Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Nucleic Acids Res ; 52(D1): D413-D418, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37956324

ABSTRACT

ChannelsDB 2.0 is an updated database providing structural information about the position, geometry and physicochemical properties of protein channels-tunnels and pores-within deposited biomacromolecular structures from PDB and AlphaFoldDB databases. The newly deposited information originated from several sources. Firstly, we included data calculated using a popular CAVER tool to complement the data obtained using original MOLE tool for detection and analysis of protein tunnels and pores. Secondly, we added tunnels starting from cofactors within the AlphaFill database to enlarge the scope of the database to protein models based on Uniprot. This has enlarged available channel annotations ∼4.6 times as of 1 September 2023. The database stores information about geometrical features, e.g. length and radius, and physico-chemical properties based on channel-lining amino acids. The stored data are interlinked with the available UniProt mutation annotation data. ChannelsDB 2.0 provides an excellent resource for deep analysis of the role of biomacromolecular tunnels and pores. The database is available free of charge: https://channelsdb2.biodata.ceitec.cz.


Subject(s)
Databases, Protein , Proteins , Software , Amino Acids , Proteins/chemistry , Protein Conformation
2.
Bioinformatics ; 39(12)2023 12 01.
Article in English | MEDLINE | ID: mdl-38085238

ABSTRACT

SUMMARY: PDBImages is an innovative, open-source Node.js package that harnesses the power of the popular macromolecule structure visualization software Mol*. Designed for use by the scientific community, PDBImages provides a means to generate high-quality images for PDB and AlphaFold DB models. Its unique ability to render and save images directly to files in a browserless mode sets it apart, offering users a streamlined, automated process for macromolecular structure visualization. Here, we detail the implementation of PDBImages, enumerating its diverse image types, and elaborating on its user-friendly setup. This powerful tool opens a new gateway for researchers to visualize, analyse, and share their work, fostering a deeper understanding of bioinformatics. AVAILABILITY AND IMPLEMENTATION: PDBImages is available as an npm package from https://www.npmjs.com/package/pdb-images. The source code is available from https://github.com/PDBeurope/pdb-images.


Subject(s)
Computational Biology , Software , Molecular Structure , Computational Biology/methods
3.
Nucleic Acids Res ; 51(W1): W326-W330, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37194693

ABSTRACT

Segmentation helps interpret imaging data in a biological context. With the development of powerful tools for automated segmentation, public repositories for imaging data have added support for sharing and visualizing segmentations, creating the need for interactive web-based visualization of 3D volume segmentations. To address the ongoing challenge of integrating and visualizing multimodal data, we developed Mol* Volumes and Segmentations (Mol*VS), which enables the interactive, web-based visualization of cellular imaging data supported by macromolecular data and biological annotations. Mol*VS is fully integrated into Mol* Viewer, which is already used for visualization by several public repositories. All EMDB and EMPIAR entries with segmentation datasets are accessible via Mol*VS, which supports the visualization of data from a wide range of electron and light microscopy experiments. Additionally, users can run a local instance of Mol*VS to visualize and share custom datasets in generic or application-specific formats including volumes in .ccp4, .mrc, and .map, and segmentations in EMDB-SFF .hff, Amira .am, iMod .mod, and Segger .seg. Mol*VS is open source and freely available at https://molstarvolseg.ncbr.muni.cz/.


Subject(s)
Image Processing, Computer-Assisted , Microscopy , Software , Macromolecular Substances , Internet
4.
Protein Sci ; 31(10): e4439, 2022 10.
Article in English | MEDLINE | ID: mdl-36173162

ABSTRACT

The archiving and dissemination of protein and nucleic acid structures as well as their structural, functional and biophysical annotations is an essential task that enables the broader scientific community to conduct impactful research in multiple fields of the life sciences. The Protein Data Bank in Europe (PDBe; pdbe.org) team develops and maintains several databases and web services to address this fundamental need. From data archiving as a member of the Worldwide PDB consortium (wwPDB; wwpdb.org), to the PDBe Knowledge Base (PDBe-KB; pdbekb.org), we provide data, data-access mechanisms, and visualizations that facilitate basic and applied research and education across the life sciences. Here, we provide an overview of the structural data and annotations that we integrate and make freely available. We describe the web services and data visualization tools we offer, and provide information on how to effectively use or even further develop them. Finally, we discuss the direction of our data services, and how we aim to tackle new challenges that arise from the recent, unprecedented advances in the field of structure determination and protein structure modeling.


Subject(s)
Nucleic Acids , Proteins , Databases, Protein , Europe , Protein Conformation , Proteins/chemistry
5.
ACS Omega ; 6(36): 23023-23027, 2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34549102

ABSTRACT

Nicotinic acetylcholine receptors (nAChRs) comprise a large and ancient family of allosteric ion channels mediating synaptic transmission. The vast knowledge about nAChRs has become difficult to navigate. NAChRDB is a web-accessible resource of curated residue-level functional annotations of neuromuscular nAChRs. Interactive three-dimensional (3D) visualization and sequence alignment give further context to this rich and growing collection of experimental observations and computational predictions. NAChRDB is freely available at https://crocodile.ncbr.muni.cz/Apps/NAChRDB/, with interactive tutorials and regular updates to the content and web interface. No installation or user registration is required. NAChRDB is accessible through any modern internet browser on desktops and mobile devices. By providing immediate and systematic access to practical knowledge gained through decades of research, NAChRDB represents a powerful educational tool and helps guide discovery by revealing gaps in current knowledge and aiding the interpretation of results of molecular and structural biology experiments or computational studies.

6.
Nucleic Acids Res ; 49(W1): W431-W437, 2021 07 02.
Article in English | MEDLINE | ID: mdl-33956157

ABSTRACT

Large biomolecular structures are being determined experimentally on a daily basis using established techniques such as crystallography and electron microscopy. In addition, emerging integrative or hybrid methods (I/HM) are producing structural models of huge macromolecular machines and assemblies, sometimes containing 100s of millions of non-hydrogen atoms. The performance requirements for visualization and analysis tools delivering these data are increasing rapidly. Significant progress in developing online, web-native three-dimensional (3D) visualization tools was previously accomplished with the introduction of the LiteMol suite and NGL Viewers. Thereafter, Mol* development was jointly initiated by PDBe and RCSB PDB to combine and build on the strengths of LiteMol (developed by PDBe) and NGL (developed by RCSB PDB). The web-native Mol* Viewer enables 3D visualization and streaming of macromolecular coordinate and experimental data, together with capabilities for displaying structure quality, functional, or biological context annotations. High-performance graphics and data management allows users to simultaneously visualise up to hundreds of (superimposed) protein structures, stream molecular dynamics simulation trajectories, render cell-level models, or display huge I/HM structures. It is the primary 3D structure viewer used by PDBe and RCSB PDB. It can be easily integrated into third-party services. Mol* Viewer is open source and freely available at https://molstar.org/.


Subject(s)
Macromolecular Substances/chemistry , Models, Molecular , Software , Internet , Protein Conformation
7.
Acta Crystallogr D Struct Biol ; 77(Pt 1): 126, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33404533

ABSTRACT

Two citations in the article by Sehnal et al. [(2020), Acta Cryst. D76, 1167-1173] are corrected.

8.
Acta Crystallogr D Struct Biol ; 76(Pt 12): 1167-1173, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33263322

ABSTRACT

Biomacromolecular structural data make up a vital and crucial scientific resource that has grown not only in terms of its amount but also in its size and complexity. Furthermore, these data are accompanied by large and increasing amounts of experimental data. Additionally, the macromolecular data are enriched with value-added annotations describing their biological, physicochemical and structural properties. Today, the scientific community requires fast and fully interactive web visualization to exploit this complex structural information. This article provides a survey of the available cutting-edge web services that address this challenge. Specifically, it focuses on data-delivery problems, discusses the visualization of a single structure, including experimental data and annotations, and concludes with a focus on the results of molecular-dynamics simulations and the visualization of structural ensembles.


Subject(s)
Computer Graphics , Internet , Macromolecular Substances/chemistry , Software , User-Computer Interface
9.
PLoS Comput Biol ; 16(10): e1008247, 2020 10.
Article in English | MEDLINE | ID: mdl-33075050

ABSTRACT

3D macromolecular structural data is growing ever more complex and plentiful in the wake of substantive advances in experimental and computational structure determination methods including macromolecular crystallography, cryo-electron microscopy, and integrative methods. Efficient means of working with 3D macromolecular structural data for archiving, analyses, and visualization are central to facilitating interoperability and reusability in compliance with the FAIR Principles. We address two challenges posed by growth in data size and complexity. First, data size is reduced by bespoke compression techniques. Second, complexity is managed through improved software tooling and fully leveraging available data dictionary schemas. To this end, we introduce BinaryCIF, a serialization of Crystallographic Information File (CIF) format files that maintains full compatibility to related data schemas, such as PDBx/mmCIF, while reducing file sizes by more than a factor of two versus gzip compressed CIF files. Moreover, for the largest structures, BinaryCIF provides even better compression-factor ten and four versus CIF files and gzipped CIF files, respectively. Herein, we describe CIFTools, a set of libraries in Java and TypeScript for generic and typed handling of CIF and BinaryCIF files. Together, BinaryCIF and CIFTools enable lightweight, efficient, and extensible handling of 3D macromolecular structural data.


Subject(s)
Crystallography/methods , Data Compression/methods , Models, Molecular , Software , Databases, Chemical , Macromolecular Substances/chemistry , Macromolecular Substances/ultrastructure
10.
Methods Mol Biol ; 2112: 1-13, 2020.
Article in English | MEDLINE | ID: mdl-32006274

ABSTRACT

LiteMol suite is an innovative solution that enables near-instant delivery of model and experimental biomacromolecular structural data, providing users with an interactive and responsive experience in all modern web browsers and mobile devices. LiteMol suite is a combination of data delivery services (CoordinateServer and DensityServer), compression format (BinaryCIF), and a molecular viewer (LiteMol Viewer). The LiteMol suite is integrated into Protein Data Bank in Europe (PDBe) and other life science web applications (e.g., UniProt, Ensemble, SIB, and CNRS services), it is freely available at https://litemol.org , and its source code is available via GitHub. LiteMol suite provides advanced functionality (annotations and their visualization, powerful selection features), and this chapter will describe their use for visual inspection of protein structures.


Subject(s)
Protein Conformation , Proteins/chemistry , Databases, Protein , Europe , Internet , Software , User-Computer Interface , Web Browser
11.
Nucleic Acids Res ; 48(D1): D335-D343, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31691821

ABSTRACT

The Protein Data Bank in Europe (PDBe), a founding member of the Worldwide Protein Data Bank (wwPDB), actively participates in the deposition, curation, validation, archiving and dissemination of macromolecular structure data. PDBe supports diverse research communities in their use of macromolecular structures by enriching the PDB data and by providing advanced tools and services for effective data access, visualization and analysis. This paper details the enrichment of data at PDBe, including mapping of RNA structures to Rfam, and identification of molecules that act as cofactors. PDBe has developed an advanced search facility with ∼100 data categories and sequence searches. New features have been included in the LiteMol viewer at PDBe, with updated visualization of carbohydrates and nucleic acids. Small molecules are now mapped more extensively to external databases and their visual representation has been enhanced. These advances help users to more easily find and interpret macromolecular structure data in order to solve scientific problems.


Subject(s)
Databases, Protein , Software , Cluster Analysis , Data Accuracy , Europe , Protein Conformation , User-Computer Interface
12.
J Proteome Res ; 18(2): 770-774, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30179493

ABSTRACT

The representation of carbohydrates in 3D space using symbols is a powerful visualization method, but such representations are lacking in currently available visualization software. The work presented here allows researchers to display carbohydrate 3D structures as 3D-SNFG symbols using LiteMol from a web browser (e.g., v.litemol.org/?loadFromCS=5T3X ). Any PDB ID can be substituted at the end of the URL. Alternatively, the user may enter a PDB ID or upload a structure. LiteMol is available at https://v.litemol.org and automatically depicts any carbohydrate residues as 3D-SNFG symbols. To embed LiteMol in a webpage, visit https://github.com/dsehnal/LiteMol .


Subject(s)
Molecular Conformation , Polysaccharides/chemistry , Software , Carbohydrates/chemistry
13.
Nucleic Acids Res ; 46(W1): W368-W373, 2018 07 02.
Article in English | MEDLINE | ID: mdl-29718451

ABSTRACT

MOLEonline is an interactive, web-based application for the detection and characterization of channels (pores and tunnels) within biomacromolecular structures. The updated version of MOLEonline overcomes limitations of the previous version by incorporating the recently developed LiteMol Viewer visualization engine and providing a simple, fully interactive user experience. The application enables two modes of calculation: one is dedicated to the analysis of channels while the other was specifically designed for transmembrane pores. As the application can use both PDB and mmCIF formats, it can be leveraged to analyze a wide spectrum of biomacromolecular structures, e.g. stemming from NMR, X-ray and cryo-EM techniques. The tool is interconnected with other bioinformatics tools (e.g., PDBe, CSA, ChannelsDB, OPM, UniProt) to help both setup and the analysis of acquired results. MOLEonline provides unprecedented analytics for the detection and structural characterization of channels, as well as information about their numerous physicochemical features. Here we present the application of MOLEonline for structural analyses of α-hemolysin and transient receptor potential mucolipin 1 (TRMP1) pores. The MOLEonline application is freely available via the Internet at https://mole.upol.cz.


Subject(s)
Computational Biology , Internet , Protein Conformation , Software , Models, Molecular
14.
Nucleic Acids Res ; 46(D1): D486-D492, 2018 01 04.
Article in English | MEDLINE | ID: mdl-29126160

ABSTRACT

The Protein Data Bank in Europe (PDBe, pdbe.org) is actively engaged in the deposition, annotation, remediation, enrichment and dissemination of macromolecular structure data. This paper describes new developments and improvements at PDBe addressing three challenging areas: data enrichment, data dissemination and functional reusability. New features of the PDBe Web site are discussed, including a context dependent menu providing links to raw experimental data and improved presentation of structures solved by hybrid methods. The paper also summarizes the features of the LiteMol suite, which is a set of services enabling fast and interactive 3D visualization of structures, with associated experimental maps, annotations and quality assessment information. We introduce a library of Web components which can be easily reused to port data and functionality available at PDBe to other services. We also introduce updates to the SIFTS resource which maps PDB data to other bioinformatics resources, and the PDBe REST API.


Subject(s)
Computational Biology/methods , Databases, Protein , Proteins/chemistry , Sequence Analysis, Protein/methods , User-Computer Interface , Amino Acid Sequence , Computer Graphics , Databases as Topic , Europe , Humans , Information Dissemination , Internet , Models, Molecular , Molecular Sequence Annotation , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Proteins/genetics , Proteins/metabolism
15.
Nucleic Acids Res ; 46(D1): D399-D405, 2018 01 04.
Article in English | MEDLINE | ID: mdl-29036719

ABSTRACT

ChannelsDB (http://ncbr.muni.cz/ChannelsDB) is a database providing information about the positions, geometry and physicochemical properties of channels (pores and tunnels) found within biomacromolecular structures deposited in the Protein Data Bank. Channels were deposited from two sources; from literature using manual deposition and from a software tool automatically detecting tunnels leading to the enzymatic active sites and selected cofactors, and transmembrane pores. The database stores information about geometrical features (e.g. length and radius profile along a channel) and physicochemical properties involving polarity, hydrophobicity, hydropathy, charge and mutability. The stored data are interlinked with available UniProt annotation data mapping known mutation effects to channel-lining residues. All structures with channels are displayed in a clear interactive manner, further facilitating data manipulation and interpretation. As such, ChannelsDB provides an invaluable resource for research related to deciphering the biological function of biomacromolecular channels.


Subject(s)
Amino Acids/chemistry , Cytochrome P-450 CYP2D6/chemistry , Databases, Protein , Ion Channels/chemistry , Nuclear Pore/chemistry , Software , Amino Acids/metabolism , Animals , Catalytic Domain , Coenzymes/chemistry , Coenzymes/metabolism , Cytochrome P-450 CYP2D6/genetics , Cytochrome P-450 CYP2D6/metabolism , Eukaryotic Cells/cytology , Eukaryotic Cells/enzymology , Gene Expression , Humans , Hydrophobic and Hydrophilic Interactions , Ion Channels/genetics , Ion Channels/metabolism , Mutation , Nuclear Pore/genetics , Nuclear Pore/metabolism , Prokaryotic Cells/cytology , Prokaryotic Cells/enzymology , Static Electricity
17.
Molecules ; 21(10)2016 Oct 17.
Article in English | MEDLINE | ID: mdl-27763518

ABSTRACT

The Eighth Central European Conference "Chemistry towards Biology" was held in Brno, Czech Republic, on August 28-September 1, 2016 to bring together experts in biology, chemistry and design of bioactive compounds; promote the exchange of scientific results, methods and ideas; and encourage cooperation between researchers from all over the world. The topics of the conference covered "Chemistry towards Biology", meaning that the event welcomed chemists working on biology-related problems, biologists using chemical methods, and students and other researchers of the respective areas that fall within the common scope of chemistry and biology. The authors of this manuscript are plenary speakers and other participants of the symposium and members of their research teams. The following summary highlights the major points/topics of the meeting.


Subject(s)
Chemistry, Pharmaceutical/methods , Proteins/chemistry , Drug Delivery Systems , Drug Design , Epigenesis, Genetic , Structure-Activity Relationship , Systems Biology
18.
J Cheminform ; 7: 50, 2015.
Article in English | MEDLINE | ID: mdl-26500704

ABSTRACT

BACKGROUND: Partial atomic charges are a well-established concept, useful in understanding and modeling the chemical behavior of molecules, from simple compounds, to large biomolecular complexes with many reactive sites. RESULTS: This paper introduces AtomicChargeCalculator (ACC), a web-based application for the calculation and analysis of atomic charges which respond to changes in molecular conformation and chemical environment. ACC relies on an empirical method to rapidly compute atomic charges with accuracy comparable to quantum mechanical approaches. Due to its efficient implementation, ACC can handle any type of molecular system, regardless of size and chemical complexity, from drug-like molecules to biomacromolecular complexes with hundreds of thousands of atoms. ACC writes out atomic charges into common molecular structure files, and offers interactive facilities for statistical analysis and comparison of the results, in both tabular and graphical form. CONCLUSIONS: Due to high customizability and speed, easy streamlining and the unified platform for calculation and analysis, ACC caters to all fields of life sciences, from drug design to nanocarriers. ACC is freely available via the Internet at http://ncbr.muni.cz/ACC.

19.
Nucleic Acids Res ; 43(W1): W383-8, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-26013810

ABSTRACT

Well defined biomacromolecular patterns such as binding sites, catalytic sites, specific protein or nucleic acid sequences, etc. precisely modulate many important biological phenomena. We introduce PatternQuery, a web-based application designed for detection and fast extraction of such patterns. The application uses a unique query language with Python-like syntax to define the patterns that will be extracted from datasets provided by the user, or from the entire Protein Data Bank (PDB). Moreover, the database-wide search can be restricted using a variety of criteria, such as PDB ID, resolution, and organism of origin, to provide only relevant data. The extraction generally takes a few seconds for several hundreds of entries, up to approximately one hour for the whole PDB. The detected patterns are made available for download to enable further processing, as well as presented in a clear tabular and graphical form directly in the browser. The unique design of the language and the provided service could pave the way towards novel PDB-wide analyses, which were either difficult or unfeasible in the past. The application is available free of charge at http://ncbr.muni.cz/PatternQuery.


Subject(s)
Databases, Protein , Molecular Conformation , Software , Binding Sites , Internet , Lectins/chemistry , Macromolecular Substances/chemistry , Models, Molecular , Protein Conformation , Zinc Fingers
20.
Nucleic Acids Res ; 43(Database issue): D369-75, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25392418

ABSTRACT

Following the discovery of serious errors in the structure of biomacromolecules, structure validation has become a key topic of research, especially for ligands and non-standard residues. ValidatorDB (freely available at http://ncbr.muni.cz/ValidatorDB) offers a new step in this direction, in the form of a database of validation results for all ligands and non-standard residues from the Protein Data Bank (all molecules with seven or more heavy atoms). Model molecules from the wwPDB Chemical Component Dictionary are used as reference during validation. ValidatorDB covers the main aspects of validation of annotation, and additionally introduces several useful validation analyses. The most significant is the classification of chirality errors, allowing the user to distinguish between serious issues and minor inconsistencies. Other such analyses are able to report, for example, completely erroneous ligands, alternate conformations or complete identity with the model molecules. All results are systematically classified into categories, and statistical evaluations are performed. In addition to detailed validation reports for each molecule, ValidatorDB provides summaries of the validation results for the entire PDB, for sets of molecules sharing the same annotation (three-letter code) or the same PDB entry, and for user-defined selections of annotations or PDB entries.


Subject(s)
Databases, Protein , Proteins/chemistry , Amino Acids/chemistry , Internet , Ligands , Models, Molecular , Molecular Sequence Annotation , Protein Conformation , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...