Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Sci Adv ; 8(36): eabn0047, 2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36070373

ABSTRACT

Gamete fusion is a critical event of mammalian fertilization. A random one-bead one-compound combinatorial peptide library represented synthetic human egg mimics and identified a previously unidentified ligand as Fc receptor-like 3, named MAIA after the mythological goddess intertwined with JUNO. This immunoglobulin super family receptor was expressed on human oolemma and played a major role during sperm-egg adhesion and fusion. MAIA forms a highly stable interaction with the known IZUMO1/JUNO sperm-egg complex, permitting specific gamete fusion. The complexity of the MAIA isotype may offer a cryptic sexual selection mechanism to avoid genetic incompatibility and achieve favorable fitness outcomes.

2.
Autophagy ; 18(10): 2409-2426, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35258392

ABSTRACT

Mitochondrial oxidative phosphorylation (OXPHOS) generates ATP, but OXPHOS also supports biosynthesis during proliferation. In contrast, the role of OXPHOS during quiescence, beyond ATP production, is not well understood. Using mouse models of inducible OXPHOS deficiency in all cell types or specifically in the vascular endothelium that negligibly relies on OXPHOS-derived ATP, we show that selectively during quiescence OXPHOS provides oxidative stress resistance by supporting macroautophagy/autophagy. Mechanistically, OXPHOS constitutively generates low levels of endogenous ROS that induce autophagy via attenuation of ATG4B activity, which provides protection from ROS insult. Physiologically, the OXPHOS-autophagy system (i) protects healthy tissue from toxicity of ROS-based anticancer therapy, and (ii) provides ROS resistance in the endothelium, ameliorating systemic LPS-induced inflammation as well as inflammatory bowel disease. Hence, cells acquired mitochondria during evolution to profit from oxidative metabolism, but also built in an autophagy-based ROS-induced protective mechanism to guard against oxidative stress associated with OXPHOS function during quiescence.Abbreviations: AMPK: AMP-activated protein kinase; AOX: alternative oxidase; Baf A: bafilomycin A1; CI, respiratory complexes I; DCF-DA: 2',7'-dichlordihydrofluorescein diacetate; DHE: dihydroethidium; DSS: dextran sodium sulfate; ΔΨmi: mitochondrial inner membrane potential; EdU: 5-ethynyl-2'-deoxyuridine; ETC: electron transport chain; FA: formaldehyde; HUVEC; human umbilical cord endothelial cells; IBD: inflammatory bowel disease; LC3B: microtubule associated protein 1 light chain 3 beta; LPS: lipopolysaccharide; MEFs: mouse embryonic fibroblasts; MTORC1: mechanistic target of rapamycin kinase complex 1; mtDNA: mitochondrial DNA; NAC: N-acetyl cysteine; OXPHOS: oxidative phosphorylation; PCs: proliferating cells; PE: phosphatidylethanolamine; PEITC: phenethyl isothiocyanate; QCs: quiescent cells; ROS: reactive oxygen species; PLA2: phospholipase A2, WB: western blot.


Subject(s)
Autophagy , Inflammatory Bowel Diseases , AMP-Activated Protein Kinases/metabolism , Adenosine Triphosphate/metabolism , Animals , Cysteine/metabolism , DNA, Mitochondrial/metabolism , Dextrans/metabolism , Endothelial Cells/metabolism , Fibroblasts/metabolism , Formaldehyde/metabolism , Humans , Inflammatory Bowel Diseases/metabolism , Isothiocyanates , Lipopolysaccharides/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Microtubule-Associated Proteins/metabolism , Mitochondria/metabolism , Phosphatidylethanolamines/metabolism , Reactive Oxygen Species/metabolism , Respiration , Sirolimus
3.
Sci Rep ; 8(1): 4988, 2018 03 21.
Article in English | MEDLINE | ID: mdl-29563529

ABSTRACT

Localization microscopy and multiple signal classification algorithm use temporal stack of image frames of sparse emissions from fluorophores to provide super-resolution images. Localization microscopy localizes emissions in each image independently and later collates the localizations in all the frames, giving same weight to each frame irrespective of its signal-to-noise ratio. This results in a bias towards frames with low signal-to-noise ratio and causes cluttered background in the super-resolved image. User-defined heuristic computational filters are employed to remove a set of localizations in an attempt to overcome this bias. Multiple signal classification performs eigen-decomposition of the entire stack, irrespective of the relative signal-to-noise ratios of the frames, and uses a threshold to classify eigenimages into signal and null subspaces. This results in under-representation of frames with low signal-to-noise ratio in the signal space and over-representation in the null space. Thus, multiple signal classification algorithms is biased against frames with low signal-to-noise ratio resulting into suppression of the corresponding fluorophores. This paper presents techniques to automatically debias localization microscopy and multiple signal classification algorithm of these biases without compromising their resolution and without employing heuristics, user-defined criteria. The effect of debiasing is demonstrated through five datasets of invitro and fixed cell samples.

4.
Nat Commun ; 7: 13752, 2016 12 09.
Article in English | MEDLINE | ID: mdl-27934858

ABSTRACT

Single-molecule localization techniques are restricted by long acquisition and computational times, or the need of special fluorophores or biologically toxic photochemical environments. Here we propose a statistical super-resolution technique of wide-field fluorescence microscopy we call the multiple signal classification algorithm which has several advantages. It provides resolution down to at least 50 nm, requires fewer frames and lower excitation power and works even at high fluorophore concentrations. Further, it works with any fluorophore that exhibits blinking on the timescale of the recording. The multiple signal classification algorithm shows comparable or better performance in comparison with single-molecule localization techniques and four contemporary statistical super-resolution methods for experiments of in vitro actin filaments and other independently acquired experimental data sets. We also demonstrate super-resolution at timescales of 245 ms (using 49 frames acquired at 200 frames per second) in samples of live-cell microtubules and live-cell actin filaments imaged without imaging buffers.

5.
Biophys J ; 111(10): 2241-2254, 2016 Nov 15.
Article in English | MEDLINE | ID: mdl-27851946

ABSTRACT

The epidermal growth factor receptor (EGFR) is a prototypical receptor tyrosine kinase involved in cell growth and proliferation and associated with various cancers. It is commonly assumed that after activation by binding of epidermal growth factor to the extracellular domain it dimerizes, followed by autophosphorylation of tyrosine residues at the intracellular domain. However, its oligomerization state before activation is controversial. In the absence of ligands, EGFR has been found in various, inconsistent amounts of monomeric, inactive dimeric, and oligomeric forms. In addition, evidence suggests that the active conformation is not a simple dimer but contains higher oligomers. As experiments in the past have been conducted at different conditions, we investigate here the influence of cell lines (HEK293, COS-7, and CHO-K1), temperature (room temperature and 37°C), and membrane localization on the quantitation of preformed dimers using SW-FCCS, DC-FCCS, quasi PIE-FCCS, and imaging FCCS. While measurement modality, temperature, and localization on upper or lower membranes have only a limited influence on the dimerization amount observed, the cell line and location to periphery versus center of the cell can change dimerization results significantly. The observed dimerization amount is strongly dependent on the expression level of endogenous EGFR in a cell line and shows a strong cell-to-cell variability even within the same cell line. In addition, using imaging FCCS, we find that dimers have a tendency to be found at the periphery of cells compared to central positions.


Subject(s)
ErbB Receptors/metabolism , Animals , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cell Line , Cholesterol/metabolism , Dose-Response Relationship, Drug , Epidermal Growth Factor/pharmacology , ErbB Receptors/chemistry , Humans , Protein Multimerization , Protein Structure, Quaternary , Spectrometry, Fluorescence , Thiazolidines/pharmacology
6.
Biophys J ; 111(1): 152-61, 2016 Jul 12.
Article in English | MEDLINE | ID: mdl-27410743

ABSTRACT

Fluorescence correlation spectroscopy (FCS) and fluorescence recovery after photobleaching (FRAP) are widely used methods to determine diffusion coefficients. However, they often do not yield the same results. With the advent of camera-based imaging FCS, which measures the diffusion coefficient in each pixel of an image, and proper bleaching corrections, it is now possible to measure the diffusion coefficient by FRAP and FCS in the exact same images. We thus performed simultaneous FCS and FRAP measurements on supported lipid bilayers and live cell membranes to test how far the two methods differ in their results and whether the methodological differences, in particular the high bleach intensity in FRAP, the bleach corrections, and the fitting procedures in the two methods explain observed differences. Overall, we find that the FRAP bleach intensity does not measurably influence the diffusion in the samples, but that bleach correction and fitting introduce large uncertainties in FRAP. We confirm our results by simulations.


Subject(s)
Cell Membrane/metabolism , Fluorescence Recovery After Photobleaching , Lipid Bilayers/metabolism , Diffusion , Spectrometry, Fluorescence , Time Factors
7.
Anal Bioanal Chem ; 406(20): 4797-813, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24908406

ABSTRACT

We review the principles and applications of statistical filtering in multichannel fluorescence microscopy. This alternative approach to separation of signals from individual fluorophore populations has many important advantages, especially when spectral and/or temporal overlap, or the complicated nature of those signals, makes their discrimination or sorting impossible by means of hardware. This situation is typically encountered for biological samples. This review of well established statistical filtering techniques and of emerging, very promising new methods of analysis reveals remarkable progress in bioanalytical applications of fluorescence microscopy.


Subject(s)
Data Interpretation, Statistical , Image Processing, Computer-Assisted/methods , Microscopy, Fluorescence/instrumentation , Microscopy, Fluorescence/methods , Models, Statistical , Spectrometry, Fluorescence/instrumentation , Spectrometry, Fluorescence/methods , Humans
8.
Langmuir ; 30(21): 6171-9, 2014 Jun 03.
Article in English | MEDLINE | ID: mdl-24807004

ABSTRACT

Positioning of peptides with respect to membranes is an important parameter for biological and biophysical studies using model systems. Our experiments using five different membrane peptides suggest that the time-dependent fluorescence shift (TDFS) of Laurdan can help when distinguishing between peripheral and integral membrane binding and can be a useful, novel tool for studying the impact of transmembrane peptides (TMP) on membrane organization under near-physiological conditions. This article focuses on LAH4, a model α-helical peptide with high antimicrobial and nucleic acid transfection efficiencies. The predominantly helical peptide has been shown to orient in supported model membranes parallel to the membrane surface at acidic and, in a transmembrane manner, at basic pH. Here we investigate its interaction with fully hydrated large unilamellar vesicles (LUVs) by TDFS and fluorescence correlation spectroscopy (FCS). TDFS shows that at acidic pH LAH4 does not influence the glycerol region while at basic pH it makes acyl groups at the glycerol level of the membrane less mobile. TDFS experiments with antimicrobial peptides alamethicin and magainin 2, which are known to assume transmembrane and peripheral orientations, respectively, prove that changes in acyl group mobility at the glycerol level correlate with the orientation of membrane-associated peptide molecules. Analogous experiments with the TMPs LW21 and LAT show similar effects on the mobility of those acyl groups as alamethicin and LAH4 at basic pH. FCS, on the same neutral lipid bilayer vesicles, shows that the peripheral binding mode of LAH4 is more efficient in bilayer permeation than the transmembrane mode. In both cases, the addition of LAH4 does not lead to vesicle disintegration. The influence of negatively charged lipids on the bilayer permeation is also addressed.


Subject(s)
Antimicrobial Cationic Peptides/chemistry , Peptides/chemistry , Alamethicin/chemistry , Drug Design , Glycerol/chemistry , Humans , Hydrogen-Ion Concentration , Lipid Bilayers/chemistry , Lipids/chemistry , Magainins/chemistry , Magnetic Resonance Spectroscopy , Protein Conformation , Spectrometry, Fluorescence , Time Factors , Unilamellar Liposomes/chemistry
9.
FEBS Lett ; 588(19): 3571-84, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-24726724

ABSTRACT

Fluorescence correlation spectroscopy (FCS) is a widely used technique in biophysics and has helped address many questions in the life sciences. It provides important advantages compared to other fluorescence and biophysical methods. Its single molecule sensitivity allows measuring proteins within biological samples at physiological concentrations without the need of overexpression. It provides quantitative data on concentrations, diffusion coefficients, molecular transport and interactions even in live organisms. And its reliance on simple fluorescence intensity and its fluctuations makes it widely applicable. In this review we focus on applications of FCS in live samples, with an emphasis on work in the last 5 years, in the hope to provide an overview of the present capabilities of FCS to address biologically relevant questions.


Subject(s)
Biology/methods , Spectrometry, Fluorescence/methods , Animals , Biological Transport , Cell Membrane/chemistry , Cell Membrane/metabolism , Chromatin/chemistry , Chromatin/metabolism , Humans , Protein Binding
10.
Methods Mol Biol ; 1076: 617-34, 2014.
Article in English | MEDLINE | ID: mdl-24108647

ABSTRACT

Studies of lateral diffusion are used for the characterization of the dynamics of biological membranes. One of the techniques that can be used for this purpose is fluorescence correlation spectroscopy (FCS), which belongs to the single-molecule techniques. Unfortunately, FCS measurements, when performed in planar lipid systems, are associated with a few sources of inaccuracy in the determination of the lateral diffusion coefficient. The main problems are related to the imperfect positioning of the laser focus relative to the plane of the sample. Another source of inaccuracy is the requirement for external calibration of the detection volume size. This protocol introduces a calibration-free method called Z-scan fluorescence correlation spectroscopy (Z-scan FCS), which is based on the determination of the diffusion time and particle number in steps along the optical (z-) axis by sequential FCS measurements. Z-scan FCS could be employed for diffusion measurements in planar membrane model systems-supported phospholipid bilayers (SPBs) and giant unilamellar vesicles (GUVs) and also in biological membranes. A result from measurements in SPBs is also presented in the protocol as a principle example of the Z-scan technique.


Subject(s)
Lipid Bilayers/chemistry , Membrane Lipids/chemistry , Spectrometry, Fluorescence/methods , Calibration , Cell Membrane/chemistry , Cell Membrane/metabolism , Diffusion , Fluorescence , Lipid Bilayers/analysis , Membrane Fluidity , Models, Theoretical , Spectrometry, Fluorescence/instrumentation
11.
Int J Mol Sci ; 13(10): 12890-910, 2012 Oct 09.
Article in English | MEDLINE | ID: mdl-23202928

ABSTRACT

Fluorescence Lifetime Correlation Spectroscopy (FLCS) is a variant of fluorescence correlation spectroscopy (FCS), which uses differences in fluorescence intensity decays to separate contributions of different fluorophore populations to FCS signal. Besides which, FLCS is a powerful tool to improve quality of FCS data by removing noise and distortion caused by scattered excitation light, detector thermal noise and detector afterpulsing. We are providing an overview of, to our knowledge, all published applications of FLCS. Although these are not numerous so far, they illustrate possibilities for the technique and the research topics in which FLCS has the potential to become widespread. Furthermore, we are addressing some questions which may be asked by a beginner user of FLCS. The last part of the text reviews other techniques closely related to FLCS. The generalization of the idea of FLCS paves the way for further promising application of the principle of statistical filtering of signals. Specifically, the idea of fluorescence spectral correlation spectroscopy is here outlined.


Subject(s)
Spectrometry, Fluorescence , Diffusion , Fluorescent Dyes/chemistry , Liposomes/chemistry , Models, Theoretical , Photons
12.
Biophys J ; 102(9): 2104-13, 2012 May 02.
Article in English | MEDLINE | ID: mdl-22824274

ABSTRACT

Changes of membrane organization upon cross-linking of its components trigger cell signaling response to various exogenous factors. Cross-linking of raft gangliosides GM1 with cholera toxin (CTxB) was shown to cause microscopic phase separation in model membranes, and the CTxB-GM1 complexes forming a minimal lipid raft unit are the subject of ongoing cell membrane research. Yet, those subdiffraction sized rafts have never been described in terms of size and dynamics. By means of two-color z-scan fluorescence correlation spectroscopy, we show that the nanosized domains are formed in model membranes at lower sphingomyelin (Sph) content than needed for the large-scale phase separation and that the CTxB-GM1 complexes are confined in the domains poorly stabilized with Sph. Förster resonance energy transfer together with Monte Carlo modeling of the donor decay response reveal the domain radius of ~8 nm, which increases at higher Sph content. We observed two types of domains behaving differently, which suggests a dual role of the cross-linker: first, local transient condensation of the GM1 molecules compensating for a lack of Sph and second, coalescence of existing nanodomains ending in large-scale phase separation.


Subject(s)
Cholera Toxin/chemistry , G(M1) Ganglioside/chemistry , Lipid Bilayers/chemistry , Membrane Fluidity , Membrane Microdomains/chemistry , Membrane Microdomains/ultrastructure , Models, Chemical , Cross-Linking Reagents/chemistry , Models, Molecular , Molecular Conformation , Phase Transition
13.
Anal Bioanal Chem ; 399(10): 3547-54, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21293959

ABSTRACT

Z-scan fluorescence correlation spectroscopy (FCS) is employed to characterize the interaction between arenicin-1 and supported lipid bilayers (SLBs) of different compositions. Lipid analogue C8-BODIPY 500/510C5-HPC and ATTO 465 labelled arenicin-1 are used to detect changes in lipid and peptide diffusion upon addition of unlabelled arenicin-1 to SLBs. Arenicin-1 decreases lipid mobility in negatively charged SLBs. According to diffusion law analysis, microdomains of significantly lower lipid mobility are formed. The analysis of peptide FCS data confirms the presence of microdomains for anionic SLBs. No indications of microdomain formation are detected in SLBs composed purely of zwitterionic lipids. Additionally, our FCS results imply that arenicin-1 exists in the form of oligomers and/or aggregates when interacting with membranes of both compositions.


Subject(s)
Antimicrobial Cationic Peptides/metabolism , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Spectrometry, Fluorescence/methods , Antimicrobial Cationic Peptides/chemistry , Diffusion , Lipids/chemistry , Models, Biological
14.
Phys Chem Chem Phys ; 12(39): 12457-65, 2010 Oct 21.
Article in English | MEDLINE | ID: mdl-20721375

ABSTRACT

Fluorescence microscopy has become one of the most rapidly developing observation techniques in the field of molecular biology, since its high sensitivity, contrast and labeling specificity together with being non-invasive fulfill the most important requirements of live cell imaging. The biggest limitation of the technique seems to be the spatial resolution which is, based on Abbe's diffraction law, restricted to some hundreds of nanometres. Recently, various approaches have been developed that overcome the limit imposed by the diffraction barrier and these methods currently lead the development in the field of fluorescence microscopy. In this contribution, we present dynamic saturation optical microscopy (DSOM)--a new technique that monitors the temporal decay of the excited singlet state due to a dark state formation. By mapping the intensity dependent decay kinetics, enhanced resolution images can be obtained. Generally, any dark state of fluorescent molecules can be employed in DSOM. Here, we focus our attention on triplet state formation.


Subject(s)
Microscopy, Confocal/methods , Microscopy, Fluorescence/methods , Kinetics , Lipid Bilayers/analysis , Microspheres
15.
Int J Mol Sci ; 11(2): 427-457, 2010 Jan 28.
Article in English | MEDLINE | ID: mdl-20386647

ABSTRACT

Fluorescence correlation spectroscopy (FCS) is a single molecule technique used mainly for determination of mobility and local concentration of molecules. This review describes the specific problems of FCS in planar systems and reviews the state of the art experimental approaches such as 2-focus, Z-scan or scanning FCS, which overcome most of the artefacts and limitations of standard FCS. We focus on diffusion measurements of lipids and proteins in planar lipid membranes and review the contributions of FCS to elucidating membrane dynamics and the factors influencing it, such as membrane composition, ionic strength, presence of membrane proteins or frictional coupling with solid support.


Subject(s)
Membrane Lipids/chemistry , Spectrometry, Fluorescence , Diffusion , Lipid Bilayers/chemistry , Microscopy, Confocal , Unilamellar Liposomes/chemistry
16.
Biochim Biophys Acta ; 1798(7): 1377-91, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20188699

ABSTRACT

Investigation of lipid lateral mobility in biological membranes and their artificial models provides information on membrane dynamics and structure; methods based on optical microscopy are very convenient for such investigations. We focus on fluorescence correlation spectroscopy (FCS), explain its principles and review its state of the art versions such as 2-focus, Z-scan or scanning FCS, which overcome most artefacts of standard FCS (especially those resulting from the need for an external calibration) making it a reliable and versatile method. FCS is also compared to single particle tracking and fluorescence photobleaching recovery and the applicability and the limitations of the methods are briefly reviewed. We discuss several key questions of lateral mobility investigation in planar lipid membranes, namely the influence which membrane and aqueous phase composition (ionic strength and sugar content), choice of a fluorescent tracer molecule, frictional coupling between the two membrane leaflets and between membrane and solid support (in the case of supported membranes) or presence of membrane inhomogeneities has on the lateral mobility of lipids. The recent FCS studies addressing those questions are reviewed and possible explanations of eventual discrepancies are mentioned.


Subject(s)
Membrane Lipids/chemistry , Membranes, Artificial , Models, Chemical , Spectrometry, Fluorescence/methods , Photobleaching
17.
Chem Phys Lipids ; 163(2): 200-6, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19931234

ABSTRACT

The temporal evolution of effects of antimicrobial peptide melittin on supported phospholipid bilayers (SPBs) containing negatively charged phospholipids was monitored by ellipsometry and laser scanning microscopy together with measurements of lipid mobility by Z-scan fluorescence correlation spectroscopy. Under all conditions used in our study, we observed reproducibly two effects. The first one is formation of pores in the SPB, which occupy approximately 40% of the bilayer. The formation of pores was accompanied by a decrease in lateral diffusion coefficient of the lipids to approximately 60% of its initial value. The second, simultaneous, effect is the formation of tubules of approximately 30nm radius and length of the order of 10mum. Flushing of the sample with excess of buffer removes most of the tubules, but it does not affect the pores. Further experiments performed under various conditions demonstrated reproducibility of both phenomena.


Subject(s)
Anti-Infective Agents/chemistry , Lipid Bilayers/chemistry , Melitten/chemistry , Membrane Fluidity/drug effects , Anti-Infective Agents/pharmacology , Melitten/pharmacology , Microscopy, Atomic Force , Spectrometry, Fluorescence
18.
Biophys J ; 94(3): L17-9, 2008 Feb 01.
Article in English | MEDLINE | ID: mdl-17965130

ABSTRACT

The spermine-induced DNA condensation is a first-order phase transition. Here, we apply a novel technique fluorescence lifetime correlation spectroscopy to analyze this transition in a greater detail. We show that the method allows for the observation of the condensed and uncondensed molecules simultaneously based solely on different fluorescence lifetimes of the intercalating fluorophore PicoGreen in the folded und unfolded domains of DNA. The auto- and cross-correlation functions reveal that a small fraction of the DNA molecules is involved in the dynamic intramolecular equilibrium. Careful inspection of the cross-correlation curves suggests that folding occurs gradually within milliseconds.


Subject(s)
Models, Chemical , Models, Molecular , Plasmids/chemistry , Plasmids/ultrastructure , Spermine/chemistry , Computer Simulation , Motion , Nucleic Acid Conformation
19.
J Pept Sci ; 14(4): 503-9, 2008 Apr.
Article in English | MEDLINE | ID: mdl-17994618

ABSTRACT

The present study has two main objectives. The first is to characterize antimicrobial peptide (AMP) cryptdin-4 (Crp-4) interactions with biological membranes and to compare those interactions with those of magainin 2. The second is to combine the complementary experimental approaches of laser scanning microscopy (LSM), ellipsometry, and Z-scan fluorescence correlation spectroscopy (FCS) to acquire comprehensive information on mechanisms of AMP interactions with supported phospholipid bilayers (SPBs)-a popular model of biological membranes. LSM shows appearance of inhomogeneities in spatial distribution of lipids in the bilayer after treatment with Crp-4. Ellipsometric measurements show that binding of Crp-4 does not significantly change the lipid structure of the bilayer (increase in adsorbed mass without a change in thickness of adsorbed layer). Furthermore, Crp-4 slows the lateral diffusion of lipids within the membrane as shown by Z-scan FCS. All changes of the bilayer induced by Crp-4 can be partially reversed by flushing the sample with excess of buffer. Bilayer interactions of magainin 2 are significantly different, causing large loss of lipids and extensive damage to the bilayer. It seems likely that differences in peptide mode of action, readily distinguished using these combined experimental methods, are related to the distinctive beta-sheet and alpha-helical structures of the respective peptides.


Subject(s)
Lipid Bilayers/chemistry , Microscopy, Confocal/methods , Phospholipids/chemistry , Protein Precursors/metabolism , Spectrometry, Fluorescence/methods , Lipid Bilayers/metabolism , Phospholipids/metabolism , Protein Precursors/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...