Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
Add more filters










Publication year range
1.
Anim Microbiome ; 6(1): 41, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39049129

ABSTRACT

BACKGROUND: Variations in body weight (BW) remain a significant challenge within broiler flocks, despite uniform management practices. Chicken growth traits are influenced by gut microbiota, which are in turn shaped by early-life events like different hatching environments and timing of first feeding. Chicks hatched in hatcheries (HH) experience prolonged feed deprivation, which could adversely impact early microbiota colonization. Conversely, hatching on-farm (HOF) allows early feeding, potentially fostering a more favorable gut environment for beneficial microbial establishment. This study investigates whether BW differences among broilers are linked to the disparities in gut microbiota characteristics and whether hatching systems (HS) impact the initial microbial colonization of broilers differing in BW, which in turn affects their growth patterns. Male Ross-308 chicks, either hatched in a hatchery or on-farm, were categorized into low (LBW) and high (HBW) BW groups on day 7, making a two-factorial design (HS × BW). Production parameters were recorded periodically. On days 7, 14, and 38, cecal volatile fatty acid (VFA) and microbiota composition and function (using 16 S rRNA gene sequencing and PICRUSt2) were examined. RESULTS: HOF chicks had higher day 1 BW, but HH chicks caught up within first week, with no further HS-related performance differences. The HBW chicks remained heavier attributed to higher feed intake rather than improved feed efficiency. HBW group had higher acetate concentration on day 14, while LBW group exhibited higher isocaproate on day 7 and isobutyrate on days 14 and 38. Microbiota analyses revealed diversity and composition were primarily influenced by BW than by HS, with HS having minimal impact on BW-related microbiota. The HBW group on various growth stages was enriched in VFA-producing bacteria like unclassified Lachnospiraceae, Alistipes and Faecalibacterium, while the LBW group had higher abundances of Lactobacillus, Akkermansia and Escherichia-Shigella. HBW microbiota presented higher predicted functional potential compared to the LBW group, with early colonizers exhibiting greater metabolic activity than late colonizers. CONCLUSIONS: Despite differences in hatching conditions, the effects of HS on broiler performance were transient, and barely impacting BW-related microbiota. BW variations among broilers are likely linked to differences in feed intake, VFA profiles, and distinct microbiota compositions and functions.

2.
Animals (Basel) ; 14(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38998028

ABSTRACT

This experiment was conducted to study the protective effects of dietary Chinese gallotannins (CGT) supplementation against Escherichia coli lipopolysaccharide (LPS)-induced intestinal injury in broilers. Four hundred and fifty healthy Arbor Acres broilers (one-day-old) were randomly divided into three groups: (1) basal diet (CON group), (2) basal diet with LPS challenge (LPS group), and (3) basal diet supplemented with 300 mg/kg CGT as well as LPS challenge (LPS+CGT group). The experiment lasted for 21 days. Intraperitoneal LPS injections were administered to broilers in the LPS group and the LPS+CGT group on days 17, 19, and 21 of the trial, whereas the CON group received an intraperitoneal injection of 0.9% physiological saline. Blood and intestinal mucosa samples were collected 3 h after the LPS challenge. The results showed that LPS administration induced intestinal inflammation and apoptosis and damaged small intestinal morphology and structure in broilers. However, dietary supplementation with CGT alleviated the deleterious effects on intestinal morphology and barrier integrity caused by the LPS challenge, while also reducing intestinal apoptosis and inflammation, enhancing intestinal antioxidant capacity, and increasing cecal microbial alpha diversity in the LPS-challenged broilers. Therefore, our findings demonstrated that a 300 mg/kg CGT addition could improve intestinal morphology and gut barrier structure, as well as maintaining bacterial homeostasis, in broilers exposed to LPS. This might partially be attributed to the reduced cell apoptosis, decreased inflammatory response, and enhanced antioxidant capacity in the small intestinal mucosa.

3.
J Agric Food Chem ; 72(15): 8434-8443, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38572831

ABSTRACT

Volatile organic compounds (VOCs) carry crucial information about chicken egg fertility. Assessing the fertility before incubation holds immense potential for poultry industry efficiency. Our study used headspace sorptive extraction-gas chromatography-mass spectrometry to analyze egg VOCs before and during the initial 12 incubation days. A total of 162 VOCs were identified. Hexanal was significantly higher in unfertilized eggs, whereas compounds such as propan-2-ol, propan-2-one, and carboxylic acids were higher in fertilized eggs. Furthermore, the obtained multiple logistic regression model outperformed the partial least-squares-discriminant analysis (PLS-DA) model, demonstrating lower complexity and superior performance. Fertile eggs were accurately identified in the validation set in 68-75% of the cases during the initial 4 days, to 85 and 100% on days 6 and 8. Finally, hierarchical cluster analysis in fertilized eggs revealed the clustering of VOCs of the same chemical class, indicative of their shared biochemical origin. This suggests a promising direction for future research aimed at understanding the biological information embedded in VOCs and their relationship to biochemical processes during embryo development.


Subject(s)
Volatile Organic Compounds , Animals , Volatile Organic Compounds/analysis , Gas Chromatography-Mass Spectrometry/methods , Chickens , Multivariate Analysis , Fertility
4.
Ecotoxicol Environ Saf ; 272: 116111, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38350216

ABSTRACT

The effect of an immune challenge induced by a lipopolysaccharide (LPS) exposure on systemic zinc homeostasis and the modulation of zinc glycinate (Zn-Gly) was investigated using a chicken embryo model. 160 Arbor Acres broiler fertilized eggs were randomly divided into 4 groups: CON (control group, injected with saline), LPS (LPS group, injected with 32 µg of LPS saline solution), Zn-Gly (zinc glycinate group, injected with 80 µg of zinc glycinate saline solution) and Zn-Gly+LPS (zinc glycinate and LPS group, injected with the same content of zinc glycinate and LPS saline solution). Each treatment consisted of eight replicates of five eggs each. An in ovo feeding procedure was performed at 17.5 embryonic day and samples were collected after 12 hours. The results showed that Zn-Gly attenuated the effects of LPS challenge-induced upregulation of pro-inflammatory factor interleukin 1ß (IL-1ß) level (P =0.003). The LPS challenge mediated zinc transporter proteins and metallothionein (MT) to regulate systemic zinc homeostasis, with increased expression of the jejunum zinc export gene zinc transporter protein 1 (ZnT-1) and elevated expression of the import genes divalent metal transporter 1 (DMT1), Zrt- and Irt-like protein 3 (Zip3), Zip8 and Zip14 (P < 0.05). A similar trend could be observed for the zinc transporter genes in the liver, which for ZnT-1 mitigated by Zn-Gly supplementation (P =0.01). Liver MT gene expression was downregulated in response to the LPS challenge (P =0.004). These alterations caused by LPS resulted in decreased serum and liver zinc levels and increased small intestinal, muscle and tibial zinc levels. Zn-Gly reversed the elevated expression of the liver zinc finger protein A20 induced by the LPS challenge (P =0.025), while Zn-Gly reduced the gene expression of the pro-inflammatory factors IL-1ß and IL-6, decreased toll-like receptor 4 (TLR4) and nuclear factor kappa-B p65 (NF-κB p65) (P < 0.05). Zn-Gly also alleviated the LPS-induced downregulation of the intestinal barrier gene Claudin-1. Thus, LPS exposure prompted the mobilization of zinc transporter proteins and MT to perform the remodeling of systemic zinc homeostasis, Zn-Gly participated in the regulation of zinc homeostasis and inhibited the production of pro-inflammatory factors through the TLR4/NF-κB pathway, attenuating the inflammatory response and intestinal barrier damage caused by an immune challenge.


Subject(s)
Glycine/analogs & derivatives , Lipopolysaccharides , NF-kappa B , Chick Embryo , Animals , NF-kappa B/genetics , NF-kappa B/metabolism , Lipopolysaccharides/toxicity , Toll-Like Receptor 4/metabolism , Chickens/metabolism , Saline Solution/toxicity , Inflammation/chemically induced , Inflammation/veterinary , Homeostasis , Zinc/toxicity
5.
J Anim Sci ; 1012023 Jan 03.
Article in English | MEDLINE | ID: mdl-37933958

ABSTRACT

This study aimed to investigate the effects of diets supplemented with 25-hydroxycholecalciferol [25-(OH)D3] and additional vitamin E on growth performance, antioxidant capacity, bone development, and carcass characteristics at different stocking densities on commercial broiler farms. A total of 118,800 one-day-old Arbor Acres broilers were assigned to a 2 × 2 factorial treatment consisting of two dietary vitamin levels (5,500 IU vitamin D3 and 60 IU vitamin E: normal diet, using half 25-(OH)D3 as a source of vitamin D3 and an additional 60 IU of vitamin E: 25-(OH)D3+VE diet) and two stocking densities (high density of 20 chickens/m2: HD and 16 chickens/m2: LD). The experiment lasted for 42 d. The results showed that high-density stocking negatively affected the growth performance of broilers during the first four weeks, whereas the vitamin diet treatment significantly improved the feed conversion ratios (FCR) during the last 2 wk. Vitamin diets increased catalase at 14 and 42 d, and the glutathione peroxidase (GSH-px) levels at 42 d in high-density-stocked broilers. The interaction showed that serum vitamin E levels were significantly improved at 28 d of age in high-density-stocked broilers as a result of the vitamin diets. Stocking density and dietary treatments were found to significantly affect bone development, with the vitamin diet significantly increasing metatarsal length and femoral bone strength in broilers from high-density stocking density at 28 d of age. High stocking density increased the proportion of leg muscles and meat yield per square meter. In general, 25-(OH)D3 and additional vitamin E suppressed oxidative stress and ameliorated the negative effects of high-density stocking on bone development in a commercial chicken farm setting. Vitamin diets improved the FCR of broilers, while high-density stocking resulted in better economic outcomes.


High-density stocking is often associated with animal welfare risks in broilers, mainly in terms of oxidative stress and bone development. Nevertheless, farming at too low a density remains for the most part economically unviable. Modulation of antioxidant capacity and bone development by nutritional strategies in high-density-farmed broilers has proven an effective tool in developing countries. Therefore, the present study investigated the effects of applying diets with a higher biological potency of vitamin D3 25-hydroxycholecalciferol [25-(OH)D3] and a higher concentration of vitamin E on broiler production performance, antioxidant capacity and meat production performance at different densities of stocking under commercial farming conditions. The results indicated that the vitamin dietary treatments suppressed oxidative stress and ameliorated the negative effects of high-density farming on bone development.


Subject(s)
Calcifediol , Chickens , Animals , Calcifediol/pharmacology , Chickens/physiology , Antioxidants , Vitamin E/pharmacology , Diet/veterinary , Dietary Supplements , Vitamins/pharmacology , Cholecalciferol , Bone Development , Animal Feed/analysis
6.
Vaccines (Basel) ; 11(6)2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37376505

ABSTRACT

Salmonellosis is a global food safety challenge caused by Salmonella, a gram-negative bacterium of zoonotic importance. Poultry is considered a major reservoir for the pathogen, and humans are exposed through consumption of raw or undercooked products derived from them. Prophylaxis of Salmonella in poultry farms generally mainly involves biosecurity measures, flock testing and culling, use of antibiotics, and vaccination programs. For decades, the use of antibiotics has been a common practice to limit poultry contamination with important pathogenic bacteria such as Salmonella at the farm level. However, due to an increasing prevalence of resistance, non-therapeutic use of antibiotics in animal production has been banned in many parts of the world. This has prompted the search for non-antimicrobial alternatives. Live vaccines are among the developed and currently used methods for Salmonella control. However, their mechanism of action, particularly the effect they might have on commensal gut microbiota, is not well understood. In this study, three different commercial live attenuated Salmonella vaccines (AviPro® Salmonella Vac T, AviPro® Salmonella DUO, and AviPro® Salmonella Vac E) were used to orally vaccinate broiler chickens, and cecal contents were collected for microbiomes analysis by 16S rRNA next generation sequencing. Quantitative real-time PCR (qPCR) was used to study the cecal immune-related genes expression in the treatment groups, while Salmonella-specific antibodies were analyzed from sera and cecal extracts by enzyme-linked immunosorbent assay (ELISA). We show that vaccination with live attenuated Salmonella vaccines had a significant influence on the variability of the broiler cecal microbiota (p = 0.016). Furthermore, the vaccines AviPro® Salmonella Vac T and AviPro® Salmonella DUO, but not AviPro® Salmonella Vac E, had a significant effect (p = 0.024) on microbiota composition. This suggests that the live vaccine type used can differently alter the microbiota profiles, driving the gut colonization resistance and immune responses to pathogenic bacteria, and might impact the overall chicken health and productivity. Further investigation is, however, required to confirm this.

7.
Foods ; 12(5)2023 Mar 04.
Article in English | MEDLINE | ID: mdl-36900616

ABSTRACT

Cellulose can be isolated from various raw materials and agricultural side streams and might help to reduce the dietary fiber gap in our diets. However, the physiological benefits of cellulose upon ingestion are limited beyond providing fecal bulk. It is barely fermented by the microbiota in the human colon due to its crystalline character and high degree of polymerization. These properties make cellulose inaccessible to microbial cellulolytic enzymes in the colon. In this study, amorphized and depolymerized cellulose samples with an average degree of polymerization of less than 100 anhydroglucose units and a crystallinity index below 30% were made from microcrystalline cellulose using mechanical treatment and acid hydrolysis. This amorphized and depolymerized cellulose showed enhanced digestibility by a cellulase enzyme blend. Furthermore, the samples were fermented more extensively in batch fermentations using pooled human fecal microbiota, with minimal fermentation degrees up to 45% and a more than eight-fold increase in short-chain fatty acid production. While this enhanced fermentation turned out to be highly dependent on the microbial composition of the fecal pool, the potential of engineering cellulose properties to increased physiological benefit was demonstrated.

8.
Crit Rev Food Sci Nutr ; 63(12): 1689-1706, 2023.
Article in English | MEDLINE | ID: mdl-34404276

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is one of the most common chronic liver disorders in humans, partly because it is closely related to metabolic disorders of the liver with increasing prevalence. NAFLD begins with hepatic lipid accumulation, which may cause inflammation and eventually lead to fibrosis in the liver. Numerous studies have demonstrated the close relationship between gut dysfunction (especially the gut microbiota and its metabolites) and the occurrence and progression of NAFLD. The bidirectional communication between the gut and liver, named the gut-liver axis, is mainly mediated by the metabolites derived from both the liver and gut through the biliary tract, portal vein, and systemic circulation. Herein, we review the effects of the gut-liver axis on the pathogenesis of NAFLD. We also comprehensively describe the potential molecular mechanisms from the perspective of the role of liver-derived metabolites and gut-related components in hepatic metabolism and inflammation and gut health, respectively. The study provides insights into the mechanisms underlying current summarizations that support the intricate interactions between a disordered gut and NAFLD and can provide novel strategies to lessen the prevalence and consequence of NAFLD.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/pathology , Dysbiosis , Liver/metabolism , Fibrosis , Inflammation/metabolism
9.
Oxid Med Cell Longev ; 2022: 1427335, 2022.
Article in English | MEDLINE | ID: mdl-35387265

ABSTRACT

To investigate the change in zinc homeostasis of broilers under heat stress, 512 broiler chickens were raised to the age of 28 days. The broilers were then assigned to heat stress and normal temperature (36.0°C vs. 26.0°C) groups for 7 days. The results showed that oxidative stress induced by high temperature had a negative effect on the growth performance of broilers. Heat stress altered zinc homeostasis and led to a redistribution of zinc in broilers, which was reflected in increased zinc concentrations in the jejunum, liver, and tibia. Upregulation of the expression of the zinc exporter ZnT1 and importers ZIP8 and ZIP14 in the jejunum indicated that more zinc was absorbed and transported from the jejunum into the blood, while the liver increased its capacity to hold zinc through upregulation of metallothionein (MT) expression, which was achieved by reducing ZnT1 expression and upregulating the expression of the importer ZIP3. The pathway was mediated by zinc transporters, but the capacity of MT to chelate and release zinc ions also played a crucial role. The mechanism of alterations in zinc homeostasis under heat stress was revealed by the changes in zinc transporters and MT levels in the intestine and liver. Heat stress also altered cecal microbial diversity and reduced the relative abundances of Bilophila and Dialister. In conclusion, broilers altered systemic zinc homeostasis through the regulation of zinc transporters and MT in the liver and jejunum to resist oxidative stress induced by high temperature.


Subject(s)
Chickens , Metallothionein , Animals , Carrier Proteins , Chickens/metabolism , Homeostasis , Jejunum/metabolism , Liver/metabolism , Metallothionein/metabolism , Oxidative Stress , Temperature , Zinc/pharmacology
10.
Article in English | MEDLINE | ID: mdl-35337975

ABSTRACT

Thermosensation is crucial for the survival of any organism. In animals, changes in brain temperature are detected via sensory neurons, their cell bodies are located in the trigeminal ganglia. Transient receptor potential (TRP) ion channels are the largest temperature sensing family. In mammals, 11 thermoTRPs are known, as in poultry, there are only three. This research further elucidates TRP mRNA expression in the brain of broiler embryo's. Three incubation treatments were conducted on 400 eggs each: the control (C) at 37.6 °C; T1 deviating from C by providing a + 1 °C heat stimuli during embryonic day (ED) 15-20 for 8 h a day; and T2, imposing a + 2 °C heat stimuli. After each heat stimuli, 12 eggs per treatment were taken for blood sampling from the chorioallantoic membrane and brain harvesting. Incubation parameters such has residual yolk (free embryonic) weight, chick quality and hatch percentage were collected. After primer optimization, 22 target genes (13 TRPs and 9 non-TRPs) were measured on mRNA of the brain using a nanofluidic biochip (Fluidigm Corporation). Four target genes (ANO2, TRPV1, SCN5A, TRAAK) have a significant treatment effect - independent of ED. Another four (TRPM8, TRPA1, TRPM2, TRPC3) have a significant treatment effect visible on one or more ED. Heat sensitive channels were increased in T2 and to a lesser degree in T1, which could be part of an acclimatisation process resulting in later life heat tolerance by increased heat sensitivity. T2, however, resulted in a lower hatch weight, quality and hatchability. No hormonal differences were detected.


Subject(s)
Chickens , Hot Temperature , Animals , Brain , Chick Embryo , Chickens/genetics , Ion Channels , Mammals/genetics , RNA, Messenger/genetics , Temperature
11.
Front Nutr ; 8: 650211, 2021.
Article in English | MEDLINE | ID: mdl-34926538

ABSTRACT

We investigated the use of citrus pulp (CP) as a novel prebiotic capable of exerting microbiota and immunomodulating capacities to alleviate weaning stress. Inulin (IN), a well-known prebiotic, was used for comparison. Hundred and 28 male weaned piglets of 21 days old were assigned to 32 pens of 4 piglets each. Piglets were assigned to one of the four treatments, i.e., control, IN supplemented at 0.2% (IN0.2%), and CP supplemented either at 0.2% (CP0.2%) or at 2% (CP2%). On d10-11 and d31-32 post-weaning, one pig per pen was euthanized for intestinal sampling to evaluate the growth performance, chyme characteristics, small intestinal morphology, colonic inflammatory response and barrier integrity, metabolite profiles [gas chromatography-mass spectrometry (GC-MS), and liquid chromatography-mass spectrometry (LC-MS)], and microbial populations. The IN treatment and the two CP treatments induced higher small intestinal villus height to crypt depth ratios in comparison with the control diet at both sampling times. All treatments decreased acidic goblet cell absolute counts in the crypts in comparison to the control diet of the duodenum on d10-11 and d31-32. The gene expression of ß-defensin 2 was downregulated in colonic tissues following the IN and CP2% inclusion on d31-32. On d31-32, piglets fed with IN and CP0.2% showed lower mRNA levels of occludin and claudin-3, respectively. Not surprisingly, flavonoids were observed in the colon in the CP treatments. Increased colonic acetate proportions on d10-11, at the expense of branched-chain fatty acid (BCFA) levels, were observed following the CP2% supplementation compared to the control diet, inferring a reduction of proteolytic fermentation in the hindgut. The beneficial microbial community Faecalibacterium spp. was promoted in the colon of piglets fed with CP2% on d10-11 (p = 0.04; false discovery rate (FDR) non-significant) and on d31-32 (p = 0.03; FDR non-significant) in comparison with the control diet. Additionally, on d31-32, CP2% increased the relative abundance of Megasphaera spp. compared to control values (p = 0.03; FDR non-significant). In conclusion, CP2% promoted the growth of beneficial bacterial communities in both post-weaning time points, modulating colonic fermentation patterns in the colon. The effects of CP supplementation were similar to those of IN and showed the potential as a beneficial feed supplement to alleviate weaning stress.

12.
Foods ; 10(11)2021 Nov 22.
Article in English | MEDLINE | ID: mdl-34829172

ABSTRACT

In recent years, chronic diseases including obesity, diabetes, cancer, cardiovascular, and neurodegenerative disorders have been the leading causes of incapacity and death globally. Increasing evidence suggests that improvements of lifestyle habits and diet is the most commonly adopted strategy for the prevention of chronic disorders. Moreover, many dietary compounds have revealed health-promoting benefits beyond their nutritional effects. It is worth noting that diet plays an important role in shaping the intestinal microbiota. Coarse cereals constitute important sources of nutrients for the gut microbiota and contribute to a healthy gut microbiome. Furthermore, the gut microbiota converts coarse cereals into functional substances and mediates the interaction between the host and these components. In this study, we summarize the recent findings concerning functional components of cereal grains and their potential chemopreventive activity via modulating the gut microbiota.

13.
Food Funct ; 12(24): 12181-12193, 2021 Dec 13.
Article in English | MEDLINE | ID: mdl-34752597

ABSTRACT

Short-chain fatty acids (SCFAs) play an important role in the host system. Among SCFAs, butyrate has received particular attention for its large effect on host immunity, particularly in supplying energy to enterocytes and producing immune cells. Butyrate enters the cells through the Solute Carrier Family 5 Member 8 (SLC5A8) transporters, then works as a histone deacetylase inhibitor (HDAC) that inhibits the activation of Nuclear factor-κB (NF-κB), which down-regulates the expression of IL-1ß, IL-6, TNF-α. Meanwhile, butyrate acts as a ligand to activate G protein-coupled receptors GPR41, GPR43, and GPR109, promoting the expression of anti-inflammatory factors. Besides, it inhibits the proinflammatory factors. Further, it can also suppress the expression of chemokines and reduce inflammation to maintain host homeostasis. This paper reviews the research progress highlighting the potential function of butyrate as a factor impacting intestinal health, obesity and brain disorders.


Subject(s)
Butyrates/metabolism , Fatty Acids, Volatile/metabolism , Inflammation Mediators/metabolism , Functional Food , Humans
14.
Vet Sci ; 8(10)2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34679037

ABSTRACT

Prebiotics, such as inulin, are non-digestible compounds that stimulate the growth of beneficial microbiota, which results in improved gut and overall health. In this study, we were interested to see if, and how, the ileal transcriptome altered after inulin administration in the pre-weaning period in pigs. Seventy-two Piétrain-Landrace newborn piglets were divided into three groups: (a) a control (CON) group (n = 24), (b) an inulin (IN)-0.5 group (n = 24), and (c) an IN-0.75 group (n = 24). Inulin was provided as a solution and administered twice a day. At week 4, eight piglets per group, those closest to the average in body weight, were sacrificed, and ileal scrapings were collected and analyzed using 3' mRNA massively parallel sequencing. Only minor differences were found, and three genes were differentially expressed between the CON and IN-0.5 group, at an FDR of 10%. All three genes were downregulated in the IN-0.5 group. When comparing the CON group with the IN-0.75 group, five genes were downregulated in the IN-0.75 group, including the three genes seen earlier as differentially expressed between CON and IN-0.5. No genes were found to be differential expressed between IN-0.5 and IN-0.75. Validation of a selection of these genes was done using qRT-PCR. Among the downregulated genes were Angiopoietin-like protein 4 (ANGPTL4), Aquaporin 7 (AQP7), and Apolipoprotein A1 (APOA1). Thus, although only a few genes were found to be differentially expressed, several of them were involved in lipid metabolism, belonging to the peroxisome proliferator-activated receptor (PPAR) signaling pathway and known to promote lipolysis. We, therefore, conclude that these lipid metabolism genes expressed in the ileum may play an important role when supplementing piglets with inulin early in life, before weaning.

15.
Vet Sci ; 8(10)2021 Oct 14.
Article in English | MEDLINE | ID: mdl-34679062

ABSTRACT

Maternal diet during early gestation affects offspring phenotype, but it is unclear whether maternal diet during late gestation influences piglet metabolism. We evaluated the impact of two dietary protein levels in sow late gestation diet and piglet nursery diet on piglet metabolism. Diets met or exceeded the crude protein and amino acid requirements. Sows received either 12% (Lower, L) or 17% (Higher, H) crude protein (CP) during the last five weeks of gestation, and piglets received 16.5% (L) or 21% (H) CP from weaning at age 3.5 weeks. This resulted in a 2 × 2 factorial design with four sow/piglet diet treatment groups: HH and LL (match), HL and LH (mismatch). Piglet hepatic tissues were sampled and differentially expressed genes (DEGs) were determined by RNA sequencing. At age 4.5 weeks, 25 genes were downregulated and 22 genes were upregulated in the mismatch compared to match groups. Several genes involved in catabolic pathways were upregulated in the mismatch compared to match groups, as were genes involved in lipid metabolism and inflammation. The results show a distinct interaction effect between maternal and nursery diets, implying that sow late gestation diet could be used to optimize piglet metabolism.

16.
Front Nutr ; 8: 731930, 2021.
Article in English | MEDLINE | ID: mdl-34568407

ABSTRACT

Xylo-oligosaccharides (XOS) are considered as functional oligosaccharides and have great prebiotic potential. XOS are the degraded products of xylan prepared via chemical, physical or enzymatic degradation. They are mainly composed of xylose units linked by ß-1, 4 bonds. XOS not only exhibit some specific physicochemical properties such as excellent water solubility and high temperature resistance, but also have a variety of functional biological activities including anti-inflammation, antioxidative, antitumor, antimicrobial properties and so on. Numerous studies have revealed in the recent decades that XOS can be applied to many food and feed products and exert their nutritional benefits. XOS have also been demonstrated to reduce the occurrence of human health-related diseases, improve the growth and resistance to diseases of animals. These effects open a new perspective on XOS potential applications for human consumption and animal production. Herein, this review aims to provide a general overview of preparation methods for XOS, and will also discuss the current application of XOS to human and animal health field.

17.
Animals (Basel) ; 11(8)2021 Jul 23.
Article in English | MEDLINE | ID: mdl-34438653

ABSTRACT

Isoquinoline alkaloids (IQ) exert beneficial antimicrobial and anti-inflammatory effects in livestock. Therefore, we hypothesized that supplementing sows' diets with IQ during gestation would decrease farrowing stress, affecting the piglets' development and performance. Sows were divided into: IQ1, supplemented with IQ from gestation day 80 (G80) to weaning; IQ2, supplemented from gestation day 110 (G110) to weaning, and a non-supplemented (NC) group. Sow body weight (BW), feed intake, back-fat thickness and back-muscle thickness were monitored. Cortisol, glucose and insulin were measured in sows' blood collected 5 d before, during, and after 7 d farrowing. Protein, fat, IgA and IgG were analyzed in the colostrum and milk. Piglets were monitored for weight and diarrhea score, and for ileum histology and gene expression 5 d post-weaning. IQ-supplemented sows lost less BW during lactation. Glucose and insulin levels were lower in the IQ groups compared to NC-sows 5 d before farrowing and had higher levels of protein and IgG in their colostrum. No other differences were observed in sows, nor in the measured parameters in piglets. In conclusion, IQ supplementation affected sows' metabolism, reducing body weight loss during lactation. Providing IQ to sows from their entrance into the maternity barn might be sufficient to induce these effects. IQ improved colostrum quality, increasing the protein and IgG content, improving passive immunity for piglets.

18.
Nutrients ; 13(7)2021 Jul 17.
Article in English | MEDLINE | ID: mdl-34371955

ABSTRACT

Despite the well-established role of quinoa protein as the source of antihypertensive peptides through in vitro enzymolysis, there is little evidence supporting the in vivo antihypertensive effect of intact quinoa protein. In this study, in vivo study on spontaneously hypertensive rats (SHRs) was conducted by administering quinoa protein for five weeks. Gastrointestinal content identification indicated that many promising precursors of bioactive peptides were released from quinoa protein under gastrointestinal processing. Quinoa protein administration on SHRs resulted in a significant decrease in blood pressure, a significant increase in alpha diversity, and microbial structure alternation towards that in non-hypertension rats. Furthermore, blood pressure was highly negatively correlated with the elevated abundance of genera in quinoa protein-treated SHRs, such as Turicibacter and Allobaculum. Interestingly, the fecal microbiota in quinoa protein-treated SHRs shared more features in the composition of genera with non-hypertension rats than that of the captopril-treated group. These results indicate that quinoa protein may serve as a potential candidate to lower blood pressure and ameliorate hypertension-related gut dysbiosis.


Subject(s)
Blood Pressure , Captopril/administration & dosage , Chenopodium quinoa , Dietary Proteins/administration & dosage , Gastrointestinal Microbiome , Hypertension/physiopathology , Plant Proteins/administration & dosage , Animals , Antihypertensive Agents/administration & dosage , Bacteria/classification , Bacteria/isolation & purification , Dietary Proteins/metabolism , Digestion , Feces/microbiology , Gastrointestinal Tract/metabolism , Gastrointestinal Tract/microbiology , Hypertension/drug therapy , Male , Peptides/analysis , Plant Proteins/metabolism , Rats , Rats, Inbred SHR
19.
J Anim Sci ; 99(7)2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34097723

ABSTRACT

The objective of this study was to investigate the effects of xylo-oligosaccharides (XOSs) supplementation on growth performance, serum parameters, small intestinal morphology, intestinal mucosal integrity, and immune function in weaned piglets. A total of 240 weaned piglets with an average body weight (BW) of 8.82 ± 0.05 kg (28 d of age) were assigned randomly to four dietary treatments in a 28-d trial, including a control (CON) diet and three diets with XOS supplementation at the concentration of 100 (XOS100), 500 (XOS500), and 1,000 (XOS1000) mg/kg. There were four replicates per treatment with 15 pigs per pen. From day 1 to 14, there were no differences (P > 0.05) in average daily gain (ADG), average daily feed intake, and gain to feed ratio (G:F) during the different treatments. The different doses of XOSs showed a quadratic effect on BW on day 28, ADG, and G:F on day 1 to 28 of piglets (P < 0.05). From day 15 to 28, ADG of pigs fed the XOS500 diet was higher (P < 0.05) than pigs fed the CON diet. During the overall period (day 1 to 28), pigs fed the XOS500 diet had a higher BW, ADG, and G:F than pigs fed the CON diet (P < 0.05). In addition, compared with the CON group, the XOS500 group had significantly higher serum total antioxidant capacity, total superoxide dismutase and catalase levels, and lower malondialdehyde levels on days 14 and 28 (P < 0.05). The serum immunoglobulin G (IgG) concentration in the XOS500 group was also significantly higher compared with the CON group on days 14 and 28 (P < 0.05). However, serum immunoglobulin A and immunoglobulin M were not affected by the dietary treatments. Supplementation of XOS500 to the feed significantly increased the villus height (VH) and VH to crypt depth ratio in the jejunum and ileum in comparison with the CON and XOS1000 groups. Moreover, the XOS500 group significantly elevated the expression levels of occludin and zonula occludens protein-1 in the ileum compared with the CON group. The ileal interleukin (IL)-1ß, IL-8, and interferon (IFN)-γ mRNA expression levels in the XOS100 and XOS500 groups were markedly lower than in the CON group. In contrast, the ileal IL-10 mRNA expression levels were remarkably higher in the XOS500 than in the CON group. In conclusion, XOSs have a beneficial effect on growth performance by improving serum antioxidant defense system, serum IgG, small intestinal structure, and intestinal barrier function in weaned piglets.


Subject(s)
Diet , Dietary Supplements , Animal Feed/analysis , Animals , Diet/veterinary , Intestines , Oligosaccharides/pharmacology , Swine , Weaning
20.
Microorganisms ; 9(3)2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33802175

ABSTRACT

Apple pomace (AP) is known to be rich in biomolecules beneficial for health and it may advantageously be used to overcome the critical step of piglets' weaning. The study aimed to determine the effect of two levels of incorporation of AP on the performance, intestinal morphology, and microbiota of weaned piglets and investigate this feed ingredient as a weaning strategy. An experiment was performed with 42 piglets from weaning (28 days old) over a five-week period, including three iso-energetic and iso-nitrogenous diets (0%, 2%, and 4% dried AP diets) with seven pen-repetitions per diet (two pigs per pen). AP diets were beneficial for the average daily gain calculated on week 3 (p = 0.038) and some parameters of the intestinal architecture on the 35 post-weaning day. The 4% AP diet was beneficial for the feed conversion ratio (p = 0.002) and the energetic feed efficiency (p = 0.004) on the 35 post-weaning day. AP tended to influence the consistency of feces (softer to liquid, p = 0.096) and increased the counts of excreted pathogens (p = 0.072). Four percent AP influenced the richness of the microbiota and the bacteria profile as observed for the phylum Bacteroidetes or the class Clostridia. The 4% AP diet appeared as an interesting weaning strategy that should be evaluated in a large cohort.

SELECTION OF CITATIONS
SEARCH DETAIL