Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 18 de 18
1.
bioRxiv ; 2024 Jan 04.
Article En | MEDLINE | ID: mdl-38260569

The ability to quantify transcriptional dynamics in individual cells via live imaging has revolutionized our understanding of gene regulation. However, such measurements are lacking in the context of vertebrate embryos. We addressed this deficit by applying MS2-MCP mRNA labeling to the quantification of transcription in zebrafish, a model vertebrate. We developed a platform of transgenic organisms, light sheet fluorescence microscopy, and optimized image analysis that enables visualization and quantification of MS2 reporters. We used these tools to obtain the first single-cell, real-time measurements of transcriptional dynamics of the segmentation clock. Our measurements challenge the traditional view of smooth clock oscillations and instead suggest a model of discrete transcriptional bursts that are organized in space and time. Together, these results highlight how measuring single-cell transcriptional activity can reveal unexpected features of gene regulation and how this data can fuel the dialogue between theory and experiment.

2.
Nat Methods ; 20(7): 951-952, 2023 Jul.
Article En | MEDLINE | ID: mdl-37434005
3.
mBio ; 13(6): e0230822, 2022 12 20.
Article En | MEDLINE | ID: mdl-36314791

Coronavirus disease 2019 (COVID-19) is frequently associated with neurological deficits, but how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces these effects remains unclear. Here, we show that astrocytes are readily infected by SARS-CoV-2, but surprisingly, neuropilin-1, not angiotensin-converting enzyme 2 (ACE2), serves as the principal receptor mediating cell entry. Infection is further positively modulated by the two-pore segment channel 2 (TPC2) protein that regulates membrane trafficking and endocytosis. Astrocyte infection produces a pathological response closely resembling reactive astrogliosis characterized by elevated type I interferon (IFN) production, increased inflammation, and the decreased expression of transporters of water, ions, choline, and neurotransmitters. These combined events initiated within astrocytes produce a hostile microenvironment that promotes the dysfunction and death of uninfected bystander neurons. IMPORTANCE SARS-CoV-2 infection primarily targets the lung but may also damage other organs, including the brain, heart, kidney, and intestine. Central nervous system (CNS) pathologies include loss of smell and taste, headache, delirium, acute psychosis, seizures, and stroke. Pathological loss of gray matter occurs in SARS-CoV-2 infection, but it is unclear whether this is due to direct viral infection, indirect effects associated with systemic inflammation, or both. Here, we used induced pluripotent stem cell (iPSC)-derived brain organoids and primary human astrocytes from the cerebral cortex to study direct SARS-CoV-2 infection. Our findings support a model where SARS-CoV-2 infection of astrocytes produces a panoply of changes in the expression of genes regulating innate immune signaling and inflammatory responses. The deregulation of these genes in astrocytes produces a microenvironment within the CNS that ultimately disrupts normal neuron function, promoting neuronal cell death and CNS deficits.


COVID-19 , Humans , SARS-CoV-2/physiology , Astrocytes , Neuropilin-1 , Brain , Inflammation , Neurons , Organoids
4.
Nat Methods ; 19(8): 995-1003, 2022 08.
Article En | MEDLINE | ID: mdl-35879608

Explaining the diversity and complexity of protein localization is essential to fully understand cellular architecture. Here we present cytoself, a deep-learning approach for fully self-supervised protein localization profiling and clustering. Cytoself leverages a self-supervised training scheme that does not require preexisting knowledge, categories or annotations. Training cytoself on images of 1,311 endogenously labeled proteins from the OpenCell database reveals a highly resolved protein localization atlas that recapitulates major scales of cellular organization, from coarse classes, such as nuclear and cytoplasmic, to the subtle localization signatures of individual protein complexes. We quantitatively validate cytoself's ability to cluster proteins into organelles and protein complexes, showing that cytoself outperforms previous self-supervised approaches. Moreover, to better understand the inner workings of our model, we dissect the emergent features from which our clustering is derived, interpret them in the context of the fluorescence images, and analyze the performance contributions of each component of our approach.


Deep Learning , Cluster Analysis , Organelles/metabolism , Protein Transport , Proteins/metabolism
5.
Bio Protoc ; 12(5): e4336, 2022 Mar 05.
Article En | MEDLINE | ID: mdl-35592606

Asymmetric cell division (ACD) is fundamental for balancing cell proliferation and differentiation in metazoans. During active neurogenesis in the developing zebrafish forebrain, radial glia progenitors (RGPs) mainly undergo ACD to produce one daughter with high activity of Delta/Notch signaling (proliferative cell fate) and another daughter with low Delta/Notch signaling (differentiative cell fate). The cell polarity protein partitioning-defective 3 (Par-3) is critical for regulating this process. To understand how polarized Par-3 on the cell cortex can lead to differential Notch activity in the nuclei of daughter cells, we combined an anti-Delta D (Dld) -atto 647N antibody uptake assay with label retention expansion microscopy (LR-ExM), to obtain high resolution immunofluorescent images of Par-3, dynein light intermediate chain 1 (Dlic1), and Dld endosomes in mitotic RGPs. We then developed a protocol for analyzing the colocalization of Par-3, Dlic1, and endosomal DeltaD, using JACoP (Just Another Co-localization Plugin) in ImageJ software (Bolte and Cordelières, 2006). Through such analyses, we have shown that cytosolic Par-3 is associated with Dlic1 on Dld endosomes. Our work demonstrates a direct involvement of Par-3 in dynein-mediated polarized transport of Notch signaling endosomes. This bio-protocol may be generalizable for analysis of protein co-localization in any cryosectioned and immunostained tissue samples.

6.
Nat Methods ; 19(4): 461-469, 2022 04.
Article En | MEDLINE | ID: mdl-35314838

The promise of single-objective light-sheet microscopy is to combine the convenience of standard single-objective microscopes with the speed, coverage, resolution and gentleness of light-sheet microscopes. We present DaXi, a single-objective light-sheet microscope design based on oblique plane illumination that achieves: (1) a wider field of view and high-resolution imaging via a custom remote focusing objective; (2) fast volumetric imaging over larger volumes without compromising image quality or necessitating tiled acquisition; (3) fuller image coverage for large samples via multi-view imaging and (4) higher throughput multi-well imaging via remote coverslip placement. Our instrument achieves a resolution of 450 nm laterally and 2 µm axially over an imaging volume of 3,000 × 800 × 300 µm. We demonstrate the speed, field of view, resolution and versatility of our instrument by imaging various systems, including Drosophila egg chamber development, zebrafish whole-brain activity and zebrafish embryonic development - up to nine embryos at a time.


Brain , Zebrafish , Animals , Brain/diagnostic imaging , Drosophila , Embryonic Development , Microscopy, Fluorescence/methods
7.
Science ; 375(6585): eabi6983, 2022 03 11.
Article En | MEDLINE | ID: mdl-35271311

Elucidating the wiring diagram of the human cell is a central goal of the postgenomic era. We combined genome engineering, confocal live-cell imaging, mass spectrometry, and data science to systematically map the localization and interactions of human proteins. Our approach provides a data-driven description of the molecular and spatial networks that organize the proteome. Unsupervised clustering of these networks delineates functional communities that facilitate biological discovery. We found that remarkably precise functional information can be derived from protein localization patterns, which often contain enough information to identify molecular interactions, and that RNA binding proteins form a specific subgroup defined by unique interaction and localization properties. Paired with a fully interactive website (opencell.czbiohub.org), our work constitutes a resource for the quantitative cartography of human cellular organization.


Protein Interaction Mapping , Proteins/metabolism , Proteome/metabolism , Proteomics/methods , CRISPR-Cas Systems , Cluster Analysis , Datasets as Topic , Fluorescent Dyes , HEK293 Cells , Humans , Immunoprecipitation , Machine Learning , Mass Spectrometry , Microscopy, Confocal , RNA-Binding Proteins/metabolism , Spatial Analysis
8.
J Cell Biol ; 220(7)2021 07 05.
Article En | MEDLINE | ID: mdl-33950159

Drosophila oocytes develop together with 15 sister germline nurse cells (NCs), which pass products to the oocyte through intercellular bridges. The NCs are completely eliminated during stages 12-14, but we discovered that at stage 10B, two specific NCs fuse with the oocyte and extrude their nuclei through a channel that opens in the anterior face of the oocyte. These nuclei extinguish in the ooplasm, leaving 2 enucleated and 13 nucleated NCs. At stage 11, the cell boundaries of the oocyte are mostly restored. Oocytes in egg chambers that fail to eliminate NC nuclei at stage 10B develop with abnormal morphology. These findings show that stage 10B NCs are distinguished by position and identity, and that NC elimination proceeds in two stages: first at stage 10B and later at stages 12-14.


Cell Lineage/genetics , Germ Cells/growth & development , Oocytes/growth & development , Oogenesis/genetics , Animals , Cell Nucleus/genetics , Cytoplasm/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/growth & development , Germ Cells/cytology , Oocytes/cytology
9.
Nat Commun ; 12(1): 2276, 2021 04 15.
Article En | MEDLINE | ID: mdl-33859193

Deep Learning (DL) methods are powerful analytical tools for microscopy and can outperform conventional image processing pipelines. Despite the enthusiasm and innovations fuelled by DL technology, the need to access powerful and compatible resources to train DL networks leads to an accessibility barrier that novice users often find difficult to overcome. Here, we present ZeroCostDL4Mic, an entry-level platform simplifying DL access by leveraging the free, cloud-based computational resources of Google Colab. ZeroCostDL4Mic allows researchers with no coding expertise to train and apply key DL networks to perform tasks including segmentation (using U-Net and StarDist), object detection (using YOLOv2), denoising (using CARE and Noise2Void), super-resolution microscopy (using Deep-STORM), and image-to-image translation (using Label-free prediction - fnet, pix2pix and CycleGAN). Importantly, we provide suitable quantitative tools for each network to evaluate model performance, allowing model optimisation. We demonstrate the application of the platform to study multiple biological processes.


Deep Learning , Image Processing, Computer-Assisted/methods , Microscopy/methods , Animals , Cell Line, Tumor , Cloud Computing , Datasets as Topic , Humans , Primary Cell Culture , Rats , Software
12.
Nat Methods ; 16(12): 1215-1225, 2019 12.
Article En | MEDLINE | ID: mdl-31285623

Deep learning is becoming an increasingly important tool for image reconstruction in fluorescence microscopy. We review state-of-the-art applications such as image restoration and super-resolution imaging, and discuss how the latest deep learning research could be applied to other image reconstruction tasks. Despite its successes, deep learning also poses substantial challenges and has limits. We discuss key questions, including how to obtain training data, whether discovery of unknown structures is possible, and the danger of inferring unsubstantiated image details.


Deep Learning , Image Processing, Computer-Assisted/methods , Microscopy, Fluorescence/methods , Humans , Scattering, Radiation
13.
Cell ; 175(3): 859-876.e33, 2018 10 18.
Article En | MEDLINE | ID: mdl-30318151

The mouse embryo has long been central to the study of mammalian development; however, elucidating the cell behaviors governing gastrulation and the formation of tissues and organs remains a fundamental challenge. A major obstacle is the lack of live imaging and image analysis technologies capable of systematically following cellular dynamics across the developing embryo. We developed a light-sheet microscope that adapts itself to the dramatic changes in size, shape, and optical properties of the post-implantation mouse embryo and captures its development from gastrulation to early organogenesis at the cellular level. We furthermore developed a computational framework for reconstructing long-term cell tracks, cell divisions, dynamic fate maps, and maps of tissue morphogenesis across the entire embryo. By jointly analyzing cellular dynamics in multiple embryos registered in space and time, we built a dynamic atlas of post-implantation mouse development that, together with our microscopy and computational methods, is provided as a resource. VIDEO ABSTRACT.


Cell Lineage , Gastrulation , Organogenesis , Single-Cell Analysis/methods , Animals , Mice , Mice, Inbred C57BL , Models, Statistical , Optical Imaging/methods
14.
Nat Protoc ; 13(11): 2462-2500, 2018 11.
Article En | MEDLINE | ID: mdl-30367170

We describe the implementation and use of an adaptive imaging framework for optimizing spatial resolution and signal strength in a light-sheet microscope. The framework, termed AutoPilot, comprises hardware and software modules for automatically measuring and compensating for mismatches between light-sheet and detection focal planes in living specimens. Our protocol enables researchers to introduce adaptive imaging capabilities in an existing light-sheet microscope or use our SiMView microscope blueprint to set up a new adaptive multiview light-sheet microscope. The protocol describes (i) the mechano-optical implementation of the adaptive imaging hardware, including technical drawings for all custom microscope components; (ii) the algorithms and software library for automated adaptive imaging, including the pseudocode and annotated source code for all software modules; and (iii) the execution of adaptive imaging experiments, as well as the configuration and practical use of the AutoPilot framework. Setup of the adaptive imaging hardware and software takes 1-2 weeks each. Previous experience with light-sheet microscopy and some familiarity with software engineering and building of optical instruments are recommended. Successful implementation of the protocol recovers near diffraction-limited performance in many parts of typical multicellular organisms studied with light-sheet microscopy, such as fruit fly and zebrafish embryos, for which resolution and signal strength are improved two- to fivefold.


Algorithms , Embryo, Nonmammalian/ultrastructure , Microscopy, Fluorescence/methods , Animals , Animals, Genetically Modified , Drosophila melanogaster/anatomy & histology , Drosophila melanogaster/cytology , Embryo, Nonmammalian/cytology , Equipment Design/instrumentation , Guidelines as Topic , Microscopy, Fluorescence/instrumentation , Software , Zebrafish/anatomy & histology
15.
Elife ; 72018 06 13.
Article En | MEDLINE | ID: mdl-29897330

Cell division is essential to expand, shape, and replenish epithelia. In the adult small intestine, cells from a common progenitor intermix with other lineages, whereas cell progeny in many other epithelia form contiguous patches. The mechanisms that generate these distinct patterns of progeny are poorly understood. Using light sheet and confocal imaging of intestinal organoids, we show that lineages intersperse during cytokinesis, when elongated interphase cells insert between apically displaced daughters. Reducing the cellular aspect ratio to minimize the height difference between interphase and mitotic cells disrupts interspersion, producing contiguous patches. Cellular aspect ratio is similarly a key parameter for division-coupled interspersion in the early mouse embryo, suggesting that this physical mechanism for patterning progeny may pertain to many mammalian epithelia. Our results reveal that the process of cytokinesis in elongated mammalian epithelia allows lineages to intermix and that cellular aspect ratio is a critical modulator of the progeny pattern.


Cell Lineage/physiology , Cytokinesis/physiology , Epithelial Cells/physiology , Epithelium/physiology , Animals , Body Patterning/physiology , Cell Division/physiology , Embryo, Mammalian/cytology , Embryo, Mammalian/embryology , Epithelial Cells/cytology , Epithelial Cells/metabolism , Epithelium/embryology , Female , Male , Mammals/embryology , Mammals/physiology , Mice, Inbred C57BL , Mice, Transgenic , Microscopy, Confocal , Time-Lapse Imaging/methods
16.
Nat Biotechnol ; 34(12): 1267-1278, 2016 Dec.
Article En | MEDLINE | ID: mdl-27798562

Optimal image quality in light-sheet microscopy requires a perfect overlap between the illuminating light sheet and the focal plane of the detection objective. However, mismatches between the light-sheet and detection planes are common owing to the spatiotemporally varying optical properties of living specimens. Here we present the AutoPilot framework, an automated method for spatiotemporally adaptive imaging that integrates (i) a multi-view light-sheet microscope capable of digitally translating and rotating light-sheet and detection planes in three dimensions and (ii) a computational method that continuously optimizes spatial resolution across the specimen volume in real time. We demonstrate long-term adaptive imaging of entire developing zebrafish (Danio rerio) and Drosophila melanogaster embryos and perform adaptive whole-brain functional imaging in larval zebrafish. Our method improves spatial resolution and signal strength two to five-fold, recovers cellular and sub-cellular structures in many regions that are not resolved by non-adaptive imaging, adapts to spatiotemporal dynamics of genetically encoded fluorescent markers and robustly optimizes imaging performance during large-scale morphogenetic changes in living organisms.


Algorithms , Embryo, Nonmammalian/cytology , Image Enhancement/instrumentation , Image Enhancement/methods , Microscopy, Fluorescence/instrumentation , Microscopy, Fluorescence/methods , Animals , Drosophila , Equipment Design , Equipment Failure Analysis , Feedback , Lasers , Lenses , Lighting/instrumentation , Lighting/methods , Longitudinal Studies , Reproducibility of Results , Sensitivity and Specificity , Zebrafish
17.
Cell ; 162(5): 1066-77, 2015 Aug 27.
Article En | MEDLINE | ID: mdl-26317470

Many proteins contain disordered regions of low-sequence complexity, which cause aging-associated diseases because they are prone to aggregate. Here, we study FUS, a prion-like protein containing intrinsically disordered domains associated with the neurodegenerative disease ALS. We show that, in cells, FUS forms liquid compartments at sites of DNA damage and in the cytoplasm upon stress. We confirm this by reconstituting liquid FUS compartments in vitro. Using an in vitro "aging" experiment, we demonstrate that liquid droplets of FUS protein convert with time from a liquid to an aggregated state, and this conversion is accelerated by patient-derived mutations. We conclude that the physiological role of FUS requires forming dynamic liquid-like compartments. We propose that liquid-like compartments carry the trade-off between functionality and risk of aggregation and that aberrant phase transitions within liquid-like compartments lie at the heart of ALS and, presumably, other age-related diseases.


Aging/pathology , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Mutation , RNA-Binding Protein FUS/chemistry , RNA-Binding Protein FUS/genetics , Aging/metabolism , Amyotrophic Lateral Sclerosis/metabolism , Cell Nucleus/chemistry , Cytoplasm/chemistry , Humans , Prions/chemistry , Protein Aggregates , Protein Structure, Tertiary , RNA-Binding Protein FUS/metabolism
...