Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
Add more filters










Publication year range
1.
Heliyon ; 10(7): e27469, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38689966

ABSTRACT

The main objective of this work is to study the effect of polyphenols, from the brown seaweed Ascophyllum nodosum, on the structure and digestion behaviour of gels at two corn starch concentrations (1.95 and 5.00% w/w) as well as the structure, color and texture features of crumbs from gluten-free breads. Adsorption isotherms of polyphenols on native and gelled starches were carried out and modelled by means of Langmuir and Henry models, respectively. The formation and characteristics of tested gels were rheologically monitored by means of heating ramp, time sweep at high temperature, cooling ramp and frequency sweep at 25 °C. Elastic modulus values decreased with the presence of polyphenols. Additionally, the polyphenols significantly decreased the digestion rate, measured by both chemical and rheological procedures, and the final concentration of digested starch. Finally, the presence of polyphenols in breads increased the hardness and chewiness values and decreased the cohesiveness and resilience values as well as the crumb hardening during storage.

2.
Int J Biol Macromol ; 254(Pt 1): 127748, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38287591

ABSTRACT

Banana starch has a highly resistant starch (RS) and slow-digested starch (SDS) content, making it attractive as a functional ingredient. Unfortunately, banana starch requires modification processes due to the loss of RS and SDS during gelatinization because of its thermolabile characteristics. This study explores the effect of banana starch modification by enzymatic, heat moisture treatment (HMT) and dual modification (HMT+ enzymatic) on its nutritional (RS, SDS) and functional properties (hydration, structural, gelation, rheological). HMT and dual modifications decrease RS (from 44.62 g/100 g to 16.62 and 26.66 g/100 g, respectively) and increase SDS (from 21.72 g/100 g to 33.91 and 26.95 g/100 g, respectively) in raw starch but induce structural changes that enhance RS (from 3.10 g/100 g to 3.94 and 4.4 g/100 g, respectively) and SDS (from 2.58 g/100 g to 9.58 and 11.48 g/100 g) thermo-resistance in gelled starch. Also, changes in the functional properties of starches were evidenced, such as weaker gels (hardness < 41 g), lower water absorption (<12.35 g/g), high starch solubility (>1.77 g/100 g) and increased gelatinization temperature. Improved gelatinization temperature and RS thermostability resulted from modifications that could expand banana starch applications as a beverage and compote thickener agent.


Subject(s)
Musa , Starch , Starch/chemistry , Musa/chemistry , Chemical Phenomena , Solubility , Temperature , Resistant Starch , Hot Temperature
3.
J Food Sci ; 89(1): 8-32, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37997506

ABSTRACT

Rice is a popular grain and forms part of the daily diet of people throughout the world. However, the consumption of rice and its products is sometimes limited by its high glycemic index due to its high starch content, low protein content and quality, and low bioavailability of minerals due to the presence of anti-nutritional factors. This has partly stimulated research interest in recent times toward the use of bioprocessing techniques such as germination as cheap and natural means to improve the nutritional quality, digestibility, and health properties of cereals, including rice, to partially achieve nutrition and food security in the developing regions of the world. This review highlights the impact of germination on the nutritional quality, health-promoting properties, and techno-functional characteristics of germinated brown rice grains and their products. The review demonstrated that germinated rice grains and their products have improved nutritional quality and digestibility, modified functional properties, and showed antioxidant, anti-inflammatory, anti-diabetic, anti-obesity, anti-cancer, and anti-cardiovascular activities. Germination appears to be a suitable bioprocessing method to improve the nutritional quality and bioactive constituents and modify the techno-functional properties of rice grains for diverse food applications and improved global nutrition and food safety.


Subject(s)
Oryza , Humans , Germination , Nutritive Value , Glycemic Index , Edible Grain
4.
Crit Rev Food Sci Nutr ; 63(25): 7653-7676, 2023.
Article in English | MEDLINE | ID: mdl-35285734

ABSTRACT

Many baked products, except for bread, (i.e., cakes, cookies, laminated pastries, and so on) generally contain high levels of fat in their formulas and they require different bakery fats that impart product-specific quality characteristics through their functionalities. Even though, fat is crucial for baked product quality, strategies have been developed to replace fat in their formulas as high fat intake is associated with chronic diseases such as obesity, diabetes, and cardiovascular heart diseases. Besides, the solid bakery fats contain trans- and saturated fats, and their consumption has been shown to increase total and low-density lipoprotein cholesterol levels and to constitute a risk factor for cardiovascular diseases when consumed at elevated levels. Therefore, the aim of this review was to provide a detailed summary of the functionality of lipids/fats (endogenous lipids, surfactants, shortening) in different baked products, the rheological behavior of bakery fats and their contribution to baked product quality, the impact of different types of fat replacers (carbohydrate-, protein-, lipid-based) on dough/batter rheology, and on the quality characteristics of the resulting reduced-fat baked products.


Subject(s)
Dietary Fats , Fatty Acids , Bread , Carbohydrates , Rheology
5.
Foods ; 13(1)2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38201163

ABSTRACT

Rice is a significant staple food in the basic diet of the global population that is considered to have a high glycaemic index. The study of the physical and chemical parameters in rice that are related to the starch digestion process, which allows us to quickly predict the glycaemic index of varieties, is a major challenge, particularly in the classification and selection process. In this context, and with the goal of establishing a relationship between physicochemical properties and starch digestibility rates, thus shedding light on the connections between quality indicators and their glycaemic impact, we evaluated various commercial rice types based on their basic chemical composition, physicochemical properties, cooking parameters, and the correlations with digestibility rates. The resistant starch, the gelatinization temperature and the retrogradation (setback) emerge as potent predictors of rice starch digestibility and estimated glycaemic index, exhibiting robust correlations of r = -0.90, r = -0.90, and r = -0.70 (p ≤ 0.05), respectively. Among the rice types, Long B and Basmati stand out with the lowest estimated glycaemic index values (68.44 and 68.10), elevated levels of resistant starch, gelatinization temperature, and setback values. Furthermore, the Long B showcases the highest amylose, while the Basmati with intermediate, revealing intriguingly strong grain integrity during cooking, setting it apart from other rice varieties.

6.
Molecules ; 27(18)2022 Sep 18.
Article in English | MEDLINE | ID: mdl-36144827

ABSTRACT

The enzymatic modification of starch extends its industrial use to flavor delivery and probiotic encapsulants, among other uses. However, it is not known how starch from different cassava varieties responds to enzymatic hydrolysis. Starches from two Ecuadorian cassava varieties (INIAP 650, an edible starch, and INIAP 651, an industrial starch) were partially modified at three enzymatic hydrolysis degrees (0%, 30%, and 50%), and their physicochemical properties were assessed. The structural analysis revealed that both varieties showed progressive structural damage as hydrolysis increases, probably due to exo-hydrolysis. However, deeper pores were observed in INIAP 651 with the SEM analysis. The crystallinity percentage obtained by XRD analyses remained constant in INIAP 651 and decreased (by 26%) in INIAP 650 (p < 0.05). In addition, the amylose−lipid complex index in INIAP 650 remained constant, while INIAP 651 increased (p < 0.05) at 30% hydrolysis (by 93%). In both varieties, hydrolysis increased (p < 0.05) the water holding capacity (WHC) (by 10−14%) and the water binding capacity (WBC) (by 16%), but 50% hydrolysis of INIAP 650 was needed to significantly affect these properties. No differences were observed in the varieties' thermal properties. Regarding the rheological properties, the variety did not influence the changes in the storage module (G') and the loss modulus (G″) with the hydrolysis (p > 0.05). However, the phase angle decreased significantly (p < 0.05) with the hydrolysis, being higher in the INIAP 650 variety than in the INIAP 651 variety. In general, the results indicate that the variety affects the response of the starch granule to enzymatic hydrolysis (noticeable in the principal component analysis, PCA) and opens up the possibility to modulate starch properties.


Subject(s)
Amylose , Manihot , Amylose/chemistry , Hydrolysis , Lipids , Manihot/chemistry , Starch/chemistry , Viscosity , Water/chemistry
7.
Int J Food Sci Nutr ; 73(7): 902-914, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35695415

ABSTRACT

Despite the importance of breads through the history, the wide range of options might lead to a choice dilemma from health-conscious consumers when purchasing bread. In this study, commercial white, wholegrain and multigrain regular breads, sold in Europe, were collected, and classified into gluten-free and gluten-containing categories. For gluten-free-breads, no significant differences were found in energy, saturated fatty acids, sugar, fibre and salt between white and wholegrain breads regardless of the mention "multigrain." For gluten-containing, carbohydrates and fibres differed between white and wholegrain breads, while when considering multigrain presence all the nutritional composition varied significantly. Nevertheless, the mentions wholegrain and multigrain on gluten-free and gluten-containing breads do not guarantee a better nutritional quality compared to white bread. Gluten-free breads showed increased fibre, and decreased carbohydrates, sugar and energy which are comparable to gluten-containing wholegrain breads. This underlines the improvement of gluten-free breads and suggests further investigations to increase protein content.


Subject(s)
Bread , Glutens , Nutritive Value , Triticum , Dietary Fiber , Carbohydrates , Fatty Acids , Sugars
8.
Foods ; 11(12)2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35741953

ABSTRACT

Rice is one of the most important cereals in the world alongside wheat and maize [...].

9.
Food Funct ; 13(14): 7582-7590, 2022 Jul 18.
Article in English | MEDLINE | ID: mdl-35730891

ABSTRACT

Starch is one of the most important carbohydrates that is present in many foods. Gelatinization is an important property of starch, associated with physical changes that promote an increase in viscosity. The objective of this research was to understand how the viscosity of starch gels affects their hydrolysis and whether that effect was dependent on the type of starch. Different gels (corn, wheat, and rice) with variable or constant viscosity were analyzed using diverse methodologies to determine the changes in the pasting behavior. A rapid force analyzer, a vibration viscometer and a rheometer were used to differentiate the gels based on the starch source and concentration. At a fixed starch concentration, corn gel displayed the highest viscosity, slowing the enzymatic starch hydrolysis. The higher viscosity of those gels prepared with a fixed starch concentration significantly enhanced the slowly digestible starch (SDS) and reduced the kinetic constant (k). Nevertheless, gels with constant viscosity (550 mPa s) showed comparable hydrolysis kinetics, obtaining similar SDS, total hydrolyzed starch and k. The correlation matrix confirmed the relationship between k and gel viscosity (r = -0.82), gelatinization rate (α-slope) (r = -0.87), breakdown (r = -0.84) and elastic modulus (G' 37 °C) (r = -0.73). Therefore, these parameters could be used as predictors of the hydrolysis performance of starch gels as well as in reverse engineering for the design of healthy foods.


Subject(s)
Starch , Zea mays , Gels , Rheology , Viscosity
10.
J Food Sci ; 87(6): 2405-2416, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35590486

ABSTRACT

Seaweeds are gaining importance due to their antidiabetic characteristics. This study investigated the inhibitory effects of aqueous Ascophyllum nodosum extracts, obtained by ultrasound-assisted extraction with different sonication powers (70-90 W/cm2 ) and subjected to resin purification, against α-amylase and α-glucosidase enzymes. Different inhibition methodologies were carried out, preincubating the extract either with the enzyme or the substrate. Chemical characterization, in terms of proximate analysis, antioxidant capacity (2,2-diphenyl-1-picryl-hydrazyl-hydrate [DPPH] and FRAP), and polyphenols characteristics (reversed-phase high-performance liquid chromatography [RP-HPLC] and 1 H-NMR) were carried out to explain inhibitory activities of extracts. Sonication power did not influence the proximal composition nor antiradical activity of extracts, but increasing sonication power increased inhibition capacity (>15%) against both starch digestive enzymes. The extract purification largely improved the inhibition efficiency decreasing the IC50 of α-amylase and α-glucosidase by 3.0 and 6.1 times, respectively. Seaweed extracts showed greater inhibition effect when they were preincubated with the enzyme instead of the substrate. RP-HPLC together with 1 H-NMR spectra allowed relating the presence of uronic acids-polyphenols complexes and quinones in the extracts with the different inhibitory capacities of samples. PRACTICAL APPLICATION: The study confirms that ultrasound-assisted extracts from Ascophyllum nodosum can be used to inhibit digestive enzymes. This opens the alternative to be used in foods for modulating glycemic index.


Subject(s)
Ascophyllum , Seaweed , Antioxidants/chemistry , Ascophyllum/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Polyphenols/pharmacology , Seaweed/chemistry , Starch , alpha-Amylases , alpha-Glucosidases
11.
Foods ; 11(8)2022 Apr 18.
Article in English | MEDLINE | ID: mdl-35454752

ABSTRACT

The effect of several blending procedures between Ascophyllum nodosum seaweed flour (AF) and corn starch (CS) on the interactions between polyphenols and starch was studied in this paper. These methods comprised the blending of AF with native starch (NT) with previously gelled starch gel (GL) and promoting the gelling of corn starch in the presence of AF (CGL). Different AF-CS (g/g) ratios (from 1:0.5 to 1:25) were studied. The liquid phase was chemically characterized by polyphenols (TPC) and carbohydrates content. The antioxidant activity of the liquid phase after achieving the solid-liquid equilibrium was determined by DPPH, ABTS, and FRAP methods. The solid phase was characterized by FT-IR and SEM techniques. The Halsey model successfully fitted the equilibrium TPC in liquid and polyphenols adsorbed/retained by the solid phase of tested systems. NT samples showed lower polyphenols sorption than gelled samples. The differences found between samples obtained with GL and CGL methods suggested different interactions between polyphenols and starch. Specifically, physisorption is predominant in the case of the GL method, and molecular trapping of polyphenols in the starch gel structure is relevant for the CGL method. Results allowed us to determine the enhancement of the retention of polyphenols to achieve starchy foods with high bioactivity.

12.
Front Nutr ; 9: 866789, 2022.
Article in English | MEDLINE | ID: mdl-35392293

ABSTRACT

The objective of this study is to determine the effect of the addition of hydroxypropyl methylcellulose (HPMC) (from 0.5 to 2.0% w/w, starch basis) with three different viscosities (40-60, 80-120, and 2,600-5,600 mPa⋅s) to corn starch (30% w/w, total basis) gels. Average viscosimetric molecular weights (M v ) of tested HPMC were determined (from 27.2 × 103 to 82.7 × 103 g/mol). Water retention capacity of HPMC varied linearly with M v . The formation and curation of gels were monitored by rheology employing consecutive steps such as heating ramp (25-90°C), time sweep (90°C), cooling ramp (90-25°C), time sweep (25°C), and frequency sweep. Additionally, creep-recovery tests were performed. HPMC above 1.5% w/w delayed the range of gelatinization temperature of starch up to 2°C. Viscoelasticity and stiffness of corn starch gels with HPMC depend on both the amount of polymer added and M v of the HPMC. Finally, to achieve corn gels with mimetic viscoelastic properties to wheat gel (with constant total solids), HPMC with relatively low viscosity (low M v ) is necessary to be added at certain content.

13.
Crit Rev Food Sci Nutr ; 62(23): 6390-6420, 2022.
Article in English | MEDLINE | ID: mdl-33775185

ABSTRACT

Consumer interest in protein rich diets is increasing, with more attention being paid to the protein source. Despite the occurrence of animal proteins in the human diet, non-animal proteins are gaining popularity around the world due to their health benefits, environmental sustainability, and ethical merit. These sources of protein qualify for vegan, vegetarian, and flexitarian diets. Non-animal proteins are versatile, derived mainly from cereals, vegetables, pulses, algae (seaweed and microalgae), fungi, and bacteria. This review's intent is to analyze the current and future direction of research and innovation in non-animal proteins, and to elucidate the extent (limitations and opportunities) of their applications in food and beverage industries. Prior knowledge provided relevant information on protein features (processing, structure, and techno-functionality) with particular focus on those derived from soy and wheat. In the current food landscape, beyond conventionally used plant sources, other plant proteins are gaining traction as alternative ingredients to formulate animal-free foodstuffs (e.g., meat alternatives, beverages, baked products, snack foods, and others). Microbial proteins derived from fungi and algae are also food ingredients of interest due to their high protein quantity and quality, however there is no commercial food application for bacterial protein yet. In the future, key points to consider are the importance of strain/variety selection, advances in extraction technologies, toxicity assessment, and how this source can be used to create food products for personalized nutrition.


Subject(s)
Diet, Vegan , Diet , Humans , Meat , Nutritional Status , Vegetarians
14.
Food Chem ; 372: 131231, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-34624776

ABSTRACT

Phenolic acids are involved in modulating the activity of starch digestive enzymes but remains unclear if their interaction with enzymes or starch is governing the inhibition. The potential inhibition of nine phenolic acids against α-amylase and α-glucosidase was studied applying different methodologies to understand interactions between phenolic acids and either enzymes or substrates. Vanillic and syringic acids were prone to interact with α-amylase requiring low half-maximum inhibitory concentration (IC50) to inhibit starch hydrolysis. Nevertheless, the initial interaction of phenolic acids with starch somewhat obstructed their interaction with starch, requiring 10 times higher IC50, with the exception of chlorogenic and gallic acid. The study demonstrates that 10% of the phenolic acids were retained during starch gelatinization. Those effects were not really evident with α-glucosidase, likely due to the small molecular size of maltose substrate. Phenolic acids with > 1 hydroxyl group like caffeic and protocatechuic acids showed the lowest IC50 against α-glucosidase.


Subject(s)
alpha-Amylases , alpha-Glucosidases , Glycoside Hydrolase Inhibitors , Hydrolysis , Maltose , Starch
15.
Carbohydr Polym ; 273: 118549, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34560961

ABSTRACT

Viscosity is an important rheological property, which may have impact on the glycemic response of starchy foods. However, the relationship between starch gels viscosity on its hydrolysis has not been elucidated. The aim of this work was to assess the effect of gels viscosity on the microstructure, and the kinetics of enzymatic hydrolysis of starch. Corn starch gels were prepared from starch:water ratios varying from 1:4 to 1:16. A structural model was proposed that correlated (R-square = 0.98) the porous structure (cavity sizes, thickness walls) of gels and its viscosity. Kinetics constants of hydrolysis decreased with increasing starch content and consequently with gel viscosity. Relationships of viscosity with the microstructural features of gels suggested that enzyme diffusion into the gel was hindered, with the subsequent impact on the hydrolysis kinetics. Therefore, starch digestibility could be governed by starch gels viscosity, which also affected their microstructure.

16.
Food Res Int ; 147: 110477, 2021 09.
Article in English | MEDLINE | ID: mdl-34399473

ABSTRACT

Texture and structure of breads have been related to oral processing (FOP) performance and sensory perceptions, but moisture content might play a significant role. To evaluate the real impact of breads texture and structure, eliminating the possible role of moisture content, different toasted breads were investigated. Four commercial toasted sliced breads (white bread -WHB-, whole wheat bread -WWB-, non-added sugar bread -NSU-, non-added salt bread -NSA-) with similar ingredients but different texture and structure were selected. Texture and structure were instrumentally and sensory evaluated, besides FOP (total chewing time, number of chews until swallowing, chewing frequency, and mouthful) and bolus properties (moisture, saliva to bread ratio, hardness, adhesiveness, and cohesiveness). Toasted breads showed significant differences in hardness, cutting strength, and porosity, but panelists did not discriminate among them. FOP results indicated that harder samples (NSU) required longer mastication and a number of chews, and open crumb structures (WWB, WHB) with higher cell areas required less mastication. Also, bolus characteristics were affected by bread types, and bread with lower crumb hardness (WHB) produced more cohesive bolus. Having toasted breads allowed to eliminate possible influence of moisture content differences on sensory perception, mouthful and bolus water incorporation during mastication.


Subject(s)
Bread , Touch Perception , Deglutition , Mastication , Touch
17.
Front Nutr ; 8: 687712, 2021.
Article in English | MEDLINE | ID: mdl-34277684

ABSTRACT

Edible insects are being accepted by a growing number of consumers in recent years not only as a snack but also as a side dish or an ingredient to produce other foods. Most of the edible insects belong to one of these groups of insects such as caterpillars, butterflies, moths, wasps, beetles, crickets, grasshoppers, bees, and ants. Insect properties are analyzed and reported in the articles reviewed here, and one common feature is nutrimental content, which is one of the most important characteristics mentioned, especially proteins, lipids, fiber, and minerals. On the other hand, insects can be used as a substitute for flour of cereals for the enrichment of snacks because of their high content of proteins, lipids, and fiber. Technological properties are not altered when these insects-derived ingredients are added and sensorial analysis is satisfactory, and only in some cases, change in color takes place. Insects can be used as substitute ingredients in meat products; the products obtained have higher mineral content than traditional ones, and some texture properties (like elasticity) can be improved. In extruded products, insects are an alternative source of proteins to feed livestock, showing desirable characteristics. Isolates of proteins of insects have demonstrated bioactive activity, and these can be used to improve food formulations. Bioactive compounds, as antioxidant agents, insulin regulators, and anti-inflammatory peptides, are high-value products that can be obtained from insects. Fatty acids that play a significant role in human health and lipids from insects have showed positive impacts on coronary disease, inflammation, and cancer. Insects can be a vector for foodborne microbial contamination, but the application of good manufacturing practices and effective preservation techniques jointly with the development of appropriate safety regulations will decrease the appearance of such risks. However, allergens presented in some insects are a hazard that must be analyzed and taken into account. Despite all the favorable health-promoting characteristics present in insects and insects-derived ingredients, willingness to consume them has yet to be generalized.

18.
Adv Food Nutr Res ; 97: 319-359, 2021.
Article in English | MEDLINE | ID: mdl-34311903

ABSTRACT

Colocasia esculenta (L.) Schott and Xanthosoma sagittifolium (L.) Schott are the most popular tubers among the Araceas family. Their chemical composition related to their nutritional benefits could make these rhizomes a valid option for the nutritional and technological improvement of food products. This chapter provide a clarification about the correct nomenclature of both tubers giving an insight around the principle components and their health effects. The scientific literature review has primarily highlighted several in vitro and animal studies where the consumption (leaves and whole tuber) of Colocasia esculenta (L.) Schott and Xanthosoma sagittifolium (L.) Schott was related with certain antihyperglycemic, antihypertensive, hypoglycemic and prebiotic effects. Owing to their functional properties, different component from these rhizomes, specially starch, mucilage and powders are being used by the food industry. Their ability to behave as thickener and gelling agent has allowed their incorporation in baked food, food paste and beverages. This chapter suggests the development of more research around these rhizomes since they could potentially play, with other crops, an important role in the future sustainable strategies to feed the planet.


Subject(s)
Araceae , Colocasia , Xanthosoma , Animals , Crops, Agricultural , Plant Tubers
19.
Foods ; 10(2)2021 Feb 02.
Article in English | MEDLINE | ID: mdl-33540849

ABSTRACT

Rice is a very popular food throughout the world and the basis of the diet of the citizens of many countries. It is used as a raw material for the preparation of many complex dishes in which different ingredients are involved. Rice, as a consequence of their cultivation, harvesting, and handling, is often contaminated with spores of Bacillus cereus, a ubiquitous microorganism found mainly in the soil. B. cereus can multiply under temperature conditions as low as 4 °C in foods that contain rice and have been cooked or subjected to treatments that do not produce commercial sterility. B. cereus produces diarrhoeal or emetic foodborne toxin when the consumer eats food in which a sufficient number of cells have grown. These circumstances mean that every year many outbreaks of intoxication or intestinal problems related to this microorganism are reported. This work is a review from the perspective of risk assessment of the risk posed by B. cereus to the health of consumers and of some control measures that can be used to mitigate such a risk.

20.
Food Chem ; 344: 128710, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33272764

ABSTRACT

Microalgae nutritional and healthy dietary pattern might be affected by processes like breadmaking when used as ingredient. This study aims to determine the role of dough acidification on the nutritional pattern of Chlorella vulgaris enriched breads. Different levels of microalga (1%, 2% and 3%) were incorporated in the recipe in the presence of either 10% sourdough or chemically acidified doughs. Dough and bread characteristics were evaluated. Addition of microalga reduced the slice area and increased the crumb hardness, but it could be counteracted by increasing dough hydration and adapting proofing time. Doughs and breads enriched with microalga had green color. Dough acidification led to softer breads and enhanced the antioxidant activity of enriched breads. Microalgae incorporation increased the protein and ash content of the breads. Microalgae enriched breads made with chemically acidified doughs or sourdoughs had higher Total Phenolic Content and antioxidant activity as assessed by FRAP and ABTS methods.


Subject(s)
Antioxidants/analysis , Bread/analysis , Microalgae/metabolism , Chlorella vulgaris/metabolism , Food Quality , Hardness , Hydrogen-Ion Concentration
SELECTION OF CITATIONS
SEARCH DETAIL
...