Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
Add more filters










Publication year range
1.
Science ; 384(6700): 1091-1095, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38843321

ABSTRACT

Successive cleavages of amyloid precursor protein C-terminal fragment with 99 residues (APP-C99) by γ-secretase result in amyloid-ß (Aß) peptides of varying lengths. Most cleavages have a step size of three residues. To elucidate the underlying mechanism, we determined the atomic structures of human γ-secretase bound individually to APP-C99, Aß49, Aß46, and Aß43. In all cases, the substrate displays the same structural features: a transmembrane α-helix, a three-residue linker, and a ß-strand that forms a hybrid ß-sheet with presenilin 1 (PS1). Proteolytic cleavage occurs just ahead of the substrate ß-strand. Each cleavage is followed by unwinding and translocation of the substrate α-helix by one turn and the formation of a new ß-strand. This mechanism is consistent with existing biochemical data and may explain the cleavages of other substrates by γ-secretase.


Subject(s)
Amyloid Precursor Protein Secretases , Amyloid beta-Peptides , Amyloid beta-Protein Precursor , Presenilin-1 , Humans , Amyloid beta-Peptides/chemistry , Amyloid beta-Protein Precursor/chemistry , Amyloid Precursor Protein Secretases/chemistry , Crystallography, X-Ray , Models, Molecular , Peptide Fragments/metabolism , Peptide Fragments/chemistry , Presenilin-1/chemistry , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Proteolysis , Substrate Specificity
2.
Nucleic Acids Res ; 52(11): 6718-6727, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38742627

ABSTRACT

The nucleic acid transport properties of the systemic RNAi-defective (SID) 1 family make them attractive targets for developing RNA-based therapeutics and drugs. However, the molecular basis for double-stranded (ds) RNA recognition by SID1 family remains elusive. Here, we report the cryo-EM structures of Caenorhabditis elegans (c) SID1 alone and in complex with dsRNA, both at a resolution of 2.2 Å. The dimeric cSID1 interacts with two dsRNA molecules simultaneously. The dsRNA is located at the interface between ß-strand rich domain (BRD)1 and BRD2 and nearly parallel to the membrane plane. In addition to extensive ionic interactions between basic residues and phosphate backbone, several hydrogen bonds are formed between 2'-hydroxyl group of dsRNA and the contact residues. Additionally, the electrostatic potential surface shows three basic regions are fitted perfectly into three major grooves of dsRNA. These structural characteristics enable cSID1 to bind dsRNA in a sequence-independent manner and to distinguish between DNA and RNA. The cSID1 exhibits no conformational changes upon binding dsRNA, with the exception of a few binding surfaces. Structural mapping of dozens of loss-of-function mutations allows potential interpretation of their diverse functional mechanisms. Our study marks an important step toward mechanistic understanding of the SID1 family-mediated dsRNA uptake.


Subject(s)
Caenorhabditis elegans Proteins , RNA, Double-Stranded , Animals , Binding Sites , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Cryoelectron Microscopy , Models, Molecular , Protein Binding , RNA, Double-Stranded/chemistry , RNA, Double-Stranded/metabolism , RNA, Double-Stranded/genetics , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Static Electricity
3.
Cell Res ; 34(6): 428-439, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38658629

ABSTRACT

Spliceosome is often assembled across an exon and undergoes rearrangement to span a neighboring intron. Most states of the intron-defined spliceosome have been structurally characterized. However, the structure of a fully assembled exon-defined spliceosome remains at large. During spliceosome assembly, the pre-catalytic state (B complex) is converted from its precursor (pre-B complex). Here we report atomic structures of the exon-defined human spliceosome in four sequential states: mature pre-B, late pre-B, early B, and mature B. In the previously unknown late pre-B state, U1 snRNP is already released but the remaining proteins are still in the pre-B state; unexpectedly, the RNAs are in the B state, with U6 snRNA forming a duplex with 5'-splice site and U5 snRNA recognizing the 3'-end of the exon. In the early and mature B complexes, the B-specific factors are stepwise recruited and specifically recognize the exon 3'-region. Our study reveals key insights into the assembly of the exon-defined spliceosomes and identifies mechanistic steps of the pre-B-to-B transition.


Subject(s)
Exons , RNA, Small Nuclear , Spliceosomes , Humans , Spliceosomes/metabolism , Exons/genetics , RNA, Small Nuclear/metabolism , RNA, Small Nuclear/chemistry , RNA, Small Nuclear/genetics , RNA Splicing , Introns/genetics , Ribonucleoprotein, U1 Small Nuclear/metabolism , Ribonucleoprotein, U1 Small Nuclear/chemistry , Ribonucleoprotein, U1 Small Nuclear/genetics , RNA Splice Sites/genetics , Models, Molecular
4.
Cell Discov ; 10(1): 30, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38485705

ABSTRACT

The human organic cation transporter 1 (hOCT1), also known as SLC22A1, is integral to hepatic uptake of structurally diversified endogenous and exogenous organic cations, influencing both metabolism and drug pharmacokinetics. hOCT1 has been implicated in the therapeutic dynamics of many drugs, making interactions with hOCT1 a key consideration in novel drug development and drug-drug interactions. Notably, metformin, the frontline medication for type 2 diabetes, is a prominent hOCT1 substrate. Conversely, hOCT1 can be inhibited by agents such as spironolactone, a steroid analog inhibitor of the aldosterone receptor, necessitating a deep understanding of hOCT1-drug interactions in the development of new pharmacological treatments. Despite extensive study, specifics of hOCT1 transport and inhibition mechanisms remain elusive at the molecular level. Here, we present cryo-electron microscopy structures of the hOCT1-metformin complex in three distinct conformational states - outward open, outward occluded, and inward occluded as well as substrate-free hOCT1 in both partially and fully open states. We also present hOCT1 in complex with spironolactone in both outward and inward facing conformations. These structures provide atomic-level insights into the dynamic metformin transfer process via hOCT1 and the mechanism by which spironolactone inhibits it. Additionally, we identify a 'YER' motif critical for the conformational flexibility of hOCT1 and likely other SLC22 family transporters. Our findings significantly advance the understanding of hOCT1 molecular function and offer a foundational framework for the design of new therapeutic agents targeting this transporter.

5.
Cell ; 187(7): 1733-1744.e12, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38552612

ABSTRACT

Mastigonemes, the hair-like lateral appendages lining cilia or flagella, participate in mechanosensation and cellular motion, but their constituents and structure have remained unclear. Here, we report the cryo-EM structure of native mastigonemes isolated from Chlamydomonas at 3.0 Å resolution. The long stem assembles as a super spiral, with each helical turn comprising four pairs of anti-parallel mastigoneme-like protein 1 (Mst1). A large array of arabinoglycans, which represents a common class of glycosylation in plants and algae, is resolved surrounding the type II poly-hydroxyproline (Hyp) helix in Mst1. The EM map unveils a mastigoneme axial protein (Mstax) that is rich in heavily glycosylated Hyp and contains a PKD2-like transmembrane domain (TMD). Mstax, with nearly 8,000 residues spanning from the intracellular region to the distal end of the mastigoneme, provides the framework for Mst1 assembly. Our study provides insights into the complexity of protein and glycan interactions in native bio-architectures.


Subject(s)
Chlamydomonas , Cilia , Chlamydomonas/cytology , Cilia/chemistry , Cilia/ultrastructure , Flagella , Polysaccharides , Proteins
6.
Nature ; 620(7974): 669-675, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37468628

ABSTRACT

Context-dependent dynamic histone modifications constitute a key epigenetic mechanism in gene regulation1-4. The Rpd3 small (Rpd3S) complex recognizes histone H3 trimethylation on lysine 36 (H3K36me3) and deacetylates histones H3 and H4 at multiple sites across transcribed regions5-7. Here we solved the cryo-electron microscopy structures of Saccharomyces cerevisiae Rpd3S in its free and H3K36me3 nucleosome-bound states. We demonstrated a unique architecture of Rpd3S, in which two copies of Eaf3-Rco1 heterodimers are asymmetrically assembled with Rpd3 and Sin3 to form a catalytic core complex. Multivalent recognition of two H3K36me3 marks, nucleosomal DNA and linker DNAs by Eaf3, Sin3 and Rco1 positions the catalytic centre of Rpd3 next to the histone H4 N-terminal tail for deacetylation. In an alternative catalytic mode, combinatorial readout of unmethylated histone H3 lysine 4 and H3K36me3 by Rco1 and Eaf3 directs histone H3-specific deacetylation except for the registered histone H3 acetylated lysine 9. Collectively, our work illustrates dynamic and diverse modes of multivalent nucleosomal engagement and methylation-guided deacetylation by Rpd3S, highlighting the exquisite complexity of epigenetic regulation with delicately designed multi-subunit enzymatic machineries in transcription and beyond.


Subject(s)
Histones , Lysine , Methylation , Multiprotein Complexes , Nucleosomes , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Acetylation , Cryoelectron Microscopy , DNA, Fungal/genetics , DNA, Fungal/metabolism , Epigenesis, Genetic , Histones/chemistry , Histones/metabolism , Lysine/metabolism , Nucleosomes/chemistry , Nucleosomes/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism
7.
Nat Struct Mol Biol ; 30(7): 1012-1022, 2023 07.
Article in English | MEDLINE | ID: mdl-37400655

ABSTRACT

γ-Aminobutyric acid (GABA), an important inhibitory neurotransmitter in the central nervous system, is recycled through specific GABA transporters (GATs). GAT1, which is mainly expressed in the presynaptic terminals of axons, is a potential drug target of neurological disorders due to its essential role in GABA transport. Here we report four cryogenic electron microscopy structures of human GAT1, at resolutions of 2.2-3.2 Å. GAT1 in substrate-free form or in complex with the antiepileptic drug tiagabine exhibits an inward-open conformation. In the presence of GABA or nipecotic acid, inward-occluded structures are captured. The GABA-bound structure reveals an interaction network bridged by hydrogen bonds and ion coordination for GABA recognition. The substrate-free structure unwinds the last helical turn of transmembrane helix TM1a to release sodium ions and substrate. Complemented by structure-guided biochemical analyses, our studies reveal detailed mechanism of GABA recognition and transport, and elucidate mode of action of the inhibitors, nipecotic acid and tiagabine.


Subject(s)
gamma-Aminobutyric Acid , Humans , Tiagabine , GABA Plasma Membrane Transport Proteins/metabolism , Molecular Conformation
8.
Nat Commun ; 14(1): 3568, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37322007

ABSTRACT

The systemic RNAi-defective (SID) transmembrane family member 2 (SIDT2) is a putative nucleic acid channel or transporter that plays essential roles in nucleic acid transport and lipid metabolism. Here, we report the cryo-electron microscopy (EM) structures of human SIDT2, which forms a tightly packed dimer with extensive interactions mediated by two previously uncharacterized extracellular/luminal ß-strand-rich domains and the unique transmembrane domain (TMD). The TMD of each SIDT2 protomer contains eleven transmembrane helices (TMs), and no discernible nucleic acid conduction pathway has been identified within the TMD, suggesting that it may act as a transporter. Intriguingly, TM3-6 and TM9-11 form a large cavity with a putative catalytic zinc atom coordinated by three conserved histidine residues and one aspartate residue lying approximately 6 Å from the extracellular/luminal surface of the membrane. Notably, SIDT2 can hydrolyze C18 ceramide into sphingosine and fatty acid with a slow rate. The information presented advances the understanding of the structure-function relationships in the SID1 family proteins.


Subject(s)
Nucleic Acids , Nucleotide Transport Proteins , Humans , Membrane Proteins/metabolism , Cryoelectron Microscopy , Membrane Transport Proteins , Lipids , Nucleotide Transport Proteins/metabolism
9.
Nat Commun ; 14(1): 3655, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37339967

ABSTRACT

The α1A-adrenergic receptor (α1AAR) belongs to the family of G protein-coupled receptors that respond to adrenaline and noradrenaline. α1AAR is involved in smooth muscle contraction and cognitive function. Here, we present three cryo-electron microscopy structures of human α1AAR bound to the endogenous agonist noradrenaline, its selective agonist oxymetazoline, and the antagonist tamsulosin, with resolutions range from 2.9 Å to 3.5 Å. Our active and inactive α1AAR structures reveal the activation mechanism and distinct ligand binding modes for noradrenaline compared with other adrenergic receptor subtypes. In addition, we identified a nanobody that preferentially binds to the extracellular vestibule of α1AAR when bound to the selective agonist oxymetazoline. These results should facilitate the design of more selective therapeutic drugs targeting both orthosteric and allosteric sites in this receptor family.


Subject(s)
Oxymetazoline , Receptors, Adrenergic, alpha-1 , Humans , Cryoelectron Microscopy , Receptors, Adrenergic, alpha-1/metabolism , Norepinephrine , Tamsulosin
10.
Nat Commun ; 13(1): 6299, 2022 10 22.
Article in English | MEDLINE | ID: mdl-36272978

ABSTRACT

Inhibition of γ-secretase activity represents a potential therapeutic strategy for Alzheimer's disease (AD). MRK-560 is a selective inhibitor with higher potency for Presenilin 1 (PS1) than for PS2, the two isoforms of the catalytic subunit of γ-secretase, although the underlying mechanism remains elusive. Here we report the cryo-electron microscopy (cryo-EM) structures of PS1 and PS2-containing γ-secretase complexes with and without MRK-560 at overall resolutions of 2.9-3.4 Å. MRK-560 occupies the substrate binding site of PS1, but is invisible in PS2. Structural comparison identifies Thr281 and Leu282 in PS1 to be the determinant for isoform-dependent sensitivity to MRK-560, which is confirmed by swapping experiment between PS1 and PS2. By revealing the mechanism for isoform-selective inhibition of presenilin, our work may facilitate future drug discovery targeting γ-secretase.


Subject(s)
Amyloid Precursor Protein Secretases , Presenilin-1/genetics , Presenilin-1/metabolism , Amyloid Precursor Protein Secretases/metabolism , Presenilin-2 , Cryoelectron Microscopy , Protein Isoforms
11.
IUBMB Life ; 74(12): 1180-1199, 2022 12.
Article in English | MEDLINE | ID: mdl-36082803

ABSTRACT

Cancer cells shift their glucose catabolism from aerobic respiration to lactic fermentation even in the presence of oxygen, and this is known as the "Warburg effect". To accommodate the high glucose demands and to avoid lactate accumulation, the expression levels of human glucose transporters (GLUTs) and human monocarboxylate transporters (MCTs) are elevated to maintain metabolic homeostasis. Therefore, inhibition of GLUTs and/or MCTs provides potential therapeutic strategies for cancer treatment. Here, we summarize recent advances in the structural characterization of GLUTs and MCTs, providing a comprehensive understanding of their transport and inhibition mechanisms to facilitate further development of anticancer therapies.


Subject(s)
Glucose , Monocarboxylic Acid Transporters , Humans , Monocarboxylic Acid Transporters/genetics , Monocarboxylic Acid Transporters/chemistry , Monocarboxylic Acid Transporters/metabolism , Lactic Acid/metabolism , Fermentation
12.
Science ; 376(6598): eabl8280, 2022 06 10.
Article in English | MEDLINE | ID: mdl-35679404

ABSTRACT

INTRODUCTION The nuclear pore complex (NPC) resides on the nuclear envelope (NE) and mediates nucleocytoplasmic cargo transport. As one of the largest cellular machineries, a vertebrate NPC consists of cytoplasmic filaments, a cytoplasmic ring (CR), an inner ring, a nuclear ring, a nuclear basket, and a luminal ring. Each NPC has eight repeating subunits. Structure determination of NPC is a prerequisite for understanding its functional mechanism. In the past two decades, integrative modeling, which combines x-ray structures of individual nucleoporins and subcomplexes with cryo-electron tomography reconstructions, has played a crucial role in advancing our knowledge about the NPC. The CR has been a major focus of structural investigation. The CR subunit of human NPC was reconstructed by cryo-electron tomography through subtomogram averaging to an overall resolution of ~20 Å, with local resolution up to ~15 Å. Each CR subunit comprises two Y-shaped multicomponent complexes known as the inner and outer Y complexes. Eight inner and eight outer Y complexes assemble in a head-to-tail fashion to form the proximal and distal rings, respectively, constituting the CR scaffold. To achieve higher resolution of the CR, we used single-particle cryo-electron microscopy (cryo-EM) to image the intact NPC from the NE of Xenopus laevis oocytes. Reconstructions of the core region and the Nup358 region of the X. laevis CR subunit had been achieved at average resolutions of 5 to 8 Å, allowing identification of secondary structural elements. RATIONALE Packing interactions among the components of the CR subunit were poorly defined by all previous EM maps. Additional components of the CR subunit are strongly suggested by the EM maps of 5- to 8-Å resolution but remain to be identified. Addressing these issues requires improved resolution of the cryo-EM reconstruction. Therefore, we may need to enhance sample preparation, optimize image acquisition, and develop an effective data-processing strategy. RESULTS To reduce conformational heterogeneity of the sample, we spread the opened NE onto the grids with minimal force and used the chemical cross-linker glutaraldehyde to stabilize the NPC. To alleviate orientation bias of the NPC, we tilted sample grids and imaged the sample with higher electron dose at higher angles. We improved the image-processing protocol. With these efforts, the average resolutions for the core and the Nup358 regions have been improved to 3.7 and 4.7 Å, respectively. The highest local resolution of the core region reaches 3.3 Å. In addition, a cryo-EM structure of the N-terminal α-helical domain of Nup358 has been resolved at 3.0-Å resolution. These EM maps allow the identification of five copies of Nup358, two copies of Nup93, two copies of Nup205, and two copies of Y complexes in each CR subunit. Relying on the EM maps and facilitated by AlphaFold prediction, we have generated a final model for the CR of the X. laevis NPC. Our model of the CR subunit includes 19,037 amino acids in 30 nucleoporins. A previously unknown C-terminal fragment of Nup160 was found to constitute a key part of the vertex, in which the short arm, long arm, and stem of the Y complex meet. The Nup160 C-terminal fragment directly binds the ß-propeller proteins Seh1 and Sec13. Two Nup205 molecules, which do not contact each other, bind the inner and outer Y complexes through distinct interfaces. Conformational elasticity of the two Nup205 molecules may underlie their versatility in binding to different nucleoporins in the proximal and distal CR rings. Two Nup93 molecules, each comprising an N-terminal extended helix and an ACE1 domain, bridge the Y complexes and Nup205. Nup93 and Nup205 together play a critical role in mediating the contacts between neighboring CR subunits. Five Nup358 molecules, each in the shape of a shrimp tail and named "the clamp," hold the stems of both Y complexes. The innate conformational elasticity allows each Nup358 clamp to adapt to a distinct local environment for optimal interactions with neighboring nucleoporins. In each CR subunit, the α-helical nucleoporins appear to provide the conformational elasticity; the 12 ß-propellers may strengthen the scaffold. CONCLUSION Our EM map-based model of the X. laevis CR subunit substantially expands the molecular mass over the reported composite models of vertebrate CR subunit. In addition to the Y complexes, five Nup358, two Nup205, and two Nup93 molecules constitute the key components of the CR. The improved EM maps reveal insights into the interfaces among the nucleoporins of the CR. [Figure: see text].


Subject(s)
Nuclear Pore Complex Proteins , Nuclear Pore , Xenopus Proteins , Xenopus laevis , Animals , Cryoelectron Microscopy , Cytoplasm/metabolism , Nuclear Pore/chemistry , Nuclear Pore Complex Proteins/chemistry , Protein Conformation , Xenopus Proteins/chemistry , Xenopus laevis/metabolism
13.
Mol Cell ; 82(15): 2769-2778.e4, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35705093

ABSTRACT

Pre-mRNA splicing involves two sequential reactions: branching and exon ligation. The C complex after branching undergoes remodeling to become the C∗ complex, which executes exon ligation. Here, we report cryo-EM structures of two intermediate human spliceosomal complexes, pre-C∗-I and pre-C∗-II, both at 3.6 Å. In both structures, the 3' splice site is already docked into the active site, the ensuing 3' exon sequences are anchored on PRP8, and the step II factor FAM192A contacts the duplex between U2 snRNA and the branch site. In the transition of pre-C∗-I to pre-C∗-II, the step II factors Cactin, FAM32A, PRKRIP1, and SLU7 are recruited. Notably, the RNA helicase PRP22 is positioned quite differently in the pre-C∗-I, pre-C∗-II, and C∗ complexes, suggesting a role in 3' exon binding and proofreading. Together with information on human C and C∗ complexes, our studies recapitulate a molecular choreography of the C-to-C∗ transition, revealing mechanistic insights into exon ligation.


Subject(s)
Saccharomyces cerevisiae Proteins , Spliceosomes , Exons/genetics , Humans , RNA Precursors/metabolism , RNA Splice Sites , RNA Splicing , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism , RNA, Small Nuclear/genetics , Saccharomyces cerevisiae Proteins/metabolism , Spliceosomes/metabolism
14.
Nat Commun ; 13(1): 2671, 2022 05 13.
Article in English | MEDLINE | ID: mdl-35562357

ABSTRACT

GLUT4 is the primary glucose transporter in adipose and skeletal muscle tissues. Its cellular trafficking is regulated by insulin signaling. Failed or reduced plasma membrane localization of GLUT4 is associated with diabetes. Here, we report the cryo-EM structures of human GLUT4 bound to a small molecule inhibitor cytochalasin B (CCB) at resolutions of 3.3 Å in both detergent micelles and lipid nanodiscs. CCB-bound GLUT4 exhibits an inward-open conformation. Despite the nearly identical conformation of the transmembrane domain to GLUT1, the cryo-EM structure reveals an extracellular glycosylation site and an intracellular helix that is invisible in the crystal structure of GLUT1. The structural study presented here lays the foundation for further mechanistic investigation of the modulation of GLUT4 trafficking. Our methods for cryo-EM analysis of GLUT4 will also facilitate structural determination of many other small size solute carriers.


Subject(s)
Glucose Transport Proteins, Facilitative , Insulin , Cryoelectron Microscopy , Cytochalasin B , Glucose/metabolism , Glucose Transporter Type 1 , Glucose Transporter Type 4 , Humans , Insulin/metabolism
15.
Cell Res ; 32(5): 451-460, 2022 05.
Article in English | MEDLINE | ID: mdl-35301439

ABSTRACT

Nuclear pore complex (NPC) mediates nucleocytoplasmic shuttling. Here we present single-particle cryo-electron microscopy structure of the inner ring (IR) subunit from the Xenopus laevis NPC at an average resolution of 4.2 Å. A homo-dimer of Nup205 resides at the center of the IR subunit, flanked by two molecules of Nup188. Four molecules of Nup93 each places an extended helix into the axial groove of Nup205 or Nup188, together constituting the central scaffold. The channel nucleoporin hetero-trimer of Nup62/58/54 is anchored on the central scaffold. Six Nup155 molecules interact with the central scaffold and together with the NDC1-ALADIN hetero-dimers anchor the IR subunit to the nuclear envelope and to outer rings. The scarce inter-subunit contacts may allow sufficient latitude in conformation and diameter of the IR. Our structure reveals the molecular basis for the IR subunit assembly of a vertebrate NPC.


Subject(s)
Nuclear Pore , Xenopus Proteins , Active Transport, Cell Nucleus , Animals , Cryoelectron Microscopy , Nuclear Envelope/metabolism , Nuclear Pore/metabolism , Nuclear Pore Complex Proteins/chemistry , Xenopus Proteins/chemistry , Xenopus Proteins/metabolism , Xenopus laevis/metabolism
16.
Cell Res ; 32(4): 349-358, 2022 04.
Article in English | MEDLINE | ID: mdl-35177819

ABSTRACT

Nuclear pore complex (NPC) shuttles cargo across the nuclear envelope. Here we present single-particle cryo-EM structure of the nuclear ring (NR) subunit from Xenopus laevis NPC at an average resolution of 5.6 Å. The NR subunit comprises two 10-membered Y complexes, each with the nucleoporin ELYS closely associating with Nup160 and Nup37 of the long arm. Unlike the cytoplasmic ring (CR) or inner ring (IR), the NR subunit contains only one molecule each of Nup205 and Nup93. Nup205 binds both arms of the Y complexes and interacts with the stem of inner Y complex from the neighboring subunit. Nup93 connects the stems of inner and outer Y complexes within the same NR subunit, and places its N-terminal extended helix into the axial groove of Nup205 from the neighboring subunit. Together with other structural information, we have generated a composite atomic model of the central ring scaffold that includes the NR, IR, and CR. The IR is connected to the two outer rings mainly through Nup155. This model facilitates functional understanding of vertebrate NPC.


Subject(s)
Nuclear Pore Complex Proteins , Nuclear Pore , Animals , Cryoelectron Microscopy , Cytoplasm/metabolism , Nuclear Envelope/metabolism , Nuclear Pore/metabolism , Nuclear Pore Complex Proteins/chemistry , Xenopus Proteins/metabolism , Xenopus laevis/metabolism
17.
PLoS Biol ; 19(9): e3001386, 2021 09.
Article in English | MEDLINE | ID: mdl-34499638

ABSTRACT

Plasmodium falciparum, the deadliest causal agent of malaria, caused more than half of the 229 million malaria cases worldwide in 2019. The emergence and spreading of frontline drug-resistant Plasmodium strains are challenging to overcome in the battle against malaria and raise urgent demands for novel antimalarial agents. The P. falciparum formate-nitrite transporter (PfFNT) is a potential drug target due to its housekeeping role in lactate efflux during the intraerythrocytic stage. Targeting PfFNT, MMV007839 was identified as a lead compound that kills parasites at submicromolar concentrations. Here, we present 2 cryogenic-electron microscopy (cryo-EM) structures of PfFNT, one with the protein in its apo form and one with it in complex with MMV007839, both at 2.3 Å resolution. Benefiting from the high-resolution structures, our study provides the molecular basis for both the lactate transport of PfFNT and the inhibition mechanism of MMV007839, which facilitates further antimalarial drug design.


Subject(s)
Antimalarials/chemistry , Antimalarials/pharmacology , Monocarboxylic Acid Transporters/antagonists & inhibitors , Cryoelectron Microscopy , Formates , Lactic Acid/metabolism , Malaria, Falciparum , Monocarboxylic Acid Transporters/chemistry , Nitrites , Plasmodium falciparum/drug effects , Protozoan Proteins/antagonists & inhibitors , Protozoan Proteins/chemistry , Structure-Activity Relationship
18.
Science ; 373(6561): 1377-1381, 2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34446444

ABSTRACT

ß barrel outer membrane proteins (ß-OMPs) play vital roles in mitochondria, chloroplasts, and Gram-negative bacteria. Evolutionarily conserved complexes such as the mitochondrial sorting and assembly machinery (SAM) mediate the assembly of ß-OMPs. We investigated the SAM-mediated assembly of the translocase of the outer membrane (TOM) core complex. Cryo­electron microscopy structures of SAM­fully folded Tom40 and the SAM-Tom40/Tom5/Tom6 complexes at ~3-angstrom resolution reveal that Sam37 stabilizes the mature Tom40 mainly through electrostatic interactions, thus facilitating subsequent TOM assembly. These results support the ß barrel switching model and provide structural insights into the assembly and release of ß barrel complexes.


Subject(s)
Carrier Proteins/chemistry , Carrier Proteins/metabolism , Mitochondrial Membrane Transport Proteins/chemistry , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Membranes/metabolism , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Cell Line , Cryoelectron Microscopy , Humans , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Mitochondrial Precursor Protein Import Complex Proteins , Models, Molecular , Protein Conformation , Protein Folding , Protein Structure, Secondary , Protein Subunits/chemistry , Protein Subunits/metabolism , Protein Transport , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Static Electricity
19.
Cell Rep ; 35(13): 109299, 2021 06 29.
Article in English | MEDLINE | ID: mdl-34192549

ABSTRACT

The sterol regulatory element-binding protein (SREBP) pathway monitors the cellular cholesterol level through sterol-regulated association between the SREBP cleavage-activating protein (Scap) and the insulin-induced gene (Insig). Despite structural determination of the Scap and Insig-2 complex bound to 25-hydroxycholesterol, the luminal domains of Scap remain unresolved. In this study, combining cryogenic electron microscopy (cryo-EM) analysis and artificial intelligence-facilitated structural prediction, we report the structure of the human Scap/Insig-2 complex purified in digitonin. The luminal domain loop 1 and a co-folded segment in loop 7 of Scap resemble those of the luminal/extracellular domain in NPC1 and related proteins, providing clues to the cholesterol-regulated interaction of loop 1 and loop 7. An additional luminal interface is observed between Scap and Insig. We also show that Scap(D428A), which inhibits SREBP activation even under sterol depletion, exhibits an identical conformation with the wild-type protein when complexed with Insig-2, and its constitutive suppression of the SREBP pathway may also involve a later step in protein trafficking.


Subject(s)
Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Sterols/chemistry , Sterols/metabolism , Digitonin/chemistry , HEK293 Cells , Humans , Micelles , Models, Molecular , Protein Conformation , Protein Folding , Structural Homology, Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...