Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Biol Reprod ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713677

ABSTRACT

Neonicotinoids are the most widely used insecticides in the world. They are synthetic nicotine derivatives that act as nicotinic acetylcholine receptor (nAChR) agonists. Although parent neonicotinoids have low affinity for the mammalian nAChR, they can be activated in the environment and the body to positively charged metabolites with high affinity for the mammalian nAChR. Imidacloprid (IMI), the most popular neonicotinoid, and its bioactive metabolite desnitro-imidacloprid (DNI) differentially interfere with ovarian antral follicle physiology in vitro, but their effects on ovarian nAChR subunit expression are unknown. Furthermore, ovarian nAChR subtypes have yet to be characterized in the ovary. Thus, this work tested the hypothesis that ovarian follicles express nAChRs and their expression is differentially modulated by IMI and DNI in vitro. We used PCR, RNA in situ hybridization, and immunohistochemistry to identify and localize nAChR subunits (α2, 4, 5, 6, 7 and ß1, 2, 4) expressed in neonatal ovaries and antral follicles. Chrnb1 was expressed equally in neonatal ovaries and antral follicles. Chrna2 and Chrnb2 expression was higher in antral follicles compared to neonatal ovaries and Chrna4, Chrna5, Chrna6, Chrna7 and Chrnb4 expression was higher in neonatal ovaries compared to antral follicles. The α subunits were detected throughout the ovary, especially in oocytes and granulosa cells. IMI and DNI dysregulated expression of multiple nAChR subunits in neonatal ovaries, but only dysregulated one subunit in antral follicles. These data indicate that mammalian ovaries contain nAChRs, and their susceptibility to IMI and DNI exposure varies with the stage of follicle maturity.

2.
Biol Reprod ; 110(3): 632-641, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38134965

ABSTRACT

Di(2-ethylhexyl) phthalate (DEHP) is a pervasive environmental toxicant used in the manufacturing of numerous consumer products, medical supplies, and building materials. DEHP is metabolized to mono(2-ethylhexyl) phthalate (MEHP). MEHP is an endocrine disruptor that adversely affects folliculogenesis and steroidogenesis in the ovary, but its mechanism of action is not fully understood. Thus, we tested the hypothesis that the aryl hydrocarbon receptor (AHR) plays a functional role in MEHP-mediated disruption of folliculogenesis and steroidogenesis. CD-1 mouse antral follicles were isolated and cultured with MEHP (0-400 µM) in the presence or absence of the AHR antagonist CH223191 (1 µM). MEHP treatment reduced follicle growth over a 96-h period, and this effect was partially rescued by co-culture with CH223191. MEHP exposure alone increased expression of known AHR targets, cytochrome P450 (CYP) enzymes Cyp1a1 and Cyp1b1, and this induction was blocked by CH223191. MEHP reduced media concentrations of estrone and estradiol compared to control. This effect was mitigated by co-culture with CH223191. Moreover, MEHP reduced the expression of the estrogen-sensitive genes progesterone receptor (Pgr) and luteinizing hormone/choriogonadotropin receptor (Lhcgr) and co-treatment with CH223191 blocked this effect. Collectively, these data indicate that MEHP activates the AHR to impair follicle growth and reduce estrogen production and signaling in ovarian antral follicles.


Subject(s)
Azo Compounds , Diethylhexyl Phthalate , Diethylhexyl Phthalate/analogs & derivatives , Phthalic Acids , Pyrazoles , Mice , Animals , Female , Diethylhexyl Phthalate/toxicity , Receptors, Aryl Hydrocarbon/metabolism , Estrogens
3.
PNAS Nexus ; 2(7): pgad215, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37416873

ABSTRACT

During early pregnancy in humans and rodents, uterine stromal cells undergo a remarkable differentiation to form the decidua, a transient maternal tissue that supports the growing fetus. It is important to understand the key decidual pathways that orchestrate the proper development of the placenta, a key structure at the maternal-fetal interface. We discovered that ablation of expression of the transcription factor Runx1 in decidual stromal cells in a conditional Runx1-null mouse model (Runx1d/d) causes fetal lethality during placentation. Further phenotypic analysis revealed that uteri of pregnant Runx1d/d mice exhibited severely compromised decidual angiogenesis and a lack of trophoblast differentiation and migration, resulting in impaired spiral artery remodeling. Gene expression profiling using uteri from Runx1d/d and control mice revealed that Runx1 directly controls the decidual expression of the gap junction protein connexin 43 (also known as GJA1), which was previously shown to be essential for decidual angiogenesis. Our study also revealed that Runx1 controls the expression of insulin-like growth factor (IGF) 2 and IGF-binding protein 4 (IGFBP4) during early pregnancy. While Runx1 deficiency drastically reduced the production of IGF2 by the decidual cells, we observed concurrent elevated expression of the IGFBP4, which regulates the bioavailability of IGFs, thereby controlling trophoblast differentiation. We posit that dysregulated expression of GJA1, IGF2, and IGFBP4 in Runx1d/d decidua contributes to the observed defects in uterine angiogenesis, trophoblast differentiation, and vascular remodeling. This study therefore provides unique insights into key maternal pathways that control the early phases of maternal-fetal interactions within a critical window during placental development.

4.
Inhal Toxicol ; : 1-18, 2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37075037

ABSTRACT

Important differences in health that are closely linked with social disadvantage exist within and between countries. According to the World Health Organization, life expectancy and good health continue to increase in many parts of the world, but fail to improve in other parts of the world, indicating that differences in life expectancy and health arise due to the circumstances in which people grow, live, work, and age, and the systems put in place to deal with illness. Marginalized communities experience higher rates of certain diseases and more deaths compared to the general population, indicating a profound disparity in health status. Although several factors place marginalized communities at high risk for poor health outcomes, one important factor is exposure to air pollutants. Marginalized communities and minorities are exposed to higher levels of air pollutants than the majority population. Interestingly, a link exists between air pollutant exposure and adverse reproductive outcomes, suggesting that marginalized communities may have increased reproductive disorders due to increased exposure to air pollutants compared to the general population. This review summarizes different studies showing that marginalized communities have higher exposure to air pollutants, the types of air pollutants present in our environment, and the associations between air pollution and adverse reproductive outcomes, focusing on marginalized communities.

5.
Toxics ; 11(4)2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37112576

ABSTRACT

Imidacloprid is a neonicotinoid pesticide used in large-scale agricultural systems, home gardens, and veterinary pharmaceuticals. Imidacloprid is a small molecule that is more water-soluble than other insecticides, increasing the likelihood of large-scale environmental accumulation and chronic exposure of non-targeted species. Imidacloprid can be converted to the bioactive metabolite desnitro-imidacloprid in the environment and body. Little is known about the mechanisms by which imidacloprid and desnitro-imidacloprid induce ovarian toxicity. Thus, we tested the hypothesis that imidacloprid and desnitro-imidacloprid differentially affect antral follicle growth and steroidogenesis in vitro. Antral follicles were dissected from the ovaries of CD-1 mice and cultured in media containing vehicle control or 0.2 µg/mL-200 µg/mL of imidacloprid or desnitro-imidacloprid for 96 h. Follicle morphology was monitored, and follicle size was measured every 24 h. At the end of the culture periods, media were used to quantify follicular hormone levels, and follicles were used for gene expression analysis of steroidogenic regulators, hormone receptors, and apoptotic factors. Imidacloprid did not affect follicle growth or morphology compared to the control. Desnitro-imidacloprid inhibited follicle growth and caused follicles to rupture in culture compared to the control. Imidacloprid increased progesterone, whereas desnitro-imidacloprid decreased testosterone and progesterone compared to the control. Desnitro-imidacloprid also changed estradiol compared to the control. At 48 h, IMI decreased the expression of Star, Cyp17a1, Hsd17b1, Cyp19a1, and Esr2 and increased the expression of Cyp11a1, Cyp19a1, Bax, and Bcl2 compared to the control. IMI also changed the expression of Esr1 compared to the control. At 48 h, DNI decreased the expression of Cyp11a1, Cyp17a1, Hsd3b1, Cyp19a1, and Esr1 and increased the expression of Cyp11a1, Hsd3b1, and Bax compared to the control. At 72 h of culture, IMI significantly decreased the expression of Cyp19a1 and increased the expression of Star and Hsd17b1 compared to the control. At 72 h, DNI significantly decreased the expression of Cyp11a1, Cyp17a1, Hsd3b1, and Bax and increased the expression of Esr1 and Esr2. At 96 h, IMI decreased the expression of Hsd3b1, Cyp19a1, Esr1, Bax, and Bcl2 compared to the control. At 96 h, DNI decreased the expression of Cyp17a1, Bax, and Bcl2 and increased the expression of Cyp11a1, Hsd3b1, and Bax compared to the control. Together, these data suggest mouse antral follicles are targets of neonicotinoid toxicity, and the mechanisms of toxicity differ between parent compounds and metabolites.

6.
bioRxiv ; 2023 Mar 23.
Article in English | MEDLINE | ID: mdl-36993295

ABSTRACT

During early pregnancy in humans and rodents, uterine stromal cells undergo a remarkable differentiation to form the decidua, a transient maternal tissue that supports the growing fetus. It is important to understand the key decidual pathways that orchestrate the proper development of the placenta, a key structure at the maternal-fetal interface. We discovered that ablation of expression of the transcription factor Runx1 in decidual stromal cells in a conditional Runx1 -null mouse model ( Runx1 d/d ) causes fetal lethality during placentation. Further phenotypic analysis revealed that uteri of pregnant Runx1 d/d mice exhibited severely compromised decidual angiogenesis, and a lack of trophoblast differentiation and migration, resulting in impaired spiral artery remodeling. Gene expression profiling using uteri from Runx1 d/d and control mice revealed that Runx1 directly controls the decidual expression of the gap junction protein connexin 43 (also known as GJA1), which was previously shown to be essential for decidual angiogenesis. Our study also revealed a critical role of Runx1 in controlling insulin-like growth factor (IGF) signaling at the maternal-fetal interface. While Runx1-deficiency drastically reduced the production of IGF2 by the decidual cells, we observed concurrent elevated expression of the IGF-binding protein 4 (IGFBP4), which regulates the bioavailability of IGFs thereby controlling trophoblast differentiation. We posit that dysregulated expression of GJA1, IGF2, and IGFBP4 in Runx1 d/d decidua contributes to the observed defects in uterine angiogenesis, trophoblast differentiation, and vascular remodeling. This study therefore provides unique insights into key maternal pathways that control the early phases of maternal-fetal interactions within a critical window during placental development. Significance: A clear understanding of the maternal pathways that ensure coordination of uterine differentiation and angiogenesis with embryonic growth during the critical early stages of placenta formation still eludes us. The present study reveals that the transcription factor Runx1 controls a set of molecular, cellular, and integrative mechanisms that mediate maternal adaptive responses controlling uterine angiogenesis, trophoblast differentiation, and resultant uterine vascular remodeling, which are essential steps during placenta development.

7.
Toxics ; 10(10)2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36287911

ABSTRACT

The authors wish to make the following corrections to this paper [...].

8.
J Environ Sci (China) ; 117: 46-57, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35725088

ABSTRACT

Iodoacetic acid (IAA) is an unregulated water disinfection byproduct that is an ovarian toxicant. However, the mechanisms of action underlying IAA toxicity in ovarian follicles remain unclear. Thus, we determined whether IAA alters gene expression in ovarian follicles in mice. Adult female mice were dosed with water or IAA (10 or 500 mg/L) in the water for 35-40 days. Antral follicles were collected for RNA-sequencing analysis and sera were collected to measure estradiol. RNA-sequencing analysis identified 1063 differentially expressed genes (DEGs) in the 10 and 500 mg/L IAA groups (false discovery rate FDR < 0.1), respectively, compared to controls. Gene Ontology Enrichment analysis showed that DEGs were involved with RNA processing and regulation of angiogenesis (10 mg/L) and the cell cycle and cell division (500 mg/L). Pathway Enrichment analysis showed that DEGs were involved in the phosphatidylinositol 3-kinase and protein kinase B (PI3K-Akt), gonadotropin-releasing hormone (GnRH), estrogen, and insulin signaling pathways (10 mg/L). Pathway Enrichment analysis showed that DEGs were involved in the oocyte meiosis, GnRH, and oxytocin signaling pathways (500 mg/L). RNA-sequencing analysis identified 809 DEGs when comparing the 500 and 10 mg/L IAA groups (FDR < 0.1). DEGs were related to ribosome, translation, mRNA processing, oxidative phosphorylation, chromosome, cell cycle, cell division, protein folding, and the oxytocin signaling pathway. Moreover, IAA exposure significantly decreased estradiol levels (500 mg/L) compared to control. This study identified key candidate genes and pathways involved in IAA toxicity and can help to further understand the molecular mechanisms of IAA toxicity in ovarian follicles.


Subject(s)
Phosphatidylinositol 3-Kinases , Transcriptome , Animals , Estradiol , Female , Gonadotropin-Releasing Hormone , Iodoacetic Acid/toxicity , Mice , Oxytocin , RNA , Water
9.
Toxics ; 10(5)2022 May 16.
Article in English | MEDLINE | ID: mdl-35622664

ABSTRACT

The female reproductive system is dependent upon the health of the ovaries. The ovaries are responsible for regulating reproduction and endocrine function. Throughout a female's reproductive lifespan, the ovaries undergo continual structural changes that are crucial for the maturation of ovarian follicles and the production of sex steroid hormones. Phthalates are known to target the ovaries at critical time points and to disrupt normal reproductive function. The US population is constantly exposed to measurable levels of phthalates. Phthalates can also pass placental barriers and affect the developing offspring. Phthalates are frequently prevalent as mixtures; however, most previous studies have focused on the effects of single phthalates on the ovary and female reproduction. Thus, the effects of exposure to phthalate mixtures on ovarian function and the female reproductive system remain unclear. Following a brief introduction to the ovary and its major roles, this review covers what is currently known about the effects of phthalate mixtures on the ovary, focusing primarily on their effects on folliculogenesis and steroidogenesis. Furthermore, this review focuses on the effects of phthalate mixtures on female reproductive outcomes. Finally, this review emphasizes the need for future research on the effects of environmentally relevant phthalate mixtures on the ovary and female reproduction.

10.
Reprod Toxicol ; 110: 113-123, 2022 06.
Article in English | MEDLINE | ID: mdl-35421560

ABSTRACT

Widespread use of phthalates as solvents and plasticizers leads to everyday human exposure. The mechanisms by which phthalate metabolites act as ovarian toxicants are not fully understood. Thus, this study tested the hypothesis that the phthalate metabolites monononyl phthalate (MNP), monoisononyl phthalate (MiNP), mono(2-ethylhexyl) phthalate (MEHP), monobenzyl phthalate (MBzP), monobutyl phthalate (MBP), monoisobutyl phthalate (MiBP), and monoethyl phthalate (MEP) act through peroxisome proliferator-activated receptors (PPARs) in mouse granulosa cells. Primary granulosa cells were isolated from CD-1 mice and cultured with vehicle control (dimethyl sulfoxide) or MNP, MiNP, MEHP, MBzP, MBP, MiBP, or MEP (0.4-400 µM) for 24 h. Following culture, qPCR was performed for known PPAR targets, Fabp4 and Cd36. Treatment with the phthalate metabolites led to significant changes in Fabp4 and Cd36 expression relative to control in dose-dependent or nonmonotonic fashion. Primary granulosa cell cultures were also transfected with a DNA plasmid containing luciferase expressed under the control of a consensus PPAR response element. MNP, MiNP, MEHP, and MBzP caused dose-dependent changes in expression of luciferase, indicating the presence of functional endogenous PPAR receptors in the granulosa cells that respond to phthalate metabolites. The effects of phthalate metabolites on PPAR target genes were inhibited in most of the cultures by co-treatment with the PPAR-γ inhibitor, T0070907, or with the PPAR-α inhibitor, GW6471. Collectively, these data suggest that some phthalate metabolites may act through endogenous PPAR nuclear receptors in the ovary and that the differing structures of the phthalates result in different levels of activity.


Subject(s)
Environmental Pollutants , Phthalic Acids , Animals , Environmental Exposure/analysis , Environmental Pollutants/analysis , Female , Mice , Ovary/metabolism , PPAR alpha/genetics , PPAR gamma/genetics , Phthalic Acids/analysis , Plasticizers/toxicity
11.
Curr Environ Health Rep ; 9(1): 53-79, 2022 03.
Article in English | MEDLINE | ID: mdl-35103957

ABSTRACT

PURPOSE OF REVIEW: Menopause marks the end of a woman's reproductive lifetime. On average, natural menopause occurs at 51 years of age. However, some women report an earlier age of menopause than the national average. This can be problematic for women who delay starting a family. Moreover, early onset of menopause is associated with increased risk of cardiovascular disease, depression, osteoporosis, and premature death. This review investigates associations between exposure to endocrine-disrupting chemicals (EDCs) and earlier onset of menopause. RECENT FINDINGS: Recent data suggest exposure to certain EDCs may accelerate reproductive aging and contribute to earlier onset of menopause. Human and rodent-based studies identify positive associations between exposure to certain EDCs/environmental contaminants and reproductive aging, earlier onset of menopause, and occurrence of vasomotor symptoms. These findings increase our understanding of the detrimental effects of EDCs on female reproduction and will help lead to the development of strategies for the treatment/prevention of EDC-induced reproductive aging.


Subject(s)
Endocrine Disruptors , Reproduction , Aging , Endocrine Disruptors/toxicity , Environmental Exposure/adverse effects , Female , Humans , Menopause
12.
Adv Pharmacol ; 92: 151-190, 2021.
Article in English | MEDLINE | ID: mdl-34452686

ABSTRACT

This chapter covers the known effects of endocrine disrupting chemicals (EDCs) on reproductive disorders. The EDCs represented are highly studied, including plasticizers (bisphenols and phthalates), chemicals in personal care products (parabens), persistent environmental contaminants (polychlorinated biphenyls), and chemicals in pesticides or herbicides. Both female and male reproductive disorders are reviewed in the chapter. Female disorders include infertility/subfertility, irregular reproductive cycles, early menopause, premature ovarian insufficiency, polycystic ovarian syndrome, endometriosis, and uterine fibroids. Male disorders include infertility/subfertility, cryptorchidism, and hypospadias. Findings from both human and animal studies are represented.


Subject(s)
Endocrine Disruptors , Environmental Pollutants , Animals , Endocrine Disruptors/toxicity , Environmental Exposure , Female , Humans , Male , Models, Animal
13.
Curr Opin Endocr Metab Res ; 18: 35-47, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33997465

ABSTRACT

Endocrine disrupting chemicals pose a threat to health and reproduction. Plasticizers such as phthalates and bisphenols are particularly problematic because they are present in many consumer products and exposure can begin in utero and continue throughout the lifetime of the individual. Evidence suggests that these chemicals can have ancestral and transgenerational effects, making them a huge public health concern for the reproductive health of current and future generations. Studies performed in rodents or using rodent- or human-derived tissues have been critical for understanding the toxic effects of plasticizers on the ovary and their mechanisms of action. This review addresses current in vitro and rodent-based in vivo studies investigating the effects of bisphenols and phthalates on ovarian health, female reproduction, and correlations between human exposure and reproductive pathologies.

14.
Mhealth ; 7: 22, 2021.
Article in English | MEDLINE | ID: mdl-33898591

ABSTRACT

BACKGROUND: Telehealth is being adopted by health systems across the country and many barriers to the expansion of video visit programs have been identified. Our study focused on the usability of video visit technology by examining technical challenges faced by patients over the course of a video visit. METHODS: We conducted a survey of patients who received care from the Michigan Medicine video visit program from January 31, 2019 to July 31, 2019. The video visit program includes more than 1,300 visits a year across more than 30 specialties. Following the completion of their video visit, all patients were invited to participate in our online survey through the patient portal. The survey included questions on patient satisfaction, motivation and technical challenges. RESULTS: We received responses from 180 patients (response rate of 26%). Overall patient satisfaction was high; 90% of respondents agreed that their video visit experience was similar to that of in-person visits and 93.3% of respondents would recommend video visits. Despite this high satisfaction rate, 36 out of 180 (20.0%) respondents cited technical issues during their video visit: video issues (n=11), audio issues (n=5), video and audio issues (n=2), slow/dropped connection (n=7), initial set-up issues (n=4), long wait time (n=3), and other (n=4). CONCLUSIONS: While most patients report a high degree of satisfaction with their video visit, a meaningful subset of patients continue to experience technical challenges.

15.
Proc Natl Acad Sci U S A ; 117(25): 14532-14542, 2020 06 23.
Article in English | MEDLINE | ID: mdl-32513733

ABSTRACT

Implantation is initiated when an embryo attaches to the uterine luminal epithelium and subsequently penetrates into the underlying stroma to firmly embed in the endometrium. These events are followed by the formation of an extensive vascular network in the stroma that supports embryonic growth and ensures successful implantation. Interestingly, in many mammalian species, these processes of early pregnancy occur in a hypoxic environment. However, the mechanisms underlying maternal adaptation to hypoxia during early pregnancy remain unclear. In this study, using a knockout mouse model, we show that the transcription factor hypoxia-inducible factor 2 alpha (Hif2α), which is induced in subluminal stromal cells at the time of implantation, plays a crucial role during early pregnancy. Indeed, when preimplantation endometrial stromal cells are exposed to hypoxic conditions in vitro, we observed a striking enhancement in HIF2α expression. Further studies revealed that HIF2α regulates the expression of several metabolic and protein trafficking factors, including RAB27B, at the onset of implantation. RAB27B is a member of the Rab family of GTPases that allows controlled release of secretory granules. These granules are involved in trafficking MMP-9 from the stroma to the epithelium to promote luminal epithelial remodeling during embryo invasion. As pregnancy progresses, the HIF2α-RAB27B pathway additionally mediates crosstalk between stromal and endothelial cells via VEGF granules, developing the vascular network critical for establishing pregnancy. Collectively, our study provides insights into the intercellular communication mechanisms that operate during adaptation to hypoxia, which is essential for embryo implantation and establishment of pregnancy.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Hypoxia/physiology , Embryo Implantation/physiology , Secretory Vesicles/metabolism , rab GTP-Binding Proteins/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Communication/physiology , Cell Line , Embryo, Mammalian , Endometrium/cytology , Endometrium/metabolism , Female , Gene Knock-In Techniques , Humans , Male , Mice , Mice, Knockout , Pregnancy , RNA Interference , RNA, Small Interfering/metabolism , Signal Transduction/physiology , Stromal Cells , rab GTP-Binding Proteins/genetics
16.
Endocrinology ; 161(1)2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31748790

ABSTRACT

Decidualization, the process by which fibroblastic human endometrial stromal cells (HESC) differentiate into secretory decidual cells, is a critical event during the establishment of pregnancy. It is dependent on the steroid hormone progesterone acting through the nuclear progesterone receptor (PR). Previously, we identified insulin receptor substrate 2 (IRS2) as a factor that is directly regulated by PR during decidualization. IRS2 is an adaptor protein that functionally links receptor tyrosine kinases, such as insulin receptor (IR) and insulin-like growth factor 1 receptor (IGF1R), and their downstream effectors. IRS2 expression was induced in HESC during in vitro decidualization and siRNA-mediated downregulation of IRS2 transcripts resulted in attenuation of this process. Further use of siRNAs targeted to IR or IGF1R transcripts showed that downregulation of IR, but not IGF1R, led to impaired decidualization. Loss of IRS2 transcripts in HESC suppressed phosphorylation of both ERK1/2 and AKT, downstream effectors of insulin signaling, which mediate gene expression associated with decidualization and regulate glucose uptake. Indeed, downregulation of IRS2 resulted in reduced expression and membrane localization of the glucose transporters GLUT1 and GLUT4, resulting in lowered glucose uptake during stromal decidualization. Collectively, these data suggest that the PR-regulated expression of IRS2 is necessary for proper insulin signaling for controlling gene expression and glucose utilization, which critically support the decidualization process to facilitate pregnancy. This study provides new insight into the mechanisms by which steroid hormone signaling intersects with insulin signaling in the uterus during decidualization, which has important implications for pregnancy complications associated with insulin resistance and infertility.


Subject(s)
Cell Differentiation/drug effects , Decidua/drug effects , Insulin Receptor Substrate Proteins/metabolism , Insulin Resistance , Progesterone/pharmacology , Cell Differentiation/genetics , Cells, Cultured , Decidua/cytology , Decidua/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , Gene Expression Regulation/drug effects , Glucose Transport Proteins, Facilitative/genetics , Glucose Transport Proteins, Facilitative/metabolism , Humans , Insulin Receptor Substrate Proteins/genetics , Phosphorylation/drug effects , Pregnancy , Receptor, Insulin/genetics , Receptor, Insulin/metabolism , Stromal Cells/cytology , Stromal Cells/metabolism , Uterus/cytology , Uterus/metabolism
17.
Mol Cell Endocrinol ; 502: 110680, 2020 02 15.
Article in English | MEDLINE | ID: mdl-31838026

ABSTRACT

Agrochemicals represent a significant class of endocrine disrupting chemicals that humans and animals around the world are exposed to constantly. Agrochemicals can act as endocrine disrupting chemicals through a variety of mechanisms. Recent studies have shown that several mechanisms of action involve the ability of agrochemicals to mimic the interaction of endogenous hormones with nuclear receptors such as estrogen receptors, androgen receptors, peroxisome proliferator activated receptors, the aryl hydrocarbon receptor, and thyroid hormone receptors. Further, studies indicate that agrochemicals can exert toxicity through non-nuclear receptor-mediated mechanisms of action. Such non-genomic mechanisms of action include interference with peptide, steroid, or amino acid hormone response, synthesis and degradation as well as epigenetic changes (DNA methylation and histone modifications). This review summarizes the major mechanisms of action by which agrochemicals target the endocrine system.


Subject(s)
Agrochemicals/adverse effects , Endocrine Disruptors/adverse effects , Receptors, Cytoplasmic and Nuclear/metabolism , Animals , Epigenesis, Genetic/drug effects , Humans , Signal Transduction/drug effects
18.
Endocrinology ; 160(5): 1234-1246, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30892605

ABSTRACT

Uterine epithelial proliferation is regulated in a paracrine manner by a complex interplay between estrogen (E) and progesterone (P) signaling, in which E stimulates proliferation and P inhibits it. Perturbation of steroid hormone signaling within the uterine milieu could contribute to the development of endometrial hyperplasia and cancer. It is well established that bisphenol-A (BPA) is an endocrine-disrupting chemical with weak estrogenic effects, although little is known about how it affects steroid hormone signaling in the adult uterus. Because BPA acts as a weak E, we hypothesized that chronic exposure to BPA would create an imbalance between E and P signaling and cause changes in the uterus, such as aberrant epithelial proliferation. Indeed, exposure to an environmentally relevant dose of BPA had a uterotrophic affect. BPA-treated mice showed increased proliferation, notably in the glandular epithelium, which are sites of origin for endometrial hyperplasia and cancer. Increased proliferation appeared to be mediated through a similar mechanism as E-induced proliferation, via activation of the fibroblast growth factor receptor pathway and phosphorylation of the ERK1/2 mitogen-activated protein kinases in the epithelium. Interestingly, BPA reduced expression of heart and neural crest derivatives expressed 2 (HAND2), a known mediator of the antiproliferative effects of P. BPA also increased methylation of a CpG island in the Hand2 gene promoter, suggesting that BPA may promote epithelial proliferation through epigenetic silencing of antiproliferative factors like HAND2. Collectively, these findings establish that chronic exposure to BPA impairs steroid hormone signaling in the mouse uterus, and may contribute to the pathogenesis of uterine hyperplasia and cancer.


Subject(s)
Benzhydryl Compounds/pharmacology , Cell Proliferation/drug effects , Epithelium/drug effects , Fibroblast Growth Factors/metabolism , Phenols/pharmacology , Signal Transduction/drug effects , Uterus/drug effects , Animals , Cell Proliferation/genetics , Endocrine Disruptors/pharmacology , Endometrial Hyperplasia/metabolism , Epithelium/metabolism , Epithelium/pathology , Estrogens/pharmacology , Female , Gene Expression/drug effects , Mice, Inbred C57BL , Progesterone/metabolism , Receptors, Fibroblast Growth Factor/metabolism , Signal Transduction/genetics , Uterus/metabolism , Uterus/pathology
19.
J Biol Chem ; 293(8): 2850-2864, 2018 02 23.
Article in English | MEDLINE | ID: mdl-29321207

ABSTRACT

The peptide hormone prolactin (PRL) and certain members of the epidermal growth factor (EGF) family play central roles in mammary gland development and physiology, and their dysregulation has been implicated in mammary tumorigenesis. Our recent studies have revealed that the CUB and zona pellucida-like domain-containing protein 1 (CUZD1) is a critical factor for PRL-mediated activation of the transcription factor STAT5 in mouse mammary epithelium. Of note, CUZD1 controls production of a specific subset of the EGF family growth factors and consequent activation of their receptors. Here, we found that consistent with this finding, CUZD1 overexpression in non-transformed mammary epithelial HC11 cells increases their proliferation and induces tumorigenic characteristics in these cells. When introduced orthotopically in mouse mammary glands, these cells formed adenocarcinomas, exhibiting elevated levels of STAT5 phosphorylation and activation of the EGF signaling pathway. Selective blockade of STAT5 phosphorylation by pimozide, a small-molecule inhibitor, markedly reduced the production of the EGF family growth factors and inhibited PRL-induced tumor cell proliferation in vitro Pimozide administration to mice also suppressed CUZD1-driven mammary tumorigenesis in vivo Analysis of human MCF7 breast cancer cells indicated that CUZD1 controls the production of the same subset of EGF family members in these cells as in the mouse. Moreover, pimozide treatment reduced the proliferation of these cancer cells. Collectively, these findings indicate that overexpression of CUZD1, a regulator of growth factor pathways controlled by PRL and STAT5, promotes mammary tumorigenesis. Blockade of the STAT5 signaling pathway downstream of CUZD1 may offer a therapeutic strategy for managing these breast tumors.


Subject(s)
Breast Neoplasms/metabolism , Carcinogenesis/metabolism , Gene Expression Regulation, Neoplastic , Membrane Proteins/metabolism , Neoplasm Proteins/metabolism , Signal Transduction , Animals , Anticarcinogenic Agents/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Carcinogenesis/drug effects , Carcinogenesis/pathology , Cell Line , Cell Proliferation/drug effects , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , MCF-7 Cells , Mammary Glands, Animal/drug effects , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/pathology , Membrane Proteins/genetics , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/genetics , Neoplasm Transplantation , RNA Interference , Receptors, Prolactin/antagonists & inhibitors , Receptors, Prolactin/genetics , Receptors, Prolactin/metabolism , STAT5 Transcription Factor/antagonists & inhibitors , STAT5 Transcription Factor/metabolism , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...