotective agents for irradiation (IR) induced intestinal injury suffer from challenges such as poor solubility, unsatisfactory bioactivity and undesired adverse reactions, which significantly limit their usefulness. Polydopamine nanoparticles (PDA-NPs) have shown promising potential in scavenging reactive oxygen species (ROS) and suppressing inflammation. In this study, PDA-NPs were prepared by a simple method and their physical properties were characterized. Mice received two doses of PDA-NPs by oral gavage 22 h apart, and were irradiated with X-rays 2 h after the last gavage. The protective effect of PDA-NPs and possible mechanisms of protection against IR-induced intestinal injury were explored. The results showed that PDA-NPs were spherical and well dispersed, with good shape uniformity, compact structure, good colloid dispersion stability, concentration-dependent light absorption, and accurate quantification. Importantly, PDA-NPs reduced mortality and prolonged the average survival time of mice after IR. Furthermore, PDA-NPs protected mice from IR-induced injury to crypt-villus units and maintained intestinal barrier function in the intestine. In particular, PDA-NPs significantly inhibited the depletion of Lgr5+ intestinal stem cells (ISCs) and promoted cell regeneration after IR, which indicated that the regeneration ability of ISCs was maintained and the repair of intestinal structure and function was promoted. Finally, PDA-NPs significantly suppressed the apoptosis, inflammatory pyroptosis and DNA damage of intestinal cells induced by ionizing radiation. Altogether, our study suggested that PDA-NPs may have great potential in protecting the intestines from ionizing radiation damage.


Subject(s)
Dopamine , Nanoparticles , Animals , Dopamine/pharmacology , Homeostasis , Inflammation , Intestines , Mice , Nanoparticles/chemistry
11.
Front Pharmacol ; 13: 852669, 2022.
Article in English | MEDLINE | ID: mdl-35517788

ABSTRACT

Radiation-induced intestinal injury (RIII) occurs after high doses of radiation exposure. RIII restricts the therapeutic efficacy of radiotherapy in cancer and increases morbidity and mortality in nuclear disasters. Currently, there is no approved agent for the prevention or treatment of RIII. Here, we reported that the disulfiram, an FDA-approved alcohol deterrent, prolonged the survival in mice after lethal irradiation. Pretreatment with disulfiram inhibited proliferation within 24 h after irradiation, but improved crypt regeneration at 3.5 days post-irradiation. Mechanistically, disulfiram promoted Lgr5+ intestinal stem cells (ISCs) survival and maintained their ability to regenerate intestinal epithelium after radiation. Moreover, disulfiram suppresses DNA damage accumulation, thus inhibits aberrant mitosis after radiation. Unexpectedly, disulfiram treatment did not inhibit crypt cell apoptosis 4 h after radiation and the regeneration of crypts from PUMA-deficient mice after irradiation was also promoted by disulfiram. In conclusion, our findings demonstrate that disulfiram regulates the DNA damage response and survival of ISCs through affecting the cell cycle. Given its radioprotective efficacy and decades of application in humans, disulfiram is a promising candidate to prevent RIII in cancer therapy and nuclear accident.

12.
Biomater Res ; 26(1): 20, 2022 May 26.
Article in English | MEDLINE | ID: mdl-35619159

ABSTRACT

OBJECTIVE: This study aimed to reveal the protective effect of hydrogen storage nanomaterial MgH2 on radiation-induced male fertility impairment. METHODS: The characterization of MgH2 were analyzed by scanning electron microscopy (SEM) and particle size analyzer. The safety of MgH2 were evaluated in vivo and in vitro. The radioprotective effect of MgH2 on the reproductive system were analyzed in mice, including sperm quality, genetic effect, spermatogenesis, and hormone secretion. ESR, flow cytometry and western blotting assay were used to reveal the underlying mechanisms. RESULTS: MgH2 had an irregular spherical morphology and a particle size of approximately 463.2 nm, and the content of Mg reached 71.46%. MgH2 was safe and nontoxic in mice and cells. After irradiation, MgH2 treatment significantly protected testicular structure, increased sperm density, improved sperm motility, reduced deformity rates, and reduced the genetic toxicity. Particularly, the sperm motility were consistent with those in MH mice and human semen samples. Furthermore, MgH2 treatment could maintain hormone secretion and testicular spermatogenesis, especially the generation of Sertoli cells, spermatogonia and round sperm cells. In vitro, MgH2 eliminated the [·OH], suppressed the irradiation-induced increase in ROS production, and effectively alleviated the increase in MDA contents. Moreover, MgH2 significantly ameliorated apoptosis in testes and cells and reversed the G2/M phase cell cycle arrest induced by irradiation. In addition, MgH2 inhibited the activation of radiation-induced inflammation and pyroptosis. CONCLUSION: MgH2 improved irradiation-induced male fertility impairment by eliminating hydroxyl free radicals. Mice fertility and function were evaluated with or without MgH2 treatment after 5 Gy irradiation. MgH2 had the ability of hydroxyl radicals scavenging and MDA suppressing in testicular tissue induced by irradiation. Further, MgH2 could participate in spermatogenesis and protect sperm development in three stages: the generation of Sertoli cells (Sox-9+), spermatogonia (Stra8+) and round sperm cells (Crem+). Moreover, MgH2 alleviated the decrease of testosterone secreted by interstitial cells after irradiation. In addition, MgH2 suppressed apoptosis, pyroptosis and inflammatory response and alleviated cell cycle arrest by mediating IR-induced ROS.

13.
Bioact Mater ; 12: 292-302, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35087969

ABSTRACT

Bone tumors occur in bone or its accessory tissues. Benign bone tumors are easy to cure and have good prognosis, while malignant bone tumors develop rapidly and have poor and high mortality. So far, there is no satisfactory treatment method. Here, we designed a universal template vector for bone tumor therapy that simultaneously meets the needs of bone targeting, tumor killing, osteoclast suppression, and tumor imaging. The template is composed of a polydopamine (PDA) core and a multifunctional surface. PDA has excellent biosafety and photothermal performance. In this study, alendronate sodium (ALN) is grafted to enable its general bone targeting function. PDA core can carry a variety of chemotherapy drugs, and the rich ALN group can carry a variety of metal ions with an imaging function. Therefore, more personalized treatment plans can be designed for different bone tumor patients. In addition, the PDA core enables photothermal therapy and enhanced chemotherapy. Through template drug Doxorubicin (DOX) and template imaging ion Fe (Ⅱ), we systematically verified the therapeutic effect, imaging effect, and inhibition of bone dissolution of the agent on Osteosarcoma (OS), a primary malignant bone tumor, in vivo. In conclusion, our work provides a more general template carrier for the clinical treatment of bone tumors, through which personalized treatment of bone tumors can be achieved.

14.
Front Mol Biosci ; 8: 725275, 2021.
Article in English | MEDLINE | ID: mdl-34722630

ABSTRACT

TGF-ß-centered epithelial-mesenchymal transition (EMT) is a key process involved in radiation-induced pulmonary injury (RIPI) and pulmonary fibrosis. PIEZO1, a mechanosensitive calcium channel, is expressed in myeloid cell and has been found to play an important role in bleomycin-induced pulmonary fibrosis. Whether PIEZO1 is related with radiation-induced EMT remains elusive. Herein, we found that PIEZO1 is functional in rat primary type II epithelial cells and RLE-6TN cells. After irradiation, PIEZO1 expression was increased in rat lung alveolar type II epithelial cells and RLE-6TN cell line, which was accompanied with EMT changes evidenced by increased TGF-ß1, N-cadherin, Vimentin, Fibronectin, and α-SMA expression and decreased E-cadherin expression. Addition of exogenous TGF-ß1 further enhanced these phenomena in vitro. Knockdown of PIEZO1 partly reverses radiation-induced EMT in vitro. Mechanistically, we found that activation of PIEZO1 could upregulate TGF-ß1 expression and promote EMT through Ca2+/HIF-1α signaling. Knockdown of HIF-1α partly reverses enhanced TGF-ß1 expression caused by radiation. Meanwhile, the expression of PIEZO1 was up-regulated after TGF-ß1 co-culture, and the mechanism could be traced to the inhibition of transcription factor C/EBPß expression by TGF-ß1. Irradiation also caused a decrease in C/EBPß expression in RLE-6TN cells. Dual luciferase reporter assay and chromatin immunoprecipitation assay (ChIP) confirmed that C/EBPß represses PIEZO1 expression by binding to the PIEZO1 promoter. Furthermore, overexpression of C/EBPß by using the synonymous mutation to C/EBPß siRNA could reverse siRNA-induced upregulation of PIEZO1. In summary, our research suggests a critical role of PIEZO1 signaling in radiation-induced EMT by forming positive feedback with TGF-ß1.

15.
Front Mol Biosci ; 8: 725274, 2021.
Article in English | MEDLINE | ID: mdl-34568428

ABSTRACT

Pulmonary endothelial cell dysfunction plays an important role in ionizing radiation (IR)-induced lung injury. Whether pulmonary endothelial cell ferroptosis occurs after IR and what are the underlying mechanisms remain elusive. Here, we demonstrate that 15-Gy IR induced ferroptosis characterized by lethal accumulation of reactive oxygen species (ROS), lipid peroxidation, mitochondria shrinkage, and decreased glutathione peroxidase 4 (GPX4) and SLC7A11 expression in pulmonary endothelial cells. The phenomena could be mimicked by Yoda1, a specific activator of mechanosensitive calcium channel PIEZO1. PIEZO1 protein expression was upregulated by IR in vivo and in vitro. The increased PIEZO1 expression after IR was accompanied with increased calcium influx and increased calpain activity. The effects of radiation on lung endothelial cell ferroptosis was partly reversed by inhibition of PIEZO1 activity using the selective inhibitor GsMTx4 or inhibition of downstreaming Ca2+/calpain signaling using PD151746. Both IR and activation of PIEZO1 led to increased degradation of VE-cadherin, while PD151746 blocked these effects. VE-cadherin knockdown by specific siRNA causes ferroptosis-like phenomena with increased ROS and lipid peroxidation in the lung endothelial cells. Overexpression of VE-cadherin partly recused the ferroptosis caused by IR or PIEZO1 activation as supported by decreased ROS production, lipid peroxidation and mitochondria shrinkage compared to IR or PIEZO1 activation alone. In summary, our study reveals a previously unrecognized role of PIEZO1 in modulating ferroptosis, providing a new target for future mitigation of radiation-induced lung injury.

16.
Int J Hyperthermia ; 38(1): 1037-1051, 2021.
Article in English | MEDLINE | ID: mdl-34233564

ABSTRACT

BACKGROUND: Thermal ablation is a potentially curative therapy for early-stage non-small cell lung cancer (NSCLC). Early recurrence after thermal ablation necessitates our attention. METHODS: The invasion and migration abilities of NSCLC after sublethal heat stimulus were observed in vitro and in vivo. Sublethal thermal stimulus molecular changes were identified by RNA sequencing. A xenograft model of NSCLC with insufficient ablation was established to explore the epithelial-to-mesenchymal transition (EMT) and metastasis-related phenotypes alteration of residual tumors. RESULTS: In vitro, the invasion and migration abilities of NSCLC cells were enhanced 72 h after 44 °C and 46 °C thermal stimulus. Epithelial-mesenchymal transition (EMT) phenotypes were also upregulated under these conditions. RNA sequencing revealed that the expression of carboxypeptidase A4 (CPA4) was significantly upregulated after thermal stimulus. Significant upregulation of CPA4 and EMT phenotypes was also found in the xenograft model of insufficient NSCLC ablation. The EMT process and invasion and migration abilities can be reversed by silencing CPA4. CONCLUSIONS: This study demonstrates that sublethal heat stimulus caused by insufficient ablation can promote EMT and enhance the metastatic capacity of NSCLC. CPA4 plays an important role in these biological processes. Inhibition of CPA4 might be of great significance for improving early-stage NSCLC survival after ablation.


Subject(s)
Carboxypeptidases A/metabolism , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Carboxypeptidases , Carcinoma, Non-Small-Cell Lung/genetics , Cell Line, Tumor , Cell Proliferation , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , Humans , Lung Neoplasms/genetics
17.
J Cell Mol Med ; 25(8): 3785-3792, 2021 04.
Article in English | MEDLINE | ID: mdl-33609010

ABSTRACT

Severe ionizing radiation causes the acute lethal damage of haematopoietic system and gastrointestinal tract. Here, we found CL429, the novel chimeric TLR2/NOD2 agonist, exhibited significant radioprotective effects in mice. CL429 increased mice survival, protected mice against the lethal damage of haematopoietic system and gastrointestinal tract. CL429 was more effective than equivalent amounts of monospecific (TLR2 or NOD2) and combination (TLR2 + NOD2) of molecules in preventing radiation-induced death. The radioprotection of CL429 was mainly mediated by activating TLR2 and partially activating NOD2. CL429-induced radioprotection was largely dependent on the activation of TLR2-MyD88-NF-κB signalling pathway. In conclusion, the data suggested that the co-activation of TLR2 and NOD2 could induce significant synergistic radioprotective effects and CL429 might be a potential high-efficiency selective agent.


Subject(s)
Acetylmuramyl-Alanyl-Isoglutamine/analogs & derivatives , Acute Radiation Syndrome/prevention & control , Hematopoietic System/drug effects , Intestines/drug effects , Nod2 Signaling Adaptor Protein/agonists , Radiation-Protective Agents/pharmacology , Toll-Like Receptor 2/agonists , Whole-Body Irradiation/adverse effects , Acetylmuramyl-Alanyl-Isoglutamine/pharmacology , Acute Radiation Syndrome/etiology , Acute Radiation Syndrome/pathology , Animals , Hematopoietic System/radiation effects , Intestines/injuries , Intestines/radiation effects , Male , Mice , Mice, Inbred C57BL
18.
Radiat Res ; 193(2): 171-185, 2020 02.
Article in English | MEDLINE | ID: mdl-31877256

ABSTRACT

Radiation-induced lung injury (RILI) is a common and severe side effect of thoracic radiotherapy, which compromises patients' quality of life. Recent studies revealed that early vascular injury, especially microvascular damage, played a central role in the development of RILI. For this reason, early vascular protection is essential for RILI therapy. The ATP-sensitive K+ (KATP) channel is an ATP-dependent K+ channel with multiple subunits. The protective role of the KATP channel in vascular injury has been demonstrated in some published studies. In this work, we investigated the effect of KATP channel on RILI. Our findings confirmed that the KATP channel blocker glibenclamide, rather than the KATP channel opener pinacidil, remitted RILI, and in particular, provided protection against radiation-induced vascular injury. Cytology experiments verified that glibenclamide enhanced cell viability, increased the potential of proliferation after irradiation and attenuated radiation-induced apoptosis. Involved mechanisms included increased Ca2+ influx and PKC activation, which were induced by glibenclamide pretreatment. In conclusion, the KATP channel blocker glibenclamide remitted RILI and inhibited the radiation-induced apoptosis of vascular endothelial cells by increased Ca2+ influx and subsequent PKC activation.


Subject(s)
Apoptosis/drug effects , Calcium/metabolism , Glyburide/pharmacology , KATP Channels/antagonists & inhibitors , Lung Injury/prevention & control , Protein Kinase C/metabolism , Radiation Injuries, Experimental/prevention & control , Animals , Apoptosis/radiation effects , Biological Transport/drug effects , Biological Transport/radiation effects , Enzyme Activation/drug effects , Enzyme Activation/radiation effects , Gene Expression Regulation/drug effects , Gene Expression Regulation/radiation effects , Human Umbilical Vein Endothelial Cells/cytology , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/radiation effects , Humans , Lung Injury/etiology , Lung Injury/metabolism , Lung Injury/pathology , Male , Mice , Mice, Inbred C57BL , Phosphorylation/drug effects , Phosphorylation/radiation effects , Potassium Channel Blockers/pharmacology , Radiation Injuries, Experimental/metabolism , Radiation Injuries, Experimental/pathology , Radiation Pneumonitis/prevention & control
19.
Front Oncol ; 10: 574001, 2020.
Article in English | MEDLINE | ID: mdl-33692937

ABSTRACT

Ionizing radiation is one of the common environmental carcinogens. miRNAs play critical roles in the processes of tumor occurrence, development, metastasis. However, the relationship between radiation-induced carcinogenesis and miRNA rarely reported. This study is aimed to investigate the effect of miRNAs on radiation-induced carcinogenesis. In this study we established the radiation-induced thymic lymphoma mice model. By using miRNA array of RTL tissue and predicting for miRNAs target genes, a miRNA-mRNA crosstalk network was established. Based on this network, we identified a critical miRNA, miR-486, which was the most down-regulated in the radiation-induced carcinogenesis. Then the function of miR-486 was confirmed by using knockout mice and cellular experiments. As a result, miR-486 could inhibit proliferation of mouse lymphoma cells by targeting IGF2BP3 mRNA. The adenovirus over-expression miR-486 vector reduced tumorigenesis in vivo. MiR-486 knockout mice have a strong tendency of radiation-induced carcinogenesis. In conclusion, miR-486 inhibits the proliferation of lymphoma cells and tumorigenesis induced by radiation through targeting IGF2BP3.

20.
J Cell Mol Med ; 24(1): 385-397, 2020 01.
Article in English | MEDLINE | ID: mdl-31650683

ABSTRACT

Inflammation is as an important component of intestinal tumorigenesis. The activation of Toll-like receptor 4 (TLR4) signalling promotes inflammation in colitis of mice, but the role of TLR4 in intestinal tumorigenesis is not yet clear. About 80%-90% of colorectal tumours contain inactivating mutations in the adenomatous polyposis coli (Apc) tumour suppressor, and intestinal adenoma carcinogenesis in familial adenomatous polyposis (FAP) is also closely related to the germline mutations in Apc. The ApcMin/+ (multiple intestinal neoplasia) model mouse is a well-utilized model of FAP, an inherited form of intestinal cancer. In this study, ApcMin/+ intestinal adenoma mice were generated on TLR4-sufficient and TLR4-deficient backgrounds to investigate the carcinogenic effect of TLR4 in mouse gut by comparing mice survival, peripheral blood cells, bone marrow haematopoietic precursor cells and numbers of polyps in the guts of ApcMin/+ WT and ApcMin/+ TLR4-/- mice. The results revealed that TLR4 had a critical role in promoting spontaneous intestinal tumorigenesis. Significant differential genes were screened out by the high-throughput RNA-Seq method. After combining these results with KEGG enrichment data, it was determined that TLR4 might promote intestinal tumorigenesis by activating cytokine-cytokine receptor interaction and pathways in cancer signalling pathways. After a series of validation experiments for the concerned genes, it was found that IL6, GM-CSF (CSF2), IL11, CCL3, S100A8 and S100A9 were significantly decreased in gut tumours of ApcMin/+ TLR4-/- mice compared with ApcMin/+ WT mice. In the functional study of core down-regulation factors, it was found that IL6, GM-CSF, IL11, CCL3 and S100A8/9 increased the viability of colon cancer cell lines and decreased the apoptosis rate of colon cancer cells with irradiation and chemical treatment.


Subject(s)
Carcinogenesis/metabolism , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Interleukin-6/genetics , Intestines/pathology , Toll-Like Receptor 4/metabolism , Up-Regulation/genetics , Adenomatous Polyposis Coli Protein/metabolism , Animals , Bone Marrow Cells/metabolism , Carcinogenesis/genetics , Carcinogenesis/pathology , Cell Line, Tumor , Disease Models, Animal , Down-Regulation/genetics , Gene Expression Regulation, Neoplastic , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Hematopoietic Stem Cells/metabolism , Interleukin-6/metabolism , Intestinal Polyps/pathology , Mice, Inbred C57BL , Toll-Like Receptor 4/deficiency
SELECTION OF CITATIONS
SEARCH DETAIL