Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Toxicol ; 34(2): 151-61, 2015.
Article in English | MEDLINE | ID: mdl-25722321

ABSTRACT

Cardiovascular (CV) safety concerns are among the leading causes of compound attrition in drug development. This work describes a strategy of applying novel end points to a 7-day rodent study to increase the opportunity to detect and characterize CV injury observed in a longer term (ie, 28 days) study. Using a ghrelin receptor agonist (GSK894281), a compound that produces myocardial degeneration/necrosis in rats after 28 days at doses of 0.3, 1, 10, or 60 mg/kg/d, we dosed rats across a range of similar doses (0, 0.3, 60, or 150 mg/kg/d) for 7 days to determine whether CV toxicity could be detected in a shorter study. End points included light and electron microscopies of the heart; heart weight; serum concentrations of fatty acid-binding protein 3 (FABP3), cardiac troponin I (cTnI), cardiac troponin T (cTnT), and N-terminal proatrial natriuretic peptide (NT-proANP); and a targeted transcriptional assessment of heart tissue. Histologic evaluation revealed a minimal increase in the incidence and/or severity of cardiac necrosis in animals administered 150 mg/kg/d. Ultrastructurally, mitochondrial membrane whorls and mitochondrial degeneration were observed in rats given 60 or 150 mg/kg/d. The FABP3 was elevated in rats given 150 mg/kg/d. Cardiac transcriptomics revealed evidence of mitochondrial dysfunction coincident with histologic lesions in the heart, and along with the ultrastructural results support a mechanism of mitochondrial injury. There were no changes in cTnI, cTnT, NT-proANP, or heart weight. In summary, enhancing a study design with novel end points provides a more integrated evaluation in short-term repeat dose studies, potentially leading to earlier nonclinical detection of structural CV toxicity.


Subject(s)
Cardiovascular System/drug effects , Piperazines/toxicity , Receptors, Ghrelin/agonists , Sulfonamides/toxicity , Animals , Atrial Natriuretic Factor/blood , Dose-Response Relationship, Drug , Fatty Acid Binding Protein 3 , Fatty Acid-Binding Proteins/blood , Heart/drug effects , Male , Microscopy, Electron , Myocardium/metabolism , Myocardium/pathology , Myocardium/ultrastructure , Necrosis , Protein Precursors/blood , Rats , Real-Time Polymerase Chain Reaction , Transcriptome/drug effects , Troponin I/blood , Troponin T/blood
2.
J Med Chem ; 57(5): 1964-75, 2014 Mar 13.
Article in English | MEDLINE | ID: mdl-24224729

ABSTRACT

By reducing the basicity of the core heterocycle in a series of HCV NS5B inhibitors, the hERG liability was reduced. The SAR was then systematically explored in order to increase solubility and enable dose escalation while retaining potency. During this exploration, a facile decarboxylation was noted and was exploited as a novel prodrug mechanism. The synthesis and characterization of these prodrugs and their utilization in chronic toxicity studies are presented.


Subject(s)
Antiviral Agents/pharmacology , Enzyme Inhibitors/pharmacology , Hepacivirus/drug effects , Pyridazines/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacokinetics , Dogs , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacokinetics , Hepacivirus/enzymology , Magnetic Resonance Spectroscopy , Mass Spectrometry , Pyridazines/chemistry , Pyridazines/pharmacokinetics , Rats , Structure-Activity Relationship
3.
Int J Toxicol ; 25(1): 41-7, 2006.
Article in English | MEDLINE | ID: mdl-16510356

ABSTRACT

Multiple methods currently exist for the assessment of peroxisome proliferation, including gene expression, enzyme activity, immunolabeling coupled with image analysis, and electron microscopy. This study describes a novel flow cytometric method to efficiently quantify peroxisome proliferation in cells from frozen livers. Frozen livers from cynomolgus monkeys treated with ciprofibrate at doses of 0, 3, 30, 150, and 400 mg/kg/day for 15 days were mechanically disaggregated using an automated dispersion method. The resulting cell suspensions were labeled using an allophycocyanin (APC)-conjugated antibody directed against peroxisomal membrane protein 70 (PMP70). Statistically significant increases in mean fluorescence intensity were observed from animals dosed at 30, 150, and 400 mg/kg/day compared to control. Parallel comparisons using electron microscopy and immunofluorescence microscopy suggest that flow cytometry may be an alternative to electron microscopy in determinations of peroxisome proliferation. Flow cytometric analysis of freshly isolated hepatocytes and frozen liver from rats treated with fenofibrate at 200 mg/kg/day for 10 days showed the flow cytometric method could detect peroxisome proliferation in both species. The research described here demonstrates the feasibility of applying flow cytometry for the detection of peroxisome proliferation.


Subject(s)
Clofibric Acid/analogs & derivatives , Fenofibrate/toxicity , Flow Cytometry/methods , Liver/drug effects , Macaca fascicularis , Peroxisome Proliferators/toxicity , Peroxisomes/drug effects , Animals , Cell Separation/methods , Clofibric Acid/toxicity , Cryopreservation , Dose-Response Relationship, Drug , Feasibility Studies , Fibric Acids , Hepatocytes/drug effects , Hepatocytes/pathology , Liver/pathology , Male , Microscopy, Electron, Transmission , Peroxisomes/ultrastructure , Rats , Rats, Sprague-Dawley
4.
Toxicol Sci ; 88(1): 250-64, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16081524

ABSTRACT

Fibrates, such as ciprofibrate, fenofibrate, and clofibrate, are peroxisome proliferator-activated receptor-alpha (PPARalpha) agonists that have been in clinical use for many decades for treatment of dyslipidemia. When mice and rats are given PPARalpha agonists, these drugs cause hepatic peroxisome proliferation, hypertrophy, hyperplasia, and eventually hepatocarcinogenesis. Importantly, primates are relatively refractory to these effects; however, the mechanisms for the species differences are not clearly understood. Cynomolgus monkeys were exposed to ciprofibrate at various dose levels for either 4 or 15 days, and the liver transcriptional profiles were examined using Affymetrix human GeneChips. Strong upregulation of many genes relating to fatty acid metabolism and mitochondrial oxidative phosphorylation was observed; this reflects the known pharmacology and activity of the fibrates. In addition, (1) many genes related to ribosome and proteasome biosynthesis were upregulated, (2) a large number of genes downregulated were in the complement and coagulation cascades, (3) a number of key regulatory genes, including members of the JUN, MYC, and NFkappaB families were downregulated, which appears to be in contrast to the rodent, where JUN and MYC are reported to upregulated after PPARalpha agonist treatment, (4) no transcriptional signal for DNA damage or oxidative stress was observed, and (5) transcriptional signals consistent with an anti-proliferative and a pro-apoptotic effect were seen. We also compared the primate data to literature reports of hepatic transcriptional profiling in PPARalpha-treated rodents, which showed that the magnitude of induction in beta-oxidation pathways was substantially greater in the rodent than the primate.


Subject(s)
Clofibric Acid/analogs & derivatives , Gene Expression Regulation/drug effects , Liver/drug effects , Macaca fascicularis , PPAR alpha/agonists , Peroxisome Proliferators/toxicity , Transcription, Genetic/drug effects , Animals , Clofibric Acid/pharmacokinetics , Clofibric Acid/toxicity , Dose-Response Relationship, Drug , Fatty Acids/metabolism , Fibric Acids , Gene Expression Profiling/methods , Humans , Liver/metabolism , Liver/pathology , Male , Oligonucleotide Array Sequence Analysis , Peroxisome Proliferators/pharmacokinetics , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...