Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
J Biol Chem ; 300(5): 107201, 2024 May.
Article in English | MEDLINE | ID: mdl-38508313

ABSTRACT

The salt-inducible kinases (SIKs) 1 to 3, belonging to the AMPK-related kinase family, serve as master regulators orchestrating a diverse set of physiological processes such as metabolism, bone formation, immune response, oncogenesis, and cardiac rhythm. Owing to its key regulatory role, the SIK kinases have emerged as compelling targets for pharmacological intervention across a diverse set of indications. Therefore, there is interest in developing SIK inhibitors with defined selectivity profiles both to further dissect the downstream biology and for treating disease. However, despite a large pharmaceutical interest in the SIKs, experimental structures of SIK kinases are scarce. This is likely due to the challenges associated with the generation of proteins suitable for structural studies. By adopting a rational approach to construct design and protein purification, we successfully crystallized and subsequently solved the structure of SIK3 in complex with HG-9-91-01, a potent SIK inhibitor. To enable further SIK3-inhibitor complex structures we identified an antibody fragment that facilitated crystallization and enabled a robust protocol suitable for structure-based drug design. The structures reveal SIK3 in an active conformation, where the ubiquitin-associated domain is shown to provide further stabilization to this active conformation. We present four pharmacologically relevant and distinct SIK3-inhibitor complexes. These detail the key interaction for each ligand and reveal how different regions of the ATP site are engaged by the different inhibitors to achieve high affinity. Notably, the structure of SIK3 in complex with a SIK3 specific inhibitor offers insights into isoform selectivity.


Subject(s)
Protein Kinase Inhibitors , Protein Serine-Threonine Kinases , Humans , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Crystallography, X-Ray , Protein Binding , Protein Conformation , Models, Molecular , Protein Kinases
2.
Chem Sci ; 14(39): 10800-10805, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37829032

ABSTRACT

The disruption of the protein-protein interaction (PPI) between Nrf2 and Keap1 is an attractive strategy to counteract the oxidative stress that characterises a variety of severe diseases. Peptides represent a complementary approach to small molecules for the inhibition of this therapeutically important PPI. However, due to their polar nature and the negative net charge required for binding to Keap1, the peptides reported to date exhibit either mid-micromolar activity or are inactive in cells. Herein, we present a two-component peptide stapling strategy to rapidly access a variety of constrained and functionalised peptides that target the Nrf2/Keap1 PPI. The most promising peptide, P8-H containing a fatty acid tag, binds to Keap1 with nanomolar affinity and is effective at inducing transcription of ARE genes in a human lung epithelial cell line at sub-micromolar concentration. Furthermore, crystallography of the peptide in complex with Keap1 yielded a high resolution X-ray structure, adding to the toolbox of structures available to develop cell-permeable peptidomimetic inhibitors.

3.
Chem Sci ; 14(25): 7057-7067, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37389247

ABSTRACT

Understanding allosteric regulation in biomolecules is of great interest to pharmaceutical research and computational methods emerged during the last decades to characterize allosteric coupling. However, the prediction of allosteric sites in a protein structure remains a challenging task. Here, we integrate local binding site information, coevolutionary information, and information on dynamic allostery into a structure-based three-parameter model to identify potentially hidden allosteric sites in ensembles of protein structures with orthosteric ligands. When tested on five allosteric proteins (LFA-1, p38-α, GR, MAT2A, and BCKDK), the model successfully ranked all known allosteric pockets in the top three positions. Finally, we identified a novel druggable site in MAT2A confirmed by X-ray crystallography and SPR and a hitherto unknown druggable allosteric site in BCKDK validated by biochemical and X-ray crystallography analyses. Our model can be applied in drug discovery to identify allosteric pockets.

4.
Sci Rep ; 12(1): 10018, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35705565

ABSTRACT

Proteins exist in several different conformations. These structural changes are often associated with fluctuations at the residue level. Recent findings show that co-evolutionary analysis coupled with machine-learning techniques improves the precision by providing quantitative distance predictions between pairs of residues. The predicted statistical distance distribution from Multi Sequence Analysis reveals the presence of different local maxima suggesting the flexibility of key residue pairs. Here we investigate the ability of the residue-residue distance prediction to provide insights into the protein conformational ensemble. We combine deep learning approaches with mechanistic modeling to a set of proteins that experimentally showed conformational changes. The predicted protein models were filtered based on energy scores, RMSD clustering, and the centroids selected as the lowest energy structure per cluster. These models were compared to the experimental-Molecular Dynamics (MD) relaxed structure by analyzing the backbone residue torsional distribution and the sidechain orientations. Our pipeline allows to retrieve the experimental structural dynamics experimentally represented by different X-ray conformations for the same sequence as well the conformational space observed with the MD simulations. We show the potential correlation between the experimental structure dynamics and the predicted model ensemble demonstrating the susceptibility of the current state-of-the-art methods in protein folding and dynamics prediction and pointing out the areas of improvement.


Subject(s)
Molecular Dynamics Simulation , Proteins , Machine Learning , Protein Conformation , Protein Folding , Proteins/chemistry
5.
Eur J Med Chem ; 227: 113925, 2022 Jan 05.
Article in English | MEDLINE | ID: mdl-34742013

ABSTRACT

Inhibition of mucosa-associated lymphoid tissue lymphoma translocation protein-1 (MALT1) is a promising strategy to modulate NF-κB signaling, with the potential to treat B-cell lymphoma and autoimmune diseases. We describe the discovery and optimization of (1s,4s)-N,N'-diaryl cyclohexane-1,4-diamines, a novel series of allosteric MALT1 inhibitors, resulting in compound 8 with single digit micromolar cell potency. X-ray analysis confirms that this compound binds to an induced allosteric site in MALT1. Compound 8 is highly selective and has an excellent in vivo rat PK profile with low clearance and high oral bioavailability, making it a promising lead for further optimization.


Subject(s)
Cyclohexanes/pharmacology , Diamines/pharmacology , Drug Discovery , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/antagonists & inhibitors , Allosteric Regulation/drug effects , Animals , Cyclohexanes/chemical synthesis , Cyclohexanes/chemistry , Diamines/chemical synthesis , Diamines/chemistry , Dose-Response Relationship, Drug , Humans , Molecular Structure , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/metabolism , Rats , Structure-Activity Relationship
6.
ACS Med Chem Lett ; 12(2): 302-308, 2021 Feb 11.
Article in English | MEDLINE | ID: mdl-33603979

ABSTRACT

The MEK1 kinase plays a critical role in key cellular processes, and as such, its dysfunction is strongly linked to several human diseases, particularly cancer. MEK1 has consequently received considerable attention as a drug target, and a significant number of small-molecule inhibitors of this kinase have been reported. The majority of these inhibitors target an allosteric pocket proximal to the ATP binding site which has proven to be highly druggable, with four allosteric MEK1 inhibitors approved to date. Despite the significant attention that the MEK1 allosteric site has received, chemotypes which have been shown structurally to bind to this site are limited. With the aim of discovering novel allosteric MEK1 inhibitors using a fragment-based approach, we report here a screening method which resulted in the discovery of multiple allosteric MEK1 binders, one series of which was optimized to sub-µM affinity for MEK1 with promising physicochemical and ADMET properties.

7.
ACS Med Chem Lett ; 10(8): 1222-1227, 2019 Aug 08.
Article in English | MEDLINE | ID: mdl-31413809

ABSTRACT

A series of pyrrolidine amino nitrile DPP1 inhibitors have been developed and characterized. The S2 pocket structure-activity relationship for these compounds shows significant gains in potency for DPP1 from interacting further with target residues and a network of water molecules in the binding pocket. Herein we describe the X-ray crystal structures of several of these compounds alongside an analysis of factors influencing the inhibitory potency toward DPP1 of which stabilization of the water network, demonstrated using Grand Canonical Monte Carlo simulations and free energy calculations, is attributed as a main factor.

8.
J Med Chem ; 62(17): 7769-7787, 2019 09 12.
Article in English | MEDLINE | ID: mdl-31415176

ABSTRACT

While bronchodilators and inhaled corticosteroids are the mainstay of asthma treatment, up to 50% of asthmatics remain uncontrolled. Many studies show that the cysteinyl leukotriene cascade remains highly activated in some asthmatics, even those on high-dose inhaled or oral corticosteroids. Hence, inhibition of the leukotriene C4 synthase (LTC4S) enzyme could provide a new and differentiated core treatment for patients with a highly activated cysteinyl leukotriene cascade. Starting from a screening hit (3), a program to discover oral inhibitors of LTC4S led to (1S,2S)-2-({5-[(5-chloro-2,4-difluorophenyl)(2-fluoro-2-methylpropyl)amino]-3-methoxypyrazin-2-yl}carbonyl)cyclopropanecarboxylic acid (AZD9898) (36), a picomolar LTC4S inhibitor (IC50 = 0.28 nM) with high lipophilic ligand efficiency (LLE = 8.5), which displays nanomolar potency in cells (peripheral blood mononuclear cell, IC50,free = 6.2 nM) and good in vivo pharmacodynamics in a calcium ionophore-stimulated rat model after oral dosing (in vivo, IC50,free = 34 nM). Compound 36 mitigates the GABA binding, hepatic toxicity signal, and in vivo toxicology findings of an early lead compound 7 with a human dose predicted to be 30 mg once daily.


Subject(s)
Anti-Asthmatic Agents/pharmacology , Asthma/drug therapy , Drug Discovery , Enzyme Inhibitors/pharmacology , Glutathione Transferase/antagonists & inhibitors , Pyrazines/pharmacology , Administration, Oral , Animals , Anti-Asthmatic Agents/administration & dosage , Anti-Asthmatic Agents/chemistry , Asthma/metabolism , Disease Models, Animal , Dose-Response Relationship, Drug , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/chemistry , Glutathione Transferase/metabolism , Humans , Molecular Structure , Pyrazines/chemical synthesis , Pyrazines/chemistry , Rats , Structure-Activity Relationship
9.
ChemMedChem ; 14(19): 1701-1709, 2019 10 04.
Article in English | MEDLINE | ID: mdl-31325352

ABSTRACT

The mitogen-activated protein kinase p38α pathway has been an attractive target for the treatment of inflammatory conditions such as rheumatoid arthritis. While a number of p38α inhibitors have been taken to the clinic, they have been limited by their efficacy and toxicological profile. A lead identification program was initiated to selectively target prevention of activation (PoA) of mitogen-activated protein kinase-activated protein kinase 2 (MK2) rather than mitogen- and stress-activated protein kinase 1 (MSK1), both immediate downstream substrates of p38α, to improve the efficacy/safety profile over direct p38α inhibition. Starting with a series of pyrazole amide PoA MK2 inhibitor leads, and guided by structural chemistry and rational design, a highly selective imidazole 9 (2-(3'-(2-amino-2-oxoethyl)-[1,1'-biphenyl]-3-yl)-N-(5-(N,N-dimethylsulfamoyl)-2-methylphenyl)-1-propyl-1H-imidazole-5-carboxamide) and the orally bioavailable imidazole 18 (3-methyl-N-(2-methyl-5-sulfamoylphenyl)-2-(o-tolyl)imidazole-4-carboxamide) were discovered. The PoA concept was further evaluated by protein immunoblotting, which showed that the optimized PoA MK2 compounds, despite their biochemical selectivity against MSK1 phosphorylation, behaved similarly to p38 inhibitors in cellular signaling. This study highlights the importance of selective tool compounds in untangling complex signaling pathways, and although 9 and 18 were not differentiated from p38α inhibitors in a cellular context, they are still useful tools for further research directed to understand the role of MK2 in the p38α signaling pathway.


Subject(s)
Anti-Inflammatory Agents/chemical synthesis , Enzyme Activation/drug effects , Imidazoles/chemical synthesis , Intracellular Signaling Peptides and Proteins/metabolism , Mitogen-Activated Protein Kinase 14/antagonists & inhibitors , Protein Kinase Inhibitors/chemical synthesis , Protein Serine-Threonine Kinases/metabolism , Pyrazoles/chemistry , Anti-Inflammatory Agents/pharmacology , Cells, Cultured , Humans , Imidazoles/pharmacology , Molecular Targeted Therapy , Protein Kinase Inhibitors/pharmacology , Signal Transduction/drug effects
10.
J Med Chem ; 60(22): 9299-9319, 2017 11 22.
Article in English | MEDLINE | ID: mdl-29116812

ABSTRACT

Excessive activity of striatal-enriched protein tyrosine phosphatase (STEP) in the brain has been detected in numerous neuropsychiatric disorders including Alzheimer's disease. Notably, knockdown of STEP in an Alzheimer mouse model effected an increase in the phosphorylation levels of downstream STEP substrates and a significant reversal in the observed cognitive and memory deficits. These data point to the promising potential of STEP as a target for drug discovery in Alzheimer's treatment. We previously reported a substrate-based approach to the development of low molecular weight STEP inhibitors with Ki values as low as 7.8 µM. Herein, we disclose the first X-ray crystal structures of inhibitors bound to STEP and the surprising finding that they occupy noncoincident binding sites. Moreover, we utilize this structural information to optimize the inhibitor structure to achieve a Ki of 110 nM, with 15-60-fold selectivity across a series of phosphatases.


Subject(s)
Organophosphonates/chemistry , Protein Tyrosine Phosphatases, Non-Receptor/antagonists & inhibitors , Sulfonamides/chemistry , Alzheimer Disease/drug therapy , Animals , Catalytic Domain , Crystallography, X-Ray , Drug Discovery , Drug Stability , Dual-Specificity Phosphatases/antagonists & inhibitors , Microsomes, Liver/metabolism , Organophosphonates/chemical synthesis , Organophosphonates/metabolism , Protein Tyrosine Phosphatases, Non-Receptor/chemistry , Rats , Sulfonamides/chemical synthesis , Sulfonamides/metabolism
11.
J Med Chem ; 59(20): 9457-9472, 2016 Oct 27.
Article in English | MEDLINE | ID: mdl-27690432

ABSTRACT

A novel series of second generation DPP1 inhibitors free from aorta binding liabilities found for earlier compound series was discovered. This work culminated in the identification of compound 30 (AZD7986) as a highly potent, reversible, and selective clinical candidate for COPD, with predicted human PK properties suitable for once daily human dosing.


Subject(s)
Benzoxazoles/pharmacology , Cathepsin C/antagonists & inhibitors , Drug Discovery , Oxazepines/pharmacology , Protease Inhibitors/pharmacology , Administration, Oral , Animals , Benzoxazoles/administration & dosage , Benzoxazoles/chemistry , Cathepsin C/metabolism , Dogs , Dose-Response Relationship, Drug , Humans , Mice , Molecular Structure , Oxazepines/administration & dosage , Oxazepines/chemistry , Protease Inhibitors/administration & dosage , Protease Inhibitors/chemistry , Rabbits , Rats , Structure-Activity Relationship , U937 Cells
12.
J Med Chem ; 59(6): 2346-61, 2016 Mar 24.
Article in English | MEDLINE | ID: mdl-26878898

ABSTRACT

Recent literature has claimed that inhibition of the enzyme MTH1 can eradicate cancer. MTH1 is one of the "housekeeping" enzymes that are responsible for hydrolyzing damaged nucleotides in cells and thus prevent them from being incorporated into DNA. We have developed orthogonal and chemically distinct tool compounds to those published in the literature to allow us to test the hypothesis that inhibition of MTH1 has wide applicability in the treatment of cancer. Here we present the work that led to the discovery of three structurally different series of MTH1 inhibitors with excellent potency, selectivity, and proven target engagement in cells. None of these compounds elicited the reported cellular phenotype, and additional siRNA and CRISPR experiments further support these observations. Critically, the difference between the responses of our highly selective inhibitors and published tool compounds suggests that the effect reported for the latter may be due to off-target cytotoxic effects. As a result, we conclude that the role of MTH1 in carcinogenesis and utility of its inhibition is yet to be established.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , DNA Repair Enzymes/antagonists & inhibitors , Phosphoric Monoester Hydrolases/antagonists & inhibitors , Animals , Antineoplastic Agents/pharmacokinetics , Cell Line, Tumor , Cell Survival/drug effects , Crystallography, X-Ray , Drug Discovery , Humans , Models, Molecular , RNA, Small Interfering/pharmacology , Rats , Structure-Activity Relationship
13.
Drug Discov Today ; 20(9): 1104-11, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25931264

ABSTRACT

Fragment-based drug discovery relies upon structural information for efficient compound progression, yet it is often challenging to generate structures with bound fragments. A summary of recent literature reveals that a wide repertoire of experimental procedures is employed to generate ligand-bound crystal structures successfully. We share in-house experience from setting up and executing fragment crystallography in a project that resulted in 55 complex structures. The ligands span five orders of magnitude in affinity and the resulting structures are made available to be of use, for example, for development of computational methods. Analysis of the results revealed that ligand properties such as potency, ligand efficiency (LE) and, to some degree, clogP influence the success of complex structure generation.


Subject(s)
Drug Design , Drug Discovery/methods , Pharmaceutical Preparations/chemistry , Crystallography, X-Ray , Humans , Ligands
14.
MAbs ; 6(3): 756-64, 2014.
Article in English | MEDLINE | ID: mdl-24583620

ABSTRACT

The critical role played by IgE in allergic asthma is well-documented and clinically precedented, but some patients in whom IgE neutralization may still offer clinical benefit are excluded from treatment with the existing anti-IgE therapy, omalizumab, due to high total IgE levels or body mass. In this study, we sought to generate a novel high affinity anti-IgE antibody (MEDI4212) with potential to treat a broad severe asthma patient population. Analysis of body mass, total and allergen-specific IgE levels in a cohort of severe asthmatics was used to support the rationale for development of a high affinity IgE-targeted antibody therapeutic. Phage display technology was used to generate a human IgG1 lead antibody, MEDI4212, which was characterized in vitro using binding, signaling and functional assay systems. Protein crystallography was used to determine the details of the interaction between MEDI4212 and IgE. MEDI4212 bound human IgE with an affinity of 1.95 pM and was shown to target critical residues in the IgE Cε3 domain critical for interaction with FcεRI. MEDI4212 potently inhibited responses through FcεRI and also prevented the binding of IgE to CD23. When used ex vivo at identical concentration, MEDI4212 depleted free-IgE from human sera to levels ~1 log lower than omalizumab. Our results thus indicate that MEDI4212 is a novel, high affinity antibody that binds specifically to IgE and prevents IgE binding to its receptors. MEDI4212 effectively depleted free-IgE from human sera ex vivo to a level (1 IU/mL) anticipated to provide optimal IgE suppression in severe asthma patients.


Subject(s)
Antibodies, Anti-Idiotypic/immunology , Antibodies, Anti-Idiotypic/therapeutic use , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/therapeutic use , Asthma/immunology , Asthma/therapy , Immunoglobulin E/immunology , Adolescent , Adult , Aged , Antibodies, Anti-Idiotypic/genetics , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Neutralizing/genetics , Antibody Affinity , Antibody Specificity , Antigen-Antibody Complex/chemistry , Antigen-Antibody Complex/immunology , Antigen-Antibody Reactions , Binding Sites , Cohort Studies , Humans , Immunoglobulin E/chemistry , Immunoglobulin E/metabolism , Immunoglobulin G/genetics , Immunoglobulin G/immunology , Immunoglobulin G/therapeutic use , Middle Aged , Models, Molecular , Omalizumab , Peptide Library , Receptors, IgE/metabolism , Young Adult
15.
Bioorg Med Chem Lett ; 22(17): 5600-7, 2012 Sep 01.
Article in English | MEDLINE | ID: mdl-22877632

ABSTRACT

Structure-activity relationships are presented around a series of pyrazolopyrimidinediones that inhibit the growth of Helicobacter pylori by targeting glutamate racemase, an enzyme that provides d-glutamate for the construction of N-acetylglucosamine-N-acetylmuramic acid peptidoglycan subunits assimilated into the bacterial cell wall. Substituents on the inhibitor scaffold were varied to optimize target potency, antibacterial activity and in vivo pharmacokinetic stability. By incorporating an imidazole ring at the 7-position of scaffold, high target potency was achieved due to a hydrogen bonding network that occurs between the 3-position nitrogen atom, a bridging water molecule and the side chains Ser152 and Trp244 of the enzyme. The lipophilicity of the scaffold series proved important for expression of antibacterial activity. Clearances in vitro and in vivo were monitored to identify compounds with improved plasma stability. The basicity of the imidazole may contribute to increased aqueous solubility at lower pH allowing for improved oral bioavailability.


Subject(s)
Amino Acid Isomerases/antagonists & inhibitors , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Helicobacter pylori/drug effects , Pyrimidinones/chemistry , Pyrimidinones/pharmacology , Administration, Oral , Amino Acid Isomerases/metabolism , Animals , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacokinetics , Biological Availability , Helicobacter Infections/drug therapy , Helicobacter Infections/microbiology , Helicobacter pylori/enzymology , Humans , Imidazoles/chemistry , Imidazoles/pharmacology , Mice , Models, Molecular , Pyrazoles/administration & dosage , Pyrazoles/chemistry , Pyrazoles/pharmacokinetics , Pyrazoles/pharmacology , Pyrimidinones/administration & dosage , Pyrimidinones/pharmacokinetics , Structure-Activity Relationship
17.
Mol Endocrinol ; 17(3): 346-55, 2003 Mar.
Article in English | MEDLINE | ID: mdl-12554768

ABSTRACT

Estrogen receptor (ER)-mediated gene transcription occurs via the formation of a multimeric complex including ligand-activated receptors and nuclear coactivators. We have developed a homogeneous in vitro functional assay to help study the ligand-dependent interaction of ERs with various nuclear coactivators. The assay consists of FLAG-tagged ERalpha or ERbeta ligand binding domain (LBD), a biotinylated coactivator peptide, europium-labeled anti-FLAG antibody, and streptavidin-conjugated allophycocyanin. Upon agonist binding, the biotinylated coactivator peptide is recruited to FLAG-tagged ER LBD to form a complex and thus allow fluorescence resonance energy transfer (FRET) to occur between europium and allophycocyanin. Compounds with estrogen antagonism block the agonist-mediated recruitment of a coactivator and prevent FRET. The assay was used to evaluate the preference of ERs for various coactivators and ligands. Both ERalpha and ERbeta exhibited strong preferences for coactivator peptides corresponding to steroid receptor coactivator-1 and PPARgamma coactivor-1 vs. peroxisome proliferator-activated receptor-interacting protein and cAMP response element binding protein-binding protein. 17beta-Estradiol acted as a nonselective agonist for ERalpha and ERbeta. Genistein showed full agonism for ERalpha and only partial agonism for ERbeta, but with higher potency for ERbeta than ERalpha. Both raloxifene and tamoxifen behaved as full antagonists in this functional assay. The results obtained using compounds with a wide range of potency correlated well with those from a cell-based reporter gene assay. Therefore, this simple in vitro functional assay is predictive of ligand-dependent transactivation function of the receptor and, as such, is useful in nuclear receptor applications including mechanistic studies.


Subject(s)
Receptors, Estrogen/metabolism , Amino Acid Sequence , Cyclic AMP Response Element-Binding Protein/metabolism , Estradiol/metabolism , Estrogen Antagonists/pharmacology , Estrogen Receptor alpha , Estrogen Receptor beta , Europium/metabolism , Fluorescence Resonance Energy Transfer/methods , Histone Acetyltransferases , Humans , Ligands , Molecular Sequence Data , Nuclear Receptor Coactivator 1 , Oligopeptides , Peptides/metabolism , Protein Binding , Raloxifene Hydrochloride/pharmacology , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Estrogen/agonists , Tamoxifen/pharmacology , Transcription Factors/metabolism , Transcriptional Activation/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...