Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 16(6): 7211-7218, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38301237

ABSTRACT

Molecular solar thermal energy storage (MOST) systems are rapidly becoming a feasible alternative to energy storage and net-zero carbon emission heating. MOST systems involve a single photoisomerization pair that incorporates light absorption, storage, and heat release processes in one recurring cycle. Despite significant recent advancements in the field, the catalytic back-reaction from MOST systems remains relatively unexplored. A wide range of applications is possible, contingent on the energy densities of the specific photoisomers. Here, we report platinum-, copper-, and nickel-based heterogeneous catalysts screened in batch conditions for the back-conversion reaction on the cyano-3-(4-methoxyphenyl)-norbornadiene/quadricyclane pair. Catalyst reactivities are investigated using structural characterization, imaging techniques, and spectroscopic analysis. Finally, the thermal stability is also explored for our best-performing catalysts.

2.
Chem Commun (Camb) ; 56(67): 9628-9631, 2020 Aug 28.
Article in English | MEDLINE | ID: mdl-32696768

ABSTRACT

A Fe-MOF was obtained from aqueous solution in high yield under reflux. The water sorption properties were studied by powder X-ray diffraction, volumetric and gravimetric sorption experiments and molecular simulations. The subsequent filling of hydrophobic and hydrophilic pores as well as the stability of the material are demonstrated.

3.
Nat Commun ; 10(1): 3025, 2019 Jul 09.
Article in English | MEDLINE | ID: mdl-31289274

ABSTRACT

Efficient use of energy for cooling applications is a very important and challenging field in science. Ultra-low temperature actuated (Tdriving < 80 °C) adsorption-driven chillers (ADCs) with water as the cooling agent are one environmentally benign option. The nanoscale metal-organic framework [Al(OH)(C6H2O4S)] denoted CAU-23 was discovered that possess favorable properties, including water adsorption capacity of 0.37 gH2O/gsorbent around p/p0 = 0.3 and cycling stability of at least 5000 cycles. Most importantly the material has a driving temperature down to 60 °C, which allows for the exploitation of yet mostly unused temperature sources and a more efficient use of energy. These exceptional properties are due to its unique crystal structure, which was unequivocally elucidated by single crystal electron diffraction. Monte Carlo simulations were performed to reveal the water adsorption mechanism at the atomic level. With its green synthesis, CAU-23 is an ideal material to realize ultra-low temperature driven ADC devices.

4.
J Magn Reson ; 291: 40-46, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29698909

ABSTRACT

Diffusion of water in aluminum fumarate was studied by means of pulsed field gradient (PFG) nuclear magnetic resonance (NMR). Due to water molecules exchanging between the intracrystalline anisotropic pore space and the isotropic intercrystalline void space the model of intracrystalline anisotropic diffusion fails to describe the experimental PFG NMR data at high observation times. Therefore, the two-site exchange model developed by Kärger is extended to the case of exchange between an anisotropic and an isotropic site. This extended exchange model is solved by numerical integration. It describes the experimental data very well and yields values for the intracrystalline diffusion coefficient and the mean residence times of the respective sites. Further PFG NMR studies were performed with coatings consisting of small aluminum fumarate crystals, which are used in adsorptive heat transformation applications. The diffusion coefficients of water in the small crystal coating are compared to the values expected from the extended two-site exchange model and from the model of long-range diffusion.

5.
Adv Mater ; 30(6)2018 Feb.
Article in English | MEDLINE | ID: mdl-29271497

ABSTRACT

The demand for cooling devices has increased during the last years and this trend will continue. Adsorption-driven chillers (ADCs) using water as the working fluid and low temperature waste energy for regeneration are an environmentally friendly alternative to currently employed cooling devices and can concurrently help to dramatically decrease energy consumption. Due to the ideal water sorption behavior and proven lifetime stability of [Al(OH)(m-BDC)] ∙ x H2 O (m-BDC2- = 1,3-benzenedicarboxylate), also denoted CAU-10-H, a green very robust synthesis process under reflux, with high yields up to 95% is developed and scaled up to 12 kg-scale. Shaping of the adsorbent is demonstrated, which is important for an application. Thus monoliths and coatings of CAU-10-H are produced using a water-based binder. The composites are thoroughly characterized toward their mechanical stability and water sorption behavior. Finally a full-scale heat exchanger is coated and tested under ADC working conditions. Fast adsorption dynamic leads to a high power output and a good power density. A low regeneration temperature of only 70 °C is demonstrated, allowing the use of low temperature sources like waste heat and solar thermal collectors.

6.
Dalton Trans ; 45(20): 8637-44, 2016 May 17.
Article in English | MEDLINE | ID: mdl-27143562

ABSTRACT

Micro- to mesoporous iron(iii) trimesate MIL-100(Fe) is a MOF of high interest for numerous applications. With regard to large-scale synthesis, e.g., by continuous flow or the in situ deposition of coatings, a replacement for the conventional, hydrothermal low-yield fluoride-containing synthesis is desirable. In this contribution, we present a method to synthesize crystalline fluoride-free MIL-100(Fe) from iron(iii) nitrate and trimesic acid in zeotropic DMSO/water solution at normal ambient pressure involving a DMSO-nitrate redox pathway. Yields of 72%, surface areas of SBET = 1791 m(2) g(-1) and pore volumes of Vpore = 0.82 cm(3) g(-1) were achieved.

7.
Dalton Trans ; 44(38): 16791-801, 2015 Oct 14.
Article in English | MEDLINE | ID: mdl-26337251

ABSTRACT

MIL-101(Cr), one of the most important prototypical MOFs, is well investigated and widely used in many scientific fields. With regard to MOF synthesis in general, the addition of a modifier is commonly used to improve the properties of the products. The effect of inorganic (mineral) and organic acid modifiers was thoroughly investigated in the synthesis of MIL-101(Cr) and HNO3 could increase the yield to over 80% of a product with average SBET > 3200 m(2) g(-1) in repeated experiments (from an average of 50% in most published syntheses) in small-scale laboratory synthesis. The large-scale synthesis could use the finding of HNO3 addition and produce MIL-101(Cr) in >100 g quantities with yields near 70% and BET-surface areas near 4000 m(2) g(-1). The addition of acetic acid (CH3COOH) together with seeding could decrease the reaction temperature, the lowest being 160 °C (from typically 220 °C in published procedures), with still relatively good yield and BET surface area of the product. The use of other strong inorganic or weak carboxylic acids as modulators typically caused a decrease in yield and porosity.

8.
Dalton Trans ; 43(41): 15300-4, 2014 Nov 07.
Article in English | MEDLINE | ID: mdl-25189376

ABSTRACT

The hydrothermal stability of aluminium hydroxide isophthalate MOF CAU-10-H was proven, under humid multi-cycling conditions. Detailed in situ thermogravimetric measurements and in situ powder X-ray diffraction analysis during water ad-/desorption were used. A reversible structural change during adsorption was detected and thereby exemplified the robustness of breathing-like MOFs over 700 water vapour ad/desorption cycles. In combination with high water adsorption capacity, hydrophilic CAU-10-H is the first breathing-like MOF with a structural change which is a promising candidate for the use in heat transformation processes.

9.
Chimia (Aarau) ; 67(6): 419-24, 2013.
Article in English | MEDLINE | ID: mdl-23945102

ABSTRACT

Porous coordination polymers (PCPs)/metal-organic frameworks (MOFs) are inorganic-organic hybrid materials with a permanent three-dimensional porous metal-ligand network. PCPs or MOFs are inorganic-organic analogs of zeolites in terms of porosity and reversible guest exchange properties. Microporous water-stable PCPs with high water uptake capacity are gaining attention for low temperature heat transformation applications in thermally driven adsorption chillers (TDCs) or adsorption heat pumps (AHPs). TDCs or AHPs are an alternative to traditional air conditioners or heat pumps operating on electricity or fossil fuels. By using solar or waste heat as the operating energy TDCs or AHPs can significantly help to minimize primary energy consumption and greenhouse gas emissions generated by industrial or domestic heating and cooling processes. TDCs and AHPs are based on the evaporation and consecutive adsorption of coolant liquids, preferably water, under specific conditions. The process is driven and controlled by the microporosity and hydrophilicity of the employed sorption material. Here we summarize the current investigations, developments and possibilities of PCPs/MOFs for use in low-temperature heat transformation applications as alternative materials for the traditional inorganic porous substances like silica gel, aluminophosphates or zeolites.


Subject(s)
Organometallic Compounds/chemistry , Polymers/chemistry , Water/chemistry , Zinc/chemistry , Adsorption , Crystallography, X-Ray , Hot Temperature , Models, Molecular , Molecular Structure , Porosity
10.
Dalton Trans ; 42(45): 15967-73, 2013 Dec 07.
Article in English | MEDLINE | ID: mdl-23864023

ABSTRACT

Sorption-based heat transformation and storage appliances are very promising for utilizing solar heat and waste heat in cooling or heating applications. The economic and ecological efficiency of sorption-based heat transformation depends on the availability of suitable hydrophilic and hydrothermally stable sorption materials. We investigated the feasibility of using the metal-organic frameworks UiO-66(Zr), UiO-67(Zr), H2N-UiO-66(Zr) and H2N-MIL-125(Ti) as sorption materials in heat transformations by means of volumetric water adsorption measurements, determination of the heat of adsorption and a 40-cycle ad/desorption stress test. The amino-modified compounds H2N-UiO-66 and H2N-MIL-125 feature high heat of adsorption (89.5 and 56.0 kJ mol(-1), respectively) and a very promising H2O adsorption isotherm due to their enhanced hydrophilicity. For H2N-MIL-125 the very steep rise of the H2O adsorption isotherm in the 0.1 < p/p0 < 0.2 region is especially beneficial for the intended heat pump application.

11.
Chem Commun (Camb) ; 48(78): 9708-10, 2012 Oct 09.
Article in English | MEDLINE | ID: mdl-22918266

ABSTRACT

For many possible applications of metal-organic frameworks, a coating onto a metallic support capable of both superior heat and mass transfer is required. A heated substrate in contact with a chilled solution of metal salt and linker reproducibly yields polycrystalline, highly stable, thermally conductive MOF coatings at a growth rate of 50 µm h(-1), illustrated by the formation of Cu(3)(btc)(2) as an example.

12.
J Am Chem Soc ; 131(8): 2776-7, 2009 Mar 04.
Article in English | MEDLINE | ID: mdl-19206233

ABSTRACT

The 3D metal-organic framework (MOF) (3)(infinity){[Ni(3)(mu(3)-btc)(2)(mu(4)-btre)(2)(mu-H(2)O)(2)]. approximately 22H(2)O} is found to be a reversibly dehydratable-hydratable water-stable MOF material with a large loading spread of 210 g/kg as a candidate for solid adsorbents in heat transformation cycles for refrigeration, heat pumping, and heat storage.

SELECTION OF CITATIONS
SEARCH DETAIL