Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.916
Filter
1.
Nat Commun ; 15(1): 5542, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956040

ABSTRACT

Efficiently fabricating a cavity that can achieve strong interactions between terahertz waves and matter would allow researchers to exploit the intrinsic properties due to the long wavelength in the terahertz waveband. Here we show a terahertz detector embedded in a Tamm cavity with a record Q value of 1017 and a bandwidth of only 469 MHz for direct detection. The Tamm-cavity detector is formed by embedding a substrate with an Nb5N6 microbolometer detector between an Si/air distributed Bragg reflector (DBR) and a metal reflector. The resonant frequency can be controlled by adjusting the thickness of the substrate layer. The detector and DBR are fabricated separately, and a large pixel-array detector can be realized by a very simple assembly process. This versatile cavity structure can be used as a platform for preparing high-performance terahertz devices and opening up the study of the strong interactions between terahertz waves and matter.

2.
Abdom Radiol (NY) ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954001

ABSTRACT

BACKGROUND: To assess the feasibility and diagnostic performance of the fractional order calculus (FROC), continuous-time random-walk (CTRW), diffusion kurtosis imaging (DKI), intravoxel incoherent motion (IVIM), mono-exponential (MEM) and stretched exponential models (SEM) for predicting response to neoadjuvant chemotherapy (NACT) in patients with esophageal squamous cell carcinoma (ESCC). MATERIALS AND METHODS: This study prospectively included consecutive ESCC patients with baseline and follow up MR imaging and pathologically confirmed cT1-4aN + M0 or T3-4aN0M0 and underwent radical resection after neoadjuvant chemotherapy (NACT) between July 2019 and January 2023. Patients were divided into pCR (TRG 0) and non-pCR (TRG1 + 2 + 3) groups according to tumor regression grading (TRG). The Pre-, Post- and Delta-treatment models were built. 18 predictive models were generated according to different feature categories, based on six models by five-fold cross-validation. Areas under the curve (AUCs) of the models were compared by using DeLong method. RESULTS: Overall, 90 patients (71 men, 19 women; mean age, 64 years ± 6 [SD]) received NACT and underwent baseline and Post-NACT esophageal MRI, with 29 patients in the pCR group and 61 patients in the non-pCR group. Among 18 predictive models, The Pre-, Post-, and Delta-CTRW model showed good predictive efficacy (AUC = 0.722, 0.833 and 0.790). Additionally, the Post-FROC model (AUC = 0.907) also exhibited good diagnostic performance. CONCLUSIONS: Our study indicates that the CTRW model, along with the Post-FROC model, holds significant promise for the future of NACT efficacy prediction in ESCC patients.

3.
Food Sci Nutr ; 12(6): 4399-4407, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38873439

ABSTRACT

Diguo (Ficus tikoua Bur.), an ancient wild fruit, is widely spread in southwest China. However, there is little information on the phenotypic traits, quality characteristics, and aroma compounds available to diguo fruit. The present study is an investigation into the effects of geographical origin on the phenotypic traits and quality characteristics of wild diguo fruit collected from southwest China. The volatile compounds in the mixed fruit samples were also investigated using gas chromatography-mass spectrometry. Our results indicated that significant variation existed among the sampling materials in all the phenotypic parameters. Fruit fresh weight ranged between 2.06 and 4.59 g. Moreover, significant variation existed among the selected materials in all macronutrients (dry matter, total soluble solids, crude protein, crude fat, and ash) and some nutritional parameters (glutamate, arginine, total soluble solids, maltose, and mannose, etc.). Regardless of their geographical origin, diguo fruit is relatively low in fat and fructose and high in fiber and glutamate. A total of 95 volatile constituents were identified in the frozen diguo fruit. In conclusion, diguo fruit with rich nutritional attributes has a promising future for commercial-scale production. The variability of the observed morphological and nutritional features of diguo fruit provides important characteristics for improving the breeding of diguo as a modern fruit crop.

4.
Adv Healthc Mater ; : e2401708, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38875524

ABSTRACT

Despite laparoscopic-guided minimally invasive hepatectomy emerging as the primary approach for resecting hepatocellular carcinoma (HCC), there's still a significant gap in suitable biomaterials that seamlessly integrate with these techniques to achieve effective hemostasis and suppress residual tumors at the surgical margin. Electrospun films are increasingly used for wound closure, yet the employment of prefabricated electrospun films for hemostasis during minimally invasive HCC resection is hindered by prolonged operation times, complexity in implementation, limited visibility during surgery, and inadequate postoperative prevention of HCC recurrence. In this study, we integrated montmorillonite-iron oxide sheets into the PVP polymer framework, enhancing the resulting electrospun polyvinylpyrrolidone (PVP) /montmorillonite-iron oxide (MI) film (abbreviated as PMI) with robustness, hemostatic capability, and magnetocaloric properties. In contrast to the in vitro prefabricated electrospun films, the electrospun PMI film is designed to be formed in situ on liver wounds under laparoscopic guidance during hepatectomy. This design affords superior wound adaptability, facilitating meticulous wound closure and expeditious hemostasis, thereby simplifying the operative process and ultimately alleviating the workload of healthcare professionals. Moreover, when exposed to an alternating magnetic field, the film can efficiently ablate residual tumors, significantly augmenting the treatment efficacy of HCC. This article is protected by copyright. All rights reserved.

5.
Syst Biol Reprod Med ; 70(1): 131-138, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38833557

ABSTRACT

Gonadotropin-releasing hormone (GnRH) vaccines have been successfully used for the inhibition of gonadal development and function, but current GnRH-based vaccines often present variability in the response. Cross-reactive material 197 (CRM197) has been used as carrier molecules to enhance an immune response to associated antigens. So, the synthetic mammalian tandem-repeated GnRH hexamer (GnRH6) gene was integrated into the expression plasmid pET-21a. Recombinant GnRH6-CRM197 protein was subsequently overexpressed in Escherichia coli strain BL21 and purified through Nickel column affinity chromatography and the antigenicity and biological effects of GnRH6-CRM197 were evaluated in rats. Sixteen 4-month-old adult male rats were randomly divided into two groups: the GnRH6-CRM197 group (n = 8) and the control group (n = 8). The GnRH6-CRM197 group rats were subcutaneously immunized with 100 µg of GnRH6-CRM197, administered thrice at 2-week intervals with GnRH6-CRM197.The control group received only a white oil adjuvant. Following the initial immunization, the weights of animals were recorded, and blood samples were collected from the orbital sinus at 4, 4.5, 5, 5.5, 6, 6.5, and 7 months. Serum antibody titers and testosterone concentrations were quantified using ELISA and CLIA, respectively. Additionally, testicular tissues were collected for morphological examination. The results revealed a significant increase in serum GnRH antibody titers (p < 0.05), but a significant decrease in serum testosterone concentrations (p < 0.05), and the weight, length, width, and girth of the testis, and the number of spermatogonia cells, spermatocytes, and sperm cells in the immunized rats. Furthermore, seminiferous tubules revealed significant atrophy and no sperm were observed in the immunized animals. Thus, GnRH6-CRM197 may be an effective antigen and a potential immunocastration vaccine.


Subject(s)
Gonadotropin-Releasing Hormone , Animals , Male , Gonadotropin-Releasing Hormone/immunology , Rats , Testis/drug effects , Testosterone/blood , Rats, Sprague-Dawley , Immunization
6.
Insights Imaging ; 15(1): 137, 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38853212

ABSTRACT

OBJECTIVES: To investigate the diagnostic performance of the apparent diffusion coefficient (ADC) for low to intermediate-risk prostate cancer (PCa), as well as its correlation with the prognostic Gleason score (GS). MATERIALS AND METHODS: Retrospective analysis of MRI images and relevant clinical data from patients with prostate disease. The differences in ADC between different GS groups were compared, and the efficacy of ADC in PCa diagnosis were analyzed. Furthermore, the diagnostic performance of the mean ADC (ADCmean) and minimum ADC (ADCmin) values was compared. RESULTS: There were 1414 patients with 1631 lesions. In terms of GS, both ADCmin and ADCmean values of the GS 4 + 3 group were significantly lower than those of the GS 3 + 4 group, GS 3 + 3 group, and the benign group, with all differences being statistically significant (p < 0.01). The AUC values for diagnosing PCa based on ADCmin and ADCmean were 0.914 and 0.944, respectively. The corresponding diagnostic thresholds were 0.703 × 10-3 mm2/s for ADCmin and 0.927 × 10-3 mm2/s for ADCmean. The magnitudes of ADCmin and ADCmean values exhibited a negative correlation with GS values (ρ = -0.750, p < 0.001; ρ = -0.752, p < 0.001). CONCLUSIONS: ADC values demonstrate an inverse relationship with the invasiveness of PCa, indicating that higher invasiveness is associated with lower ADC values. Additionally, ADC values exhibit high diagnostic potential, sensitivity, and specificity for distinguishing between GS 3 + 4 and GS 4 + 3 lesions. Moreover, the diagnostic value of ADCmean is even more significant, highlighting its crucial role in the diagnosis of low to intermediate-risk PCa. CRITICAL RELEVANCE STATEMENT: ADC values are a valuable tool for distinguishing different levels of aggressiveness in PCa. They help in the preoperative assessment of the biological characteristics of PCa, allowing clinicians to develop personalized treatment strategies, effectively mitigating the risk of unnecessary interventions. KEY POINTS: The preoperative GS is crucial for planning the clinical treatment of PCa. The invasiveness of PCa is inversely correlated with ADC values. ADC values play a crucial role in the accurate preoperative evaluation of low to intermediate-risk PCa, thus aiding clinicians in developing tailored treatment plans.

7.
Radiol Imaging Cancer ; 6(4): e230165, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38874529

ABSTRACT

Purpose To determine whether metrics from mean apparent propagator (MAP) MRI perform better than apparent diffusion coefficient (ADC) value in assessing the tumor-stroma ratio (TSR) status in breast carcinoma. Materials and Methods From August 2021 to October 2022, 271 participants were prospectively enrolled (ClinicalTrials.gov identifier: NCT05159323) and underwent breast diffusion spectral imaging and diffusion-weighted imaging. MAP MRI metrics and ADC were derived from the diffusion MRI data. All participants were divided into high-TSR (stromal component < 50%) and low-TSR (stromal component ≥ 50%) groups based on pathologic examination. Clinicopathologic characteristics were collected, and MRI findings were assessed. Logistic regression was used to determine the independent variables for distinguishing TSR status. The area under the receiver operating characteristic curve (AUC) and sensitivity, specificity, and accuracy were compared between the MAP MRI metrics, either alone or combined with clinicopathologic characteristics, and ADC, using the DeLong and McNemar test. Results A total of 181 female participants (mean age, 49 years ± 10 [SD]) were included. All diffusion MRI metrics differed between the high-TSR and low-TSR groups (P < .001 to P = .01). Radial non-Gaussianity from MAP MRI and lymphovascular invasion were significant independent variables for discriminating the two groups, with a higher AUC (0.81 [95% CI: 0.74, 0.87] vs 0.61 [95% CI: 0.53, 0.68], P < .001) and accuracy (138 of 181 [76%] vs 106 of 181 [59%], P < .001) than that of the ADC. Conclusion MAP MRI may serve as a better approach than conventional diffusion-weighted imaging in evaluating the TSR of breast carcinoma. Keywords: MR Diffusion-weighted Imaging, MR Imaging, Breast, Oncology ClinicalTrials.gov Identifier: NCT05159323 Supplemental material is available for this article. © RSNA, 2024.


Subject(s)
Breast Neoplasms , Carcinoma, Ductal, Breast , Diffusion Magnetic Resonance Imaging , Humans , Female , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Middle Aged , Prospective Studies , Carcinoma, Ductal, Breast/diagnostic imaging , Carcinoma, Ductal, Breast/pathology , Diffusion Magnetic Resonance Imaging/methods , Sensitivity and Specificity , Adult , Breast/diagnostic imaging , Breast/pathology , Aged , Magnetic Resonance Imaging/methods
8.
Article in English | MEDLINE | ID: mdl-38878160

ABSTRACT

Although it is crucial to promptly restore blood perfusion to revive the ischemic myocardium, reperfusion itself can paradoxically contribute to the electrical instability and arrhythmias of the myocardium. Several studies have revealed that cardiac fibroblasts can impact cardiac electrophysiology through various mechanisms including the deposition of extracellular matrix, release of chemical mediators, and direct electrical coupling with myocytes. Previously, we have shown that hypoxia/reoxygenation (H/R)-treated rat fibroblasts conditional medium (H/R-FCM) could decrease the spontaneous beating frequency of rat neonatal cardiomyocytes and downregulate the expression of gap junction proteins. However, the specific mechanism by which H/R-FCM affects the gap junctions requires further investigation. H/R-FCM was obtained by culturing confluent rat cardiac fibroblasts (RCF) for 4 h under hypoxic conditions. Gap junction function, hemichannel activity, and expression of Cx43 were examined upon treatment with H/R-FCM. Gelatin zymography was performed to detect matrix metalloproteinase (MMP) activity in the conditioned medium. The effect of H/R-FCM and MMP2 inhibitors on cardiac electrophysiology and arrhythmias was investigated with an isolated rat ischemia/reperfusion (I/R) model. H/R-FCM treatment impaired gap junction function, downregulated Cx43 expression, and increased hemichannel activity in rat cardiomyocytes (H9c2). The adverse effect of H/R-FCM on gap junction, which was confirmed by the cardiomyocyte H/R model, was involved in the activation of MMP2. MMP2 inhibition could partially attenuate the detrimental effects of I/R on myocardial electrophysiological indices and arrhythmia susceptibility. Our study indicates that inhibition of MMP2 may be a promising therapeutic target for the treatment of reperfusion arrhythmia.

9.
Physiol Genomics ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38881426

ABSTRACT

To investigate inter-individual differences in muscle thickness of Rectus Femoris (MTRF) following 12 weeks of Resistance Training (RT) or High-Intensity Interval Training (HIIT) to explore the genetic architecture underlying skeletal muscle hypertrophy and to construct predictive models. We conducted musculoskeletal ultrasound assessments of the MTRF response in 440 physically inactive adults after the 12-week exercise period. A Genome-wide Association study (GWAS) was employed to identify variants associated with MTRF response, separately for RT and HIIT. Utilizing polygenic predictor score (PPS), we estimated the genetic contribution to exercise-induced hypertrophy. Predictive models for MTRF response were constructed using Random Forest (RF), Support Vector Mac (SVM), and Generalized Linear Model (GLM) in 10 cross-validated approach. MTRF increased significantly after both RT (8.8%, P<0.05) and HIIT (5.3%, P<0.05), but with considerable inter-individual differences (RT: -13.5~38.4%, HIIT: -14.2%~30.7%). Eleven lead SNPs in RT and eight lead SNPs in HIIT were identified at a significance level of P<1×10-5. The PPS was associated with MTRF response, explaining 47.2% of the variation in response to RT and 38.3% of the variation in response to HIIT. Notably, the GLM and SVM predictive models exhibited superior performance in comparison to RF models (p<0.05), and the GLM demonstrated optimal performance with an AUC of 0.809 (95%CI:0.669-0.949). Factors such as PPS, baseline MTRF, and exercise protocol exerted influence on the MTRF response to exercise, with PPS being the primary contributor. The GLM and SVM predictive model, incorporating both genetic and phenotypic factors, emerged as promising tools for predicting exercise-induced skeletal muscle hypertrophy.

11.
Food Chem X ; 23: 101530, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-38933991

ABSTRACT

Osteoporosis is a systemic bone disease characterized by reduced bone mass and deterioration of the microstructure of bone tissue, leading to an increased risk of fragility fractures and affecting human health worldwide. Food-derived peptides are widely used in functional foods due to their low toxicity, ease of digestion and absorption, and potential to improve osteoporosis. This review summarized and discussed methods of diagnosing osteoporosis, treatment approaches, specific peptides as alternatives to conventional drugs, and the laboratory preparation and identification methods of peptides. It was found that peptides interacting with RGD (arginine-glycine-aspartic acid)-binding active sites in integrin could alleviate osteoporosis, analyzed the interaction sites between these osteogenic peptides and integrin, and further discussed their effects on improving osteoporosis. These may provide new insights for rapid screening of osteogenic peptides, and provide a theoretical basis for their application in bone materials and functional foods.

12.
Foods ; 13(12)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38928887

ABSTRACT

In this study, ultrafiltration fractions (<3 k Da, LMH; >3 k Da, HMH) and solid-phase extraction fractions (hydrophilic hydrolysate, HIH; hydrophobic hydrolysate, HOH) from trypsin hydrolysate purified from croceine croaker (Pseudosciaena crocea) isolate were obtained to investigate the cryoprotective effects of the different fractions, achieved by means of maceration of turbot fish meat after three freeze-thaw cycles. Alterations in the texture, color, moisture loss, myofibrillar protein oxidation stability and conformation, and microstructure of the fish were analyzed after freezing and thawing. The results demonstrate that HIH maximized the retention of fish texture, reduced moisture loss, minimized the oxidation and aggregation of myofibrillar proteins, and stabilized the secondary and tertiary structures of myofibrillar proteins compared to the control group. In conclusion, the HIH component in the trypsin hydrolysates of croceine croaker significantly contributes to minimizing freeze damage in fish meat and acts as an anti-freezing agent with high industrial application potential.

13.
Immunotherapy ; : 1-8, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38888461

ABSTRACT

Immune-related adverse events (irAEs) are one of the key concerns in cancer patients treated with immune checkpoint inhibitors (ICIs). Among the various irAEs, pancreas-specific irAE is a rare but special one with a variety of manifestations, such as pancreatic enzymes elevation, pancreatitis as well as diabetes. The current study reported 22 pancreas-specific irAEs in 21 patients with lung cancer, including pancreatic injury in 13 patients, pancreatitis in four patients and diabetes mellitus in five patients.


[Box: see text].

14.
Front Oncol ; 14: 1360158, 2024.
Article in English | MEDLINE | ID: mdl-38835384

ABSTRACT

Mixed germ cell tumors (mGCTs) involving both the ovaries and sellar region have been rarely reported; thus, they pose significant challenges in clinical management. Our report of a case of a 26-year-old female with left ovarian mGCTs (dysgerminoma + yolk sac tumor) who presented with postoperative headaches and blurred vision contributes new information to the literature on treating mGCTs, which can lead to standardized regimens and sequencing guidelines. A physical examination revealed right temporal hemianopia, and elevated levels of alpha-fetoprotein were detected in serum and cerebrospinal fluid. Magnetic resonance imaging (MRI) of the sellar region revealed a space-occupying lesion. Pathological examination of the tumor after endoscopic transnasal resection confirmed the diagnosis of mGCTs (germinomas + yolk sac tumor). The patient received adjuvant chemotherapy and radiotherapy at reduced dosages. During follow-up, tumor markers remained within normal limits, and there was no evidence of tumor recurrence on sellar region MRI. This case highlights the rarity of the simultaneous occurrence of ovarian and sellar region mGCTs and emphasizes the importance of accurate diagnosis and multidisciplinary management.

15.
Opt Express ; 32(10): 18224-18236, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38858984

ABSTRACT

As a promising technology to realize multilevel, non-volatile data storage and information processing, optical phase change technologies have attracted extensive attention in recent years. However, existing phase-change photonic devices face significant challenges such as limited switching contrast and high switching energy. This study introduces an innovative approach to tackle these issues by leveraging Fabry-Perot (F-P) cavity resonance and plasmon resonance techniques to enhance the modulation effect of phase change materials (PCMs) on the light. To the best of our knowledge, a novel device structure is proposed, featuring an elliptic nano-antenna placed on an F-P cavity waveguide composed of symmetric Bragg grating. This design exploits the enhanced electric field to achieve low power consumption and high contrast. The device enables crucial functions, including read, write, and erase operations, under all light conditions. Through the synergistic utilization of plasma and F-P cavity effects, an ultra-high switching contrast of around 70.6% is achieved. By varying the pulse power or duration, the proportion between the crystalline and amorphous states of the PCMs is altered, consequently modifying its refractive index. With its wide range of applications in optical storage and computing, the device holds significant potential for advancing these fields.

16.
Opt Express ; 32(9): 16548-16562, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38859279

ABSTRACT

Optical computing has gradually demonstrated its efficiency in handling increasingly complex computational demands, attracting widespread attention. Optical switches can effectively control and modulate optical signals, providing flexibility and efficiency for optical computing systems. However, traditional optical switches face performance issues such as power consumption, switching speed, and compactness, severely limiting the implementation of large-scale photonic integrated circuits and optical neural networks. This paper proposes an innovative design structure for a non-volatile multi-level adjustable optical switch by combining a plasmonic slot waveguide with segmented phase-change materials. Modulation of waveguide light transmission is achieved by adjusting the phase state of Ge2Sb2Te5(GST). At a wavelength of 1550 nm, a low insertion loss of 0.5dB has been achieved, with approximately an 85% difference in optical transmittance between amorphous state (aGST) and crystalline state (cGST). The high transmittance difference contributes to achieving a wide range of weight variations and supports precise weight updates. Based on this design, we successfully implemented a handwritten digit recognition task with an accuracy of 95%, laying the foundation for future more efficient memory computing neural morphic networks.

17.
Proc Natl Acad Sci U S A ; 121(24): e2319679121, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38830106

ABSTRACT

Whole-genome duplication (WGD; i.e., polyploidy) and chromosomal rearrangement (i.e., genome shuffling) significantly influence genome structure and organization. Many polyploids show extensive genome shuffling relative to their pre-WGD ancestors. No reference genome is currently available for Platanaceae (Proteales), one of the sister groups to the core eudicots. Moreover, Platanus × acerifolia (London planetree; Platanaceae) is a widely used street tree. Given the pivotal phylogenetic position of Platanus and its 2-y flowering transition, understanding its flowering-time regulatory mechanism has significant evolutionary implications; however, the impact of Platanus genome evolution on flowering-time genes remains unknown. Here, we assembled a high-quality, chromosome-level reference genome for P. × acerifolia using a phylogeny-based subgenome phasing method. Comparative genomic analyses revealed that P. × acerifolia (2n = 42) is an ancient hexaploid with three subgenomes resulting from two sequential WGD events; Platanus does not seem to share any WGD with other Proteales or with core eudicots. Each P. × acerifolia subgenome is highly similar in structure and content to the reconstructed pre-WGD ancestral eudicot genome without chromosomal rearrangements. The P. × acerifolia genome exhibits karyotypic stasis and gene sub-/neo-functionalization and lacks subgenome dominance. The copy number of flowering-time genes in P. × acerifolia has undergone an expansion compared to other noncore eudicots, mainly via the WGD events. Sub-/neo-functionalization of duplicated genes provided the genetic basis underlying the unique flowering-time regulation in P. × acerifolia. The P. × acerifolia reference genome will greatly expand understanding of the evolution of genome organization, genetic diversity, and flowering-time regulation in angiosperms.


Subject(s)
Evolution, Molecular , Genome, Plant , Phylogeny , Polyploidy , Chromosomes, Plant/genetics , Gene Duplication
18.
Food Chem ; 452: 139569, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38744131

ABSTRACT

Given the potential dangers of thiram to food safety, constructing a facile sensor is significantly critical. Herein, we presented a colorimetric sensor based on glutathione­iron hybrid (GSH-Fe) nanozyme for specific and stable detection of thiram. The GSH-Fe nanozyme exhibits good peroxidase-mimicking activity with comparable Michaelis constant (Km = 0.551 mM) to the natural enzyme. Thiram pesticides can specifically limit the catalytic activity of GSH-Fe nanozyme via surface passivation, causing the change of colorimetric signal. It is worth mentioning that the platform was used to prepare a portable hydrogel kit for rapid qualitative monitoring of thiram. Coupling with an image-processing algorithm, the colorimetric image of the hydrogel reactor is converted into the data information for accurate quantification of thiram with a detection limit of 0.3 µg mL-1. The sensing system has good selectivity and high stability, with recovery rates in fruit juice samples ranging from 92.4% to 106.9%.


Subject(s)
Colorimetry , Fruit and Vegetable Juices , Glutathione , Iron , Thiram , Colorimetry/instrumentation , Fruit and Vegetable Juices/analysis , Iron/chemistry , Iron/analysis , Glutathione/chemistry , Glutathione/analysis , Thiram/analysis , Thiram/chemistry , Food Contamination/analysis , Pesticides/analysis , Pesticides/chemistry , Limit of Detection , Biosensing Techniques/instrumentation
19.
Talanta ; 276: 126292, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38795646

ABSTRACT

In recent decades, analytical techniques have increasingly focused on the precise quantification. Achieving this goal has been accomplished with conventional analytical approaches that typically require extensive pretreatment methods, significant reagent usage, and expensive instruments. The need for rapid, simple, and highly selective identification platforms has become increasingly pronounced. Molecularly imprinted polymer (MIP) has emerged as a promising avenue for developing advanced sensors that can potentially surpass the limitations of conventional detection methods. In recent years, the application of MIP-silica materials-based sensors has garnered significant attention owing to their distinctive characteristics. These types of probes hold a distinct advantage in their remarkable stability and durability, all of which provide a suitable sensing platform in severe environments. Moreover, the substrate composed of silica materials offers a vast surface area for binding, thereby facilitating the efficient detection of even minuscule concentrations of targets. As a result, sensors based on MIP-silica materials have the potential to be widely applied in various industries, including medical diagnosis, and food safety. In the present review, we have conducted an in-depth analysis of the latest research developments in the field of MIPs-silica materials based sensors, with a focus on succinctly summarizing and elucidating the most crucial findings. This is the first comprehensive review of integration MIPs with silica materials in electrochemical (EC) and optical probes for biomedical analysis and food safety.


Subject(s)
Food Safety , Molecularly Imprinted Polymers , Silicon Dioxide , Silicon Dioxide/chemistry , Molecularly Imprinted Polymers/chemistry , Biosensing Techniques/methods , Humans , Molecular Imprinting , Electrochemical Techniques/methods
20.
Environ Pollut ; 355: 124164, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38754692

ABSTRACT

Air quality considerably affects bioaerosol dynamics within the atmosphere. Frequent haze events, with their associated alterations in bioaerosol composition, may pose potential health risks. This study investigated the microbial diversity, community structure, and factors of PM2.5 within an urban environment. We further examined the impact of haze on potentially pathogenic bacteria in bioaerosols, and analyzed the sources of haze pollution. Key findings revealed that the highest levels of microbial richness and diversity were associated with lightly polluted air conditions. While the overall bacterial community structure remained relatively consistent across different air quality levels, the relative abundance of specific bacterial taxa exhibited variations. Meteorological and environmental conditions, particularly sulfur dioxide, nitrogen dioxide, and carbon monoxide, exerted a greater influence on bacterial diversity and community structure compared to the physicochemical properties of the PM2.5 particles themselves. Notably, haze events were observed to strengthen interactions among airborne pathogens. Stable carbon isotope analysis suggested that coal combustion and automobile exhaust were likely to represent the primary source of haze during winter months. These findings indicate that adoption of clean energy alternatives such as natural gas and electricity, and the use of public transportation, is crucial to mitigate particle and harmful pollutant emissions, thereby protecting public health.


Subject(s)
Aerosols , Air Microbiology , Air Pollutants , Air Pollution , Environmental Monitoring , Particulate Matter , Aerosols/analysis , Air Pollutants/analysis , Particulate Matter/analysis , Air Pollution/statistics & numerical data , Bacteria/isolation & purification , Cities , Sulfur Dioxide/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...