Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Blood Adv ; 7(7): 1117-1129, 2023 04 11.
Article in English | MEDLINE | ID: mdl-36595377

ABSTRACT

Posttransplantation cyclophosphamide (PTCy), given on days +3 and +4, reduces graft-versus-host disease (GVHD) after allogeneic hematopoietic cell transplantation (HCT), but its immunologic underpinnings are not fully understood. In a T-cell-replete, major histocompatibility complex-haploidentical murine HCT model (B6C3F1→B6D2F1), we previously showed that PTCy rapidly induces suppressive mechanisms sufficient to prevent GVHD induction by non-PTCy-exposed donor splenocytes infused on day +5. Here, in PTCy-treated mice, we found that depleting Foxp3+ regulatory T cells (Tregs) in the initial graft but not the day +5 splenocytes did not worsen GVHD, yet depleting Tregs in both cellular compartments led to fatal GVHD induced by the day +5 splenocytes. Hence, Tregs were necessary to control GVHD induced by new donor cells, but PTCy's impact on Tregs appeared to be indirect. Therefore, we hypothesized that myeloid-derived suppressor cells (MDSCs) play a complementary role. Functionally suppressive granulocytic and monocytic MDSCs were increased in percentages in PTCy-treated mice, and MDSC percentages were increased after administering PTCy to patients undergoing HLA-haploidentical HCT. PTCy increased colony-stimulating factors critical for MDSC development and rapidly promoted the generation of MDSCs from bone marrow precursors. MDSC reduction via anti-Gr1 treatment in murine HCT did not worsen histopathologic GVHD but resulted in decreased Tregs and inferior survival. The clinical implications of these findings, including the potential impact of expanded MDSCs after PTCy on engraftment and cytokine release syndrome, remain to be elucidated. Moreover, the indirect effect that PTCy has on Tregs, which in turn play a necessary role in GVHD prevention by initially transplanted or subsequently infused T cells, requires further investigation.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Myeloid-Derived Suppressor Cells , Mice , Animals , Myeloid-Derived Suppressor Cells/pathology , Cyclophosphamide/therapeutic use , Hematopoietic Stem Cell Transplantation/methods , Graft vs Host Disease/pathology , T-Lymphocytes, Regulatory
2.
Blood ; 141(6): 659-672, 2023 02 09.
Article in English | MEDLINE | ID: mdl-36201744

ABSTRACT

Relapse limits the therapeutic efficacy both of chimeric antigen receptor (CAR) T cells and allogeneic hematopoietic cell transplantation (allo-HCT). Patients may undergo these therapies sequentially to prevent or treat relapsed malignancy. However, direct integration of the 2 therapies has been avoided over concerns for potential induction of graft-versus-host disease (GVHD) by allogeneic CAR T cells. We have shown in murine T-cell-replete MHC-haploidentical allo-HCT that suppressive mechanisms induced immediately after posttransplant cyclophosphamide (PTCy), given on days +3/+4, prevent GVHD induction by alloreactive T cells infused as early as day +5. Therefore, we hypothesized that allogeneic CAR T cells given in a similarly integrated manner in our murine MHC-haploidentical allo-HCT model may safely exert antitumor effects. Indeed, allogeneic anti-CD19 CAR T cells given early after (day +5) PTCy or even prior to (day 0) PTCy cleared leukemia without exacerbating the cytokine release syndrome occurring from the MHC-haploidentical allo-HCT or interfering with PTCy-mediated GVHD prevention. Meanwhile, CAR T-cell treatment on day +9 or day +14 was safe but less effective, suggesting a limited therapeutic window. CAR T cells infused before PTCy were not eliminated, but surviving CAR T cells continued to proliferate highly and expand despite PTCy. In comparison with infusion on day +5, CAR T-cell infusion on day 0 demonstrated superior clinical efficacy associated with earlier CAR T-cell expansion, higher phenotypic CAR T-cell activation, less CD4+CD25+Foxp3+ CAR T-cell recovery, and transcriptional changes suggesting increased activation of CD4+ CAR T cells and more cytotoxic CD8+ CAR T cells. This study provides mechanistic insight into PTCy's impact on graft-versus-tumor immunity and describes novel approaches to integrate CAR T cells and allo-HCT that may compensate for deficiencies of each individual approach.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Leukemia , Humans , Mice , Animals , Cyclophosphamide/pharmacology , Cyclophosphamide/therapeutic use , Hematopoietic Stem Cell Transplantation/adverse effects , CD4-Positive T-Lymphocytes/pathology , Leukemia/drug therapy
3.
Nat Commun ; 13(1): 3230, 2022 06 09.
Article in English | MEDLINE | ID: mdl-35680919

ABSTRACT

Efficient clearance of apoptotic cells by phagocytosis, also known as efferocytosis, is fundamental to developmental biology, organ physiology, and immunology. Macrophages use multiple mechanisms to detect and engulf apoptotic cells, but the signaling pathways that regulate the digestion of the apoptotic cell cargo, such as the dynamic Ca2+ signals, are poorly understood. Using an siRNA screen, we identify TRPM7 as a Ca2+-conducting ion channel essential for phagosome maturation during efferocytosis. Trpm7-targeted macrophages fail to fully acidify or digest their phagosomal cargo in the absence of TRPM7. Through perforated patch electrophysiology, we demonstrate that TRPM7 mediates a pH-activated cationic current necessary to sustain phagosomal acidification. Using mice expressing a genetically-encoded Ca2+ sensor, we observe that phagosome maturation requires peri-phagosomal Ca2+-signals dependent on TRPM7. Overall, we reveal TRPM7 as a central regulator of phagosome maturation during macrophage efferocytosis.


Subject(s)
Calcium Signaling , Phagocytosis , TRPM Cation Channels , Animals , Macrophages/metabolism , Mice , Phagocytosis/physiology , Phagosomes/metabolism , TRPM Cation Channels/genetics , TRPM Cation Channels/metabolism
4.
Mol Metab ; 44: 101130, 2021 02.
Article in English | MEDLINE | ID: mdl-33248294

ABSTRACT

OBJECTIVE: Brown adipose tissue (BAT) is specialized in thermogenesis. The conversion of energy into heat in brown adipocytes proceeds via stimulation of ß-adrenergic receptor (ßAR)-dependent signaling and activation of mitochondrial uncoupling protein 1 (UCP1). We have previously demonstrated a functional role for pannexin-1 (Panx1) channels in white adipose tissue; however, it is not known whether Panx1 channels play a role in the regulation of brown adipocyte function. Here, we tested the hypothesis that Panx1 channels are involved in brown adipocyte activation and thermogenesis. METHODS: In an immortalized brown pre-adipocytes cell line, Panx1 currents were measured using patch-clamp electrophysiology. Flow cytometry was used for assessment of dye uptake and luminescence assays for adenosine triphosphate (ATP) release, and cellular temperature measurement was performed using a ratiometric fluorescence thermometer. We used RNA interference and expression plasmids to manipulate expression of wild-type and mutant Panx1. We used previously described adipocyte-specific Panx1 knockout mice (Panx1Adip-/-) and generated brown adipocyte-specific Panx1 knockout mice (Panx1BAT-/-) to study pharmacological or cold-induced thermogenesis. Glucose uptake into brown adipose tissue was quantified by positron emission tomography (PET) analysis of 18F-fluorodeoxyglucose (18F-FDG) content. BAT temperature was measured using an implantable telemetric temperature probe. RESULTS: In brown adipocytes, Panx1 channel activity was induced either by apoptosis-dependent caspase activation or by ß3AR stimulation via a novel mechanism that involves Gßγ subunit binding to Panx1. Inactivation of Panx1 channels in cultured brown adipocytes resulted in inhibition of ß3AR-induced lipolysis, UCP-1 expression, and cellular thermogenesis. In mice, adiponectin-Cre-dependent genetic deletion of Panx1 in all adipose tissue depots resulted in defective ß3AR agonist- or cold-induced thermogenesis in BAT and suppressed beigeing of white adipose tissue. UCP1-Cre-dependent Panx1 deletion specifically in brown adipocytes reduced the capacity for adaptive thermogenesis without affecting beigeing of white adipose tissue and aggravated diet-induced obesity and insulin resistance. CONCLUSIONS: These data demonstrate that Gßγ-dependent Panx1 channel activation is involved in ß3AR-induced thermogenic regulation in brown adipocytes. Identification of Panx1 channels in BAT as novel thermo-regulatory elements downstream of ß3AR activation may have therapeutic implications.


Subject(s)
Adipose Tissue, Brown/metabolism , Connexins/metabolism , Nerve Tissue Proteins/metabolism , Thermogenesis/physiology , Adipocytes, Brown/metabolism , Adiponectin/metabolism , Adipose Tissue, Brown/pathology , Adipose Tissue, White/metabolism , Animals , Cold Temperature , Connexins/genetics , Fluorodeoxyglucose F18 , Insulin Resistance , Lipolysis , Mice , Mice, Knockout , Nerve Tissue Proteins/genetics , Obesity/metabolism , Signal Transduction , Thermogenesis/genetics , Transcriptome
5.
Sci Signal ; 13(661)2020 12 08.
Article in English | MEDLINE | ID: mdl-33293462

ABSTRACT

The thymic development of regulatory T (Treg) cells, crucial suppressors of the responses of effector T (Teff) cells, is governed by the transcription factor FOXP3. Despite the clinical importance of Treg cells, there is a dearth of druggable molecular targets capable of increasing their numbers in vivo. We found that inhibiting the function of the TRPM7 chanzyme (ion channel and enzyme) potentiated the thymic development of Treg cells in mice and led to a substantially higher frequency of functional Treg cells in the periphery. In addition, TRPM7-deficient mice were resistant to T cell-driven hepatitis. Deletion of Trpm7 and inhibition of TRPM7 channel activity by the FDA-approved drug FTY720 increased the sensitivity of T cells to the cytokine interleukin-2 (IL-2) through a positive feed-forward loop involving increased expression of the IL-2 receptor α-subunit and activation of the transcriptional regulator STAT5. Enhanced IL-2 signaling increased the expression of Foxp3 in thymocytes and promoted thymic Treg (tTreg) cell development. Thus, these data indicate that inhibiting TRPM7 activity increases Treg cell numbers, suggesting that it may be a therapeutic target to promote immune tolerance.


Subject(s)
Interleukin-2/immunology , Signal Transduction/immunology , T-Lymphocytes, Regulatory/immunology , TRPM Cation Channels/immunology , Thymus Gland/immunology , Animals , Female , Gene Deletion , Interleukin-2/genetics , Mice , Mice, Transgenic , Signal Transduction/genetics , TRPM Cation Channels/genetics , Thymus Gland/growth & development
7.
Immunity ; 48(1): 59-74.e5, 2018 01 16.
Article in English | MEDLINE | ID: mdl-29343440

ABSTRACT

Toll-like receptors (TLRs) sense pathogen-associated molecular patterns to activate the production of inflammatory mediators. TLR4 recognizes lipopolysaccharide (LPS) and drives the secretion of inflammatory cytokines, often contributing to sepsis. We report that transient receptor potential melastatin-like 7 (TRPM7), a non-selective but Ca2+-conducting ion channel, mediates the cytosolic Ca2+ elevations essential for LPS-induced macrophage activation. LPS triggered TRPM7-dependent Ca2+ elevations essential for TLR4 endocytosis and the subsequent activation of the transcription factor IRF3. In a parallel pathway, the Ca2+ signaling initiated by TRPM7 was also essential for the nuclear translocation of NFκB. Consequently, TRPM7-deficient macrophages exhibited major deficits in the LPS-induced transcriptional programs in that they failed to produce IL-1ß and other key pro-inflammatory cytokines. In accord with these defects, mice with myeloid-specific deletion of Trpm7 are protected from LPS-induced peritonitis. Our study highlights the importance of Ca2+ signaling in macrophage activation and identifies the ion channel TRPM7 as a central component of TLR4 signaling.


Subject(s)
Calcium/metabolism , Macrophage Activation/drug effects , TRPM Cation Channels/metabolism , Toll-Like Receptor 4/metabolism , Animals , Cell Culture Techniques , Endocytosis/drug effects , Female , Flow Cytometry , Fluorescent Antibody Technique , Gene Expression Regulation , Genotyping Techniques , Immunoblotting , Interferon Regulatory Factor-3/metabolism , Lipopolysaccharides/pharmacology , Macrophages/metabolism , Male , Mice , NF-kappa B/metabolism , Patch-Clamp Techniques , Real-Time Polymerase Chain Reaction , Signal Transduction/drug effects , Signal Transduction/physiology , TRPM Cation Channels/genetics
8.
Circ Res ; 122(4): 606-615, 2018 02 16.
Article in English | MEDLINE | ID: mdl-29237722

ABSTRACT

RATIONALE: Resistant hypertension is a major health concern with unknown cause. Spironolactone is an effective antihypertensive drug, especially for patients with resistant hypertension, and is considered by the World Health Organization as an essential medication. Although spironolactone can act at the mineralocorticoid receptor (MR; NR3C2), there is increasing evidence of MR-independent effects of spironolactone. OBJECTIVE: Here, we detail the unexpected discovery that Panx1 (pannexin 1) channels could be a relevant in vivo target of spironolactone. METHODS AND RESULTS: First, we identified spironolactone as a potent inhibitor of Panx1 in an unbiased small molecule screen, which was confirmed by electrophysiological analysis. Next, spironolactone inhibited α-adrenergic vasoconstriction in arterioles from mice and hypertensive humans, an effect dependent on smooth muscle Panx1, but independent of the MR NR3C2. Last, spironolactone acutely lowered blood pressure, which was dependent on smooth muscle cell expression of Panx1 and independent of NR3C2. This effect, however, was restricted to steroidal MR antagonists as a nonsteroidal MR antagonist failed to reduced blood pressure. CONCLUSIONS: These data suggest new therapeutic modalities for resistant hypertension based on Panx1 inhibition.


Subject(s)
Antihypertensive Agents/pharmacology , Connexins/antagonists & inhibitors , Diuretics/pharmacology , Hypertension/drug therapy , Mineralocorticoid Receptor Antagonists/pharmacology , Nerve Tissue Proteins/antagonists & inhibitors , Spironolactone/pharmacology , Animals , Antihypertensive Agents/therapeutic use , Arterioles/drug effects , Connexins/metabolism , Diuretics/therapeutic use , HEK293 Cells , Humans , Jurkat Cells , Male , Mice , Mice, Inbred C57BL , Middle Aged , Mineralocorticoid Receptor Antagonists/therapeutic use , Nerve Tissue Proteins/metabolism , Spironolactone/therapeutic use
9.
Sci Rep ; 7(1): 11839, 2017 09 19.
Article in English | MEDLINE | ID: mdl-28928472

ABSTRACT

Optogenetics is a powerful research approach that allows localized optical modulation of selected cells within an animal via the expression of genetically encoded photo-excitable ion channels. Commonly used optogenetic techniques rely on the expression of microbial opsin variants, which have many excellent features but suffer from various degrees of blue spectral overlap and limited channel conductance. Here, we expand the optogenetics toolbox in the form of a tunable, high-conductance vertebrate cation channel, zTrpa1b, coupled with photo-activated channel ligands, such as optovin and 4g6. Our results demonstrate that zTrpa1b/ligand pairing offers high light sensitivity, millisecond-scale response latency in vivo, as well as adjustable channel off latency. Exogenous in vivo expression of zTrpa1b in sensory neurons allowed subcellular photo-activation, enabling light-dependent motor control. zTrpa1b/ligand was also suitable for cardiomyocyte pacing, as shown in experiments performed on zebrafish hearts in vivo as well as in human stem cell-derived cardiomyocytes in vitro. Therefore, zTrpa1b/optovin represents a novel tool for flexible, high-conductance optogenetics.


Subject(s)
Optogenetics/instrumentation , Optogenetics/methods , TRPA1 Cation Channel , Zebrafish Proteins , Zebrafish , Animals , HEK293 Cells , Heart Conduction System/metabolism , Humans , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , TRPA1 Cation Channel/chemistry , TRPA1 Cation Channel/genetics , TRPA1 Cation Channel/metabolism , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/chemistry , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
10.
PLoS One ; 7(8): e42959, 2012.
Article in English | MEDLINE | ID: mdl-22927941

ABSTRACT

γ-Aminobutyric acid (GABA) is the most prominent neuroinhibitory transmitter in the brain, where it activates neuronal GABA-A receptors (GABA-A channels) located at synapses and outside of synapses. The GABA-A receptors are primary targets of many clinically useful drugs. In recent years, GABA has been shown to act as an immunomodulatory molecule. We have examined in human, mouse and rat CD4(+) and CD8(+) T cells which subunit isoforms of the GABA-A channels are expressed. The channel physiology and drug specificity is dictated by the GABA-A receptor subtype, which in turn is determined by the subunit isoforms that make the channel. There were 5, 8 and 13 different GABA-A subunit isoforms identified in human, mouse and rat CD4(+) and CD8(+) T cells, respectively. Importantly, the γ2 subunit that imposes benzodiazepine sensitivity on the GABA-A receptors, was only detected in the mouse T cells. Immunoblots and immunocytochemistry showed abundant GABA-A channel proteins in the T cells from all three species. GABA-activated whole-cell transient and tonic currents were recorded. The currents were inhibited by picrotoxin, SR95531 and bicuculline, antagonists of GABA-A channels. Clearly, in both humans and rodents T cells, functional GABA-A channels are expressed but the subtypes vary. It is important to bear in mind the interspecies difference when selecting the appropriate animal models to study the physiological role and pharmacological properties of GABA-A channels in CD4(+) and CD8(+) T cells and when selecting drugs aimed at modulating the human T cells function.


Subject(s)
CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , Gene Expression Regulation , Receptors, GABA-A/genetics , Animals , Female , Humans , Jurkat Cells , Male , Mice , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Transport , Rats , Receptors, GABA-A/metabolism , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...