Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 22(11)2021 May 30.
Article in English | MEDLINE | ID: mdl-34070942

ABSTRACT

Among mammals, serotonin is predominantly found in the gastrointestinal tract, where it has been shown to participate in pathway-regulating satiation. For the stomach, vascular serotonin release induced by gastric distension is thought to chiefly contribute to satiation after food intake. However, little information is available on the capability of gastric cells to synthesize, release and respond to serotonin by functional changes of mechanisms regulating gastric acid secretion. We investigated whether human gastric cells are capable of serotonin synthesis and release. First, HGT-1 cells, derived from a human adenocarcinoma of the stomach, and human stomach specimens were immunostained positive for serotonin. In HGT-1 cells, incubation with the tryptophan hydroxylase inhibitor p-chlorophenylalanine reduced the mean serotonin-induced fluorescence signal intensity by 27%. Serotonin release of 147 ± 18%, compared to control HGT-1 cells (set to 100%) was demonstrated after treatment with 30 mM of the satiating amino acid L-Arg. Granisetron, a 5-HT3 receptor antagonist, reduced this L-Arg-induced serotonin release, as well as L-Arg-induced proton secretion. Similarly to the in vitro experiment, human antrum samples released serotonin upon incubation with 10 mM L-Arg. Overall, our data suggest that human parietal cells in culture, as well as from the gastric antrum, synthesize serotonin and release it after treatment with L-Arg via an HTR3-related mechanism. Moreover, we suggest not only gastric distension but also gastric acid secretion to result in peripheral serotonin release.


Subject(s)
Arginine/pharmacology , Gastric Acid/metabolism , Parietal Cells, Gastric/drug effects , Protons , Serotonin/biosynthesis , Cell Line, Tumor , Fenclonine/pharmacology , Gene Expression , Granisetron/pharmacology , Humans , Hydrogen-Ion Concentration , Parietal Cells, Gastric/cytology , Parietal Cells, Gastric/metabolism , Protease Inhibitors/pharmacology , Receptors, Serotonin, 5-HT3/genetics , Receptors, Serotonin, 5-HT3/metabolism , Serotonin Antagonists/pharmacology , Stomach/cytology , Stomach/drug effects , Tissue Culture Techniques , Tryptophan Hydroxylase/antagonists & inhibitors , Tryptophan Hydroxylase/genetics , Tryptophan Hydroxylase/metabolism
3.
J Agric Food Chem ; 68(13): 3924-3932, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32162915

ABSTRACT

Activation of the transient receptor potential (TRP) channel TRPA1 by cinnamaldehyde has been shown to stimulate serotonin release in enterochromaffin QGP-1 cells. However, the impact of cinnamaldehyde on serotonin release in enterocytes is less well understood. In addition, since the neurotransmitter serotonin plays a regulatory role in a large variety of gastrointestinal and metabolic functions, it is of interest to study which structural characteristics determine cinnamaldehyde-induced serotonin release by enterocytes. Thus, the present study analyzed serotonin release in differentiated Caco-2 cells as a model for enterocytes in comparison to enterochromaffin QGP-1 cells after stimulation with cinnamaldehyde and 17 naturally occurring structurally related compounds by means of a serotonin ELISA. Stimulation with cinnamaldehyde induced a dose-dependent increase in serotonin release starting from 0.5 mM in both cell lines, with a larger effect size in Caco-2 enterocytes compared to that in QGP-1 enterochromaffin cells. Serotonin release in Caco-2 cells induced by additional 17 structurally related compounds correlated with serotonin release in QGP-1 cells, showing the highest effects for coniferylaldehyde with a 15.84 ± 3.23-fold increase in Caco-2 cells, followed by the parent compound cinnamaldehyde (13.45 ± 2.15), cinnamyl alcohol (6.68 ± 1.08), and α-methyl-cinnamaldehyde (6.59 ± 0.93). Analysis of structural and molecular characteristics that modulate serotonin release in Caco-2 enterocytes revealed that the ability of a compound to activate TRPA1, demonstrated by means of HEK293 cells transiently expressing hTRPA1, is a decisive factor to stimulate serotonin release in Caco-2 enterocytes, preferring small, electrophilic compounds with a lower polar surface area. In addition, blocking of TRPA1 using 30 µM AP-18 significantly reduced the cinnamaldehyde-induced serotonin release by 30.0 ± 5.24%, confirming a TRPA1-dependent component in serotonin release by Caco-2 cells.


Subject(s)
Acrolein/analogs & derivatives , Intestinal Mucosa/metabolism , Serotonin/metabolism , TRPA1 Cation Channel/metabolism , Acrolein/chemistry , Acrolein/metabolism , Caco-2 Cells , HEK293 Cells , Humans , Kinetics , Molecular Structure , TRPA1 Cation Channel/genetics
4.
ACS Omega ; 5(51): 33305-33313, 2020 Dec 29.
Article in English | MEDLINE | ID: mdl-33403292

ABSTRACT

The cinnamon-derived bioactive aroma compound cinnamaldehyde (CAL) has been identified as a promising antiobesity agent, inhibiting adipogenesis and decreasing lipid accumulation in vitro as well as in animal models. Here, we investigated the antiadipogenic effect of cinnamyl isobutyrate (CIB), another cinnamon-derived aroma compound, in comparison to CAL in 3T3-L1 adipocyte cells. In a concentration of 30 µM, CIB reduced triglyceride (TG) and phospholipid (PL) accumulation in 3T3-L1 pre-adipocytes by 21.4 ± 2.56 and 20.7 ± 2.05%, respectively. CAL (30 µM), in comparison, decreased TG accumulation by 37.5 ± 1.81% and PL accumulation by 28.7 ± 1.83%, revealing the aldehyde to be the more potent antiadipogenic compound. The CIB- and CAL-mediated inhibition of lipid accumulation was accompanied by downregulation of essential adipogenic transcription factors PPARγ, C/EBPα, and C/EBPß on gene and protein levels, pointing to a compound-modulated effect on adipogenic signaling cascades. Coincubation experiments applying the TRPA-1 inhibitor AP-18 demonstrated TRPA1 dependency of the CAL, but not the CIB-induced antiadipogenic effect.

5.
J Agric Food Chem ; 67(42): 11638-11649, 2019 Oct 23.
Article in English | MEDLINE | ID: mdl-31532204

ABSTRACT

Naturally occurring cinnamon compounds such as cinnamaldehyde (CAL) and structurally related constituents have been associated with antiobesity activities, although studies regarding the impact on intestinal fatty acid uptake are scarce. Here, we demonstrate the effects of CAL and structural analogues cinnamyl alcohol (CALC), cinnamic acid (CAC), and cinnamyl isobutyrate on mechanisms regulating intestinal fatty acid uptake in differentiated Caco-2 cells. CAL, CALC, and CAC (3000 µM) were found to decrease fatty acid uptake by 58.0 ± 8.83, 19.4 ± 8.98, and 21.9 ± 6.55%, respectively. While CAL and CALC at a concentration of 300 µM increased serotonin release 14.9 ± 3.00- and 2.72 ± 0.69-fold, respectively, serotonin alone showed no effect on fatty acid uptake. However, CAL revealed transient receptor potential channel A1-dependency in the decrease of fatty acid uptake, as well as in CAL-induced serotonin release. Overall, CAL was identified as the most potent of the cinnamon constituents tested.


Subject(s)
Acrolein/analogs & derivatives , Cinnamates/pharmacology , Cinnamomum zeylanicum/chemistry , Fatty Acids/metabolism , Plant Extracts/pharmacology , Propanols/pharmacology , Acrolein/chemistry , Acrolein/pharmacology , Biological Transport/drug effects , Caco-2 Cells , Cell Differentiation , Cinnamates/chemistry , Humans , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Plant Extracts/chemistry , Propanols/chemistry
6.
Mol Nutr Food Res ; 63(23): e1900133, 2019 12.
Article in English | MEDLINE | ID: mdl-31535460

ABSTRACT

SCOPE: Increasing the intake of satiety-enhancing food compounds represents a promising strategy for maintaining a healthy body weight. Recently, satiating effects for the capsaicinoid nonivamide have been demonstrated. As various proteins and amino acids have also been demonstrated to decrease energy intake, oral glucose tolerance test (oGTT)-based bolus interventions of 75 g glucose + 0.15 mg nonivamide (NV control) are tested with/without combination of a wheat protein hydrolysate (WPH: 2 g) and/or l-arginine (ARG: 3.2 g) for their satiating effects in 27 moderately overweight male subjects. METHODS AND RESULTS: Compared to NV control intervention, ARG and WPH + ARG treatment both reduce (p < 0.01) total calorie intake from a standardized breakfast by -5.9 ± 4.15% and -6.07 ± 4.38%, respectively. For the WPH + ARG intervention, increased mean plasma serotonin concentrations (AUC: 350 ± 218), quantitated by ELISA, and delayed gastric emptying, assessed by 13 C-Na-acetate breath test (-2.10 ± 0.51%, p < 0.05), are demonstrated compared to NV control. Correlation analysis between plasma serotonin and gastric emptying reveals a significant association after WPH ± ARG intervention (r = -0.396, p = 0.045). CONCLUSION: Combination of WPH and ARG enhances the satiating effect of nonivamide, providing opportunities to optimize satiating food formulations by low amounts of the individual food constituents.


Subject(s)
Arginine/administration & dosage , Capsaicin/analogs & derivatives , Overweight/psychology , Protein Hydrolysates/administration & dosage , Satiation/drug effects , Triticum/chemistry , Adult , Capsaicin/pharmacology , Cross-Over Studies , Energy Intake , Gastric Emptying/drug effects , Humans , Male , Middle Aged , Serotonin/blood , Single-Blind Method
7.
Sci Rep ; 8(1): 15099, 2018 10 10.
Article in English | MEDLINE | ID: mdl-30305718

ABSTRACT

DNA microarrays are important analytical tools in genetics and have recently found multiple new biotechnological roles in applications requiring free 3' terminal hydroxyl groups, particularly as a starting point for enzymatic extension via DNA or RNA polymerases. Here we demonstrate the highly efficient reverse synthesis of complex DNA arrays using a photolithographic approach. The method is analogous to conventional solid phase synthesis but makes use of phosphoramidites with the benzoyl-2-(2-nitrophenyl)-propoxycarbonyl (BzNPPOC) photolabile protecting group on the 3'-hydroxyl group. The use of BzNPPOC, with more than twice the photolytic efficiency of the 2-(2-nitrophenyl)-propoxycarbonyl (NPPOC) previously used for 5'→3' synthesis, combined with additional optimizations to the coupling and oxidation reactions results in an approximately 3-fold improvement in the reverse synthesis efficiency of complex arrays of DNA oligonucleotides. The coupling efficiencies of the reverse phosphoramidites are as good as those of regular phosphoramidites, resulting in comparable yields. Microarrays of DNA surface tethered on the 5' end and with free 3' hydroxyl termini can be synthesized quickly and with similarly high stepwise coupling efficiency as microarrays using conventional 3'→5' synthesis.


Subject(s)
DNA/biosynthesis , Oligonucleotide Array Sequence Analysis/methods , DNA/chemistry , Fluorescence , Gene Expression Regulation , Organophosphorus Compounds/chemistry , Photolysis , Time Factors
8.
Mol Nutr Food Res ; 62(17): e1701038, 2018 09.
Article in English | MEDLINE | ID: mdl-30133134

ABSTRACT

SCOPE: Cinnamon is associated with anti-obesity effects, regulating food intake, improving plasma glucose levels and lipid profiles in vivo. In the present study, the impact of cinnamyl isobutyrate (CIB), one constituent of cinnamon, on ad libitum food intake from a standardized breakfast and outcome measures of hormonal regulation of appetite were investigated. METHODS AND RESULTS: In this randomized, short-term crossover intervention study, a 75 g per 300 mL glucose solution solely (control) or supplemented with 0.45 mg CIB was administered to 26 healthy volunteers. Prior to and 2 h after receiving control or CIB treatment, subjective hunger perceptions were rated using a visual analog scale. Food intake from a standardized breakfast was assessed 2 h after treatments. Plasma peptide YY3-36 , glucagon-like-peptide1, ghrelin, and serotonin as well as plasma glucose and insulin were measured in blood samples drawn at fasting and 15, 30, 60, 90, and 120 min after treatment. CIB administration decreased total energy intake and delta area under curve plasma glucose by 4.64 ± 3.51% and 49.3 ± 18.5% compared to control treatment, respectively. CONCLUSIONS: CIB, administered at a 0.45 mg bolus in 75 g glucose-water solution, decreased ad libitum energy intake from a standardized breakfast and postprandial plasma glucose levels.


Subject(s)
Blood Glucose/metabolism , Cinnamates/pharmacology , Energy Intake/drug effects , Overweight/diet therapy , Adult , Blood Glucose/analysis , Breakfast , Dietary Supplements , Ghrelin/blood , Glucagon-Like Peptide 1/blood , Glucose Tolerance Test , Humans , Insulin , Male , Nutrients/pharmacology , Overweight/blood , Postprandial Period , Satiation/drug effects , Serotonin/blood
9.
PLoS One ; 12(2): e0171580, 2017.
Article in English | MEDLINE | ID: mdl-28192456

ABSTRACT

Flavanoids and related polyphenols, among them hesperitin, have been shown to modulate cellular glucose transport by targeting SGLT-1 and GLUT-2 transport proteins. We aimed to investigate whether homoeriodictyol, which is structurally related to hesperitin, affects glucose uptake in differentiated Caco-2 cells as a model for the intestinal barrier. The results revealed that, in contrast to other polyphenols, the flavanon homoeriodictyol promotes glucose uptake by 29.0 ± 3.83% at a concentration of 100 µM. The glucose uptake stimulating effect was sensitive to phloridzin, but not to phloretin, indicating an involvement of the sodium-coupled glucose transporter SGLT-1, but not of sodium-independent glucose transporters (GLUT). In addition, in contrast to the increased extracellular serotonin levels by stimulation with 500 mM D-(+)-glucose, treatment with 100 µM homoeriodictyol decreased serotonin release by -48.8 ± 7.57% in Caco-2 cells via a phloridzin-sensitive signaling pathway. Extracellular serotonin levels were also reduced by -57.1 ± 5.43% after application of 0.01 µM homoeriodictyol to human neural SH-SY5Y cells. In conclusion, we demonstrate that homoeriodictyol affects both the glucose metabolism and the serotonin system in Caco-2 cells via a SGLT-1-meditated pathway. Furthermore, the results presented here support the usage of Caco-2 cells as a model for peripheral serotonin release. Further investigations may address the value of homoeriodictyol in the treatment of anorexia and malnutrition through the targeting of SGLT-1.


Subject(s)
Flavones/pharmacology , Glucose/metabolism , Serotonin/metabolism , Sodium-Glucose Transporter 1/metabolism , Adenocarcinoma/genetics , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Biological Transport/drug effects , Caco-2 Cells , Cell Differentiation , Cell Line, Tumor , Cell Survival/drug effects , Colonic Neoplasms/genetics , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Cyclic AMP/metabolism , Extracellular Space/drug effects , Extracellular Space/metabolism , Gene Expression/drug effects , Glucose/pharmacology , Humans , Phlorhizin/pharmacology , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/drug effects , Signal Transduction/genetics , Sodium-Glucose Transporter 1/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...