Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
Tissue Eng Regen Med ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38943036

ABSTRACT

BACKGROUND: Classical guided bone regeneration (GBR) treatments can achieve favorable clinical results for ridge defects. However, extensive bone augmentation in the non-esthetic area in the posterior region for minor ridge defects is unnecessary. Therefore, this study used a collagen and Platelet-rich fibrin (PRF) mixture for bone augmentation on minor posterior ridge defects and evaluated the effects. METHODS: 22 Seibert Class I ridge defects were treated with BC and covered with a PRF membrane (simplified guided bone regeneration, simplified GBR) and other 22 were treated with Bio-Oss and covered with Bio-Gide (classical GBR). Cone-beam computed tomography imaging was conducted 6 months post-surgery to compare the ridge's horizontal width (HW) and buccal ridge's horizontal width to assess the osteogenic effect. In addition, the buccal ridge contour morphology was studied and classified. RESULTS: The buccal ridge contour of simplified GBR was Type A in 14 cases, Type B in 7 cases, and Type C in 1 case and it of classical GBR was Type A in 11 cases, Type B in 8 cases, and Type C in 3 cases. The mean HW significantly increased by 1.50 mm of simplified GBR treatment, while it increased by 1.83 mm in classical GBR treatment. CONCLUSION: The combined use of BC and PRF had a significant effect on bone augmentation and this treatment exhibited promising clinical results for correcting posterior Seibert Class I ridge defects. The morphological classification of the reconstructive effect in this study can be utilized in future clinical work.

2.
Infect Drug Resist ; 17: 1911-1918, 2024.
Article in English | MEDLINE | ID: mdl-38766680

ABSTRACT

The liver receives blood from both the hepatic artery and portal vein. Hepatic infarction is rare in clinical practice as both the hepatic artery and portal vein can supply blood to the liver. Here, we reported a case of a 75-year-old man who underwent radical laparoscopic surgery for rectal cancer and subsequently developed hepatic infarction. The patient experienced severe infection, as well as circulatory and respiratory failure on the third day after surgery. The patient presented with high fever, chest tightness, shortness of breath, decreased blood oxygen saturation and blood pressure. The leukocyte count decreased from 8.10 × 10^9/L to 1.75 × 10^9/L. Procalcitonin (PCT) levels increased from 1.02 ng/mL to 67.14 ng/mL, and eventually reaching levels over 200 ng/mL. Enhanced abdominal computed tomography (CT) confirmed the presence of hepatic infarction, but no thrombosis was observed in the hepatic artery or portal vein. Metagenomic next-generation sequencing (mNGS) identified hypervirulent Klebsiella pneumoniae (hvKp) in the patient's blood and ascites, one day earlier than the detection results using traditional culture methods. The patient was diagnosed with hepatic infarction combined with septic shock caused by hvKp. This case emphasizes that in the high-risk group of thrombosis, infection can trigger exacerbated hepatic infarction events, particularly in cases after surgical procedures. For severely ill patients with infectious diseases who are admitted to the ICU with worsening symptoms, it is important to collect appropriate samples and send them for pathogen detection using mNGS in a timely manner. This may aid in early intervention and improve clinical outcomes.

3.
Carbohydr Polym ; 335: 122082, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38616100

ABSTRACT

The preparation of cellulose nanofiber (CNF) using traditional methods is currently facing challenges due to concerns regarding environmental pollution and safety. Herein, a novel CNF was obtained from bamboo shoot shell (BSS) by low-concentration acid and dynamic high-pressure microfluidization (DHPM) treatment. The resulting CNF was then characterized, followed by in vitro and in vivo safety assessments. Compared to insoluble dietary fiber (IDF), the diameters of HIDF (IDF after low-concentration acid hydrolysis) and CNF were significantly decreased to 167.13 nm and 70.97 nm, respectively. Meanwhile, HIDF and CNF showed a higher crystallinity index (71.32 % and 74.35 %). Structural analysis results indicated the successful removal of lignin and hemicellulose of HIDF and CNF, with CNF demonstrating improved thermostability. In vitro, a high dose of CNF (1500 µg/mL) did not show any signs of cytotoxicity on Caco-2 cells. In vivo, no death was observed in the experimental mice, and there was no significant difference between CNF (1000 mg/kg·bw) and control group in hematological index and histopathological analysis. Overall, this study presents an environmentally friendly method for preparing CNF from BSS while providing evidence regarding its safety through in vitro and in vivo assessments, laying the foundation for its potential application in food.


Subject(s)
Cellulose , Nanofibers , Animals , Mice , Humans , Cellulose/toxicity , Caco-2 Cells , Nanofibers/toxicity , Vegetables , Lignin
4.
J Plant Physiol ; 297: 154236, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38621330

ABSTRACT

Germline cells are critical for transmitting genetic information to subsequent generations in biological organisms. While their differentiation from somatic cells during embryonic development is well-documented in most animals, the regulatory mechanisms initiating plant germline cells are not well understood. To thoroughly investigate the complex morphological transformations of their ultrastructure over developmental time, nanoscale 3D reconstruction of entire plant tissues is necessary, achievable exclusively through electron microscopy imaging. This paper presents a full-process framework designed for reconstructing large-volume plant tissue from serial electron microscopy images. The framework ensures end-to-end direct output of reconstruction results, including topological networks and morphological analysis. The proposed 3D cell alignment, denoise, and instance segmentation pipeline (3DCADS) leverages deep learning to provide a cell instance segmentation workflow for electron microscopy image series, ensuring accurate and robust 3D cell reconstructions with high computational efficiency. The pipeline involves five stages: the registration of electron microscopy serial images; image enhancement and denoising; semantic segmentation using a Transformer-based neural network; instance segmentation through a supervoxel-based clustering algorithm; and an automated analysis and statistical assessment of the reconstruction results, with the mapping of topological connections. The 3DCADS model's precision was validated on a plant tissue ground-truth dataset, outperforming traditional baseline models and deep learning baselines in overall accuracy. The framework was applied to the reconstruction of early meiosis stages in the anthers of Arabidopsis thaliana, resulting in a topological connectivity network and analysis of morphological parameters and characteristics of cell distribution. The experiment underscores the 3DCADS model's potential for biological tissue identification and its significance in quantitative analysis of plant cell development, crucial for examining samples across different genetic phenotypes and mutations in plant development. Additionally, the paper discusses the regulatory mechanisms of Arabidopsis thaliana's germline cells and the development of stamen cells before meiosis, offering new insights into the transition from somatic to germline cell fate in plants.


Subject(s)
Imaging, Three-Dimensional , Imaging, Three-Dimensional/methods , Microscopy, Electron/methods , Arabidopsis/ultrastructure , Arabidopsis/growth & development , Arabidopsis/cytology , Algorithms , Plant Cells/ultrastructure , Image Processing, Computer-Assisted/methods
5.
Front Cell Infect Microbiol ; 14: 1345706, 2024.
Article in English | MEDLINE | ID: mdl-38606292

ABSTRACT

Background: Investigations assessing the value of metagenomic next-generation sequencing (mNGS) for distinguish Aspergillus infection from colonization are currently insufficient. Methods: The performance of mNGS in distinguishing Aspergillus infection from colonization, along with the differences in patients' characteristics, antibiotic adjustment, and lung microbiota, were analyzed. Results: The abundance of Aspergillus significantly differed between patients with Aspergillus infection (n=36) and colonization (n=32) (P < 0.0001). Receiver operating characteristic (ROC) curve result for bronchoalveolar lavage fluid (BALF) mNGS indicated an area under the curve of 0.894 (95%CI: 0.811-0.976), with an optimal threshold value of 23 for discriminating between Aspergillus infection and colonization. The infection group exhibited a higher proportion of antibiotic adjustments in comparison to the colonization group (50% vs. 12.5%, P = 0.001), with antibiotic escalation being more dominant. Age, length of hospital stay, hemoglobin, cough and chest distress were significantly positively correlated with Aspergillus infection. The abundance of A. fumigatus and Epstein-Barr virus (EBV) significantly increased in the infection group, whereas the colonization group exhibited higher abundance of A. niger. Conclusion: BALF mNGS is a valuable tool for differentiating between colonization and infection of Aspergillus. Variations in patients' age, length of hospital stay, hemoglobin, cough and chest distress are observable between patients with Aspergillus infection and colonization.


Subject(s)
Aspergillosis , Epstein-Barr Virus Infections , Pneumonia , Humans , Herpesvirus 4, Human , Aspergillus/genetics , Cough , Bronchoalveolar Lavage Fluid , High-Throughput Nucleotide Sequencing , Anti-Bacterial Agents , Lung , Hemoglobins , Sensitivity and Specificity , Retrospective Studies
6.
J Voice ; 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38402112

ABSTRACT

OBJECTIVE: The aim of the study is to investigate the use of incidences and characteristics of Prevocalic Electroglottographic Signal (PVES) derived from electroglottography (EGG) in characterizing glottal stops (GS) in cleft palate speech. METHODS: Mandarin nonaspirated monosyllabic first-tone words were used for the speech sampling procedure. A total of 1680 utterances (from 83 patients with repaired cleft palates) were divided into three categories based on the results of auditory-perceptual evaluation of recorded speech sounds by three independent reviewers: [Category A (absence of GS agreed by all three reviewers) (n = 1192 tokens), Category B (two out of three reviewers agreed on the presence of a GS) (n = 181 tokens) and Category C (all three reviewers agreed on the presence of a GS) (n = 307 tokens)]. The EGG signals of the 1680 utterances were analyzed using a MATLAB program to automatically mark the instances of PVES (amplitude and time-interval) in the GS utterances. RESULTS: The result showed that the incidence of EGG PVES presented good positive correlation with auditory-perceptual evaluation (r = 0.703, P<0.000). Statistical analysis revealed a significant difference in mean PVES amplitude among different groups (P<0.05). There was a significant distinction in the time interval between groups A and B, as well as in groups A and C (P<0.05). CONCLUSIONS: The study suggests PVES can be an objective means of identifying GS in cleft palate speech. It also indicates that proportion of amplitude and time interval of PVES tend to be positively correlate with subjective assessment.

7.
Obes Facts ; 17(2): 191-200, 2024.
Article in English | MEDLINE | ID: mdl-38266508

ABSTRACT

INTRODUCTION: Over 25% of the world's population has non-obese or lean non-alcoholic fatty liver disease (NAFLD), and the prevalence is higher than average in Asia. The present study focused on the relationship between body mass index (BMI) and non-obese NAFLD in non-overweight people in China, particularly the influence of triglycerides (TG) in the pathogenesis of non-obese NAFLD. The findings suggest new treatments for NAFLD patients with normal BMI, as well as provide an early warning system for the understanding and prevention of NAFLD in non-obese patients. METHODS: This cross-sectional study enrolled 159,959 Chinese subjects with BMI <24 kg/m2 and normal levels of low-density lipoprotein cholesterol (LDL-c). The average age was 40.21 ± 13.88 years, and males accounted for 45.7%. A total of 15,907 (9.94%) patients with NAFLD were diagnosed by ultrasonography. Biochemical indicators were measured using an automated analyzer (Abbott AxSYM). The BMI (kg/m2) was calculated from the weight (kg)/height in square meters (m2). The BMI quartile was used as the column-stratified variable to determine the baseline distribution, and logistic regression analysis was used to assess the relationship between NAFLD and its risk factors, with multiple logistic regression used to assess the relationships between BMI or TG and NAFLD and multivariate linear regression used to analyze the association between BMI and TG, while mediation analysis was used to assess the mediation effect of TG. RESULTS: After adjustment of all covariates, the odds ratios were 1.788 (95% CI: 1.749-1.829; p < 0.00001) and 1.491 (95% CI: 1.451-1.532; p < 0.00001) for the association between BMI and TG with NAFLD incidence. The multivariate linear regression coefficient of BMI and TG was ß = 0.027 (95% CI: 0.023-0.030; p < 0.00001). Mediation analysis showed that BMI contributed to 10.81% of lean NAFLD with a mediation effect of 2.98%. CONCLUSION: In a Chinese population with BMI <24 kg/m2 and normal LDL-c levels, BMI and TG were found to be independent predictors of NAFLD. The direct effect of BMI on non-obese NAFLD was 10.41%. The TG level was found to partially mediate the association.


Subject(s)
Non-alcoholic Fatty Liver Disease , Male , Humans , Adult , Middle Aged , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/epidemiology , Non-alcoholic Fatty Liver Disease/diagnosis , Triglycerides , Body Mass Index , Cholesterol, LDL , Cross-Sectional Studies , Risk Factors , China/epidemiology
8.
J Adv Res ; 55: 119-129, 2024 Jan.
Article in English | MEDLINE | ID: mdl-36889461

ABSTRACT

INTRODUCTION: Previous studies have evaluated metagenomic next-generation sequencing (mNGS) of cell-free DNA (cfDNA) for pathogen detection in blood and body fluid samples. However, no study has assessed the diagnostic efficacy of mNGS using cellular DNA. OBJECTIVES: This is the first study to systematically evaluate the efficacy of cfDNA and cellular DNA mNGS for pathogen detection. METHODS: A panel of seven microorganisms was used to compare cfDNA and cellular DNA mNGS assays concerning limits of detection (LoD), linearity, robustness to interference, and precision. In total, 248 specimens were collected between December 2020 and December 2021. The medical records of all the patients were reviewed. These specimens were analysed using cfDNA and cellular DNA mNGS assays, and the mNGS results were confirmed using viral qPCR, 16S rRNA, and internal transcribed spacer (ITS) amplicon next-generation sequencing. RESULTS: The LoD of cfDNA and cellular DNA mNGS was 9.3 to 149 genome equivalents (GE)/mL and 27 to 466 colony-forming units (CFU)/mL, respectively. The intra- and inter-assay reproducibility of cfDNA and cellular DNA mNGS was 100%. Clinical evaluation revealed that cfDNA mNGS was good at detecting the virus in blood samples (receiver operating characteristic (ROC) area under the curve (AUC), 0.9814). In contrast, the performance of cellular DNA mNGS was better than that of cfDNA mNGS in high host background samples. Overall, the diagnostic efficacy of cfDNA combined with cellular DNA mNGS (ROC AUC, 0.8583) was higher than that of cfDNA (ROC AUC, 0.8041) or cellular DNA alone (ROC AUC, 0.7545). CONCLUSION: Overall, cfDNA mNGS is good for detecting viruses, and cellular DNA mNGS is suitable for high host background samples. The diagnostic efficacy was higher when cfDNA and cellular DNA mNGS were combined.


Subject(s)
Body Fluids , Cell-Free Nucleic Acids , Humans , RNA, Ribosomal, 16S/genetics , Reproducibility of Results , High-Throughput Nucleotide Sequencing , Cell-Free Nucleic Acids/genetics , DNA
9.
Food Funct ; 14(22): 10188-10203, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37909356

ABSTRACT

Sea cucumber peptides (SCPs) have been proven to have many active functions; however, their impact on testosterone synthesis and the corresponding mechanism are not yet clear. This study attempts to explore the effects of SCPs on sex hormone regulation in acute exhaustive swimming (AES) male mice and the possible mechanisms. In the present study, SCP intervention significantly prolonged exhaustive swimming time and reduced exercise metabolite accumulation. The reproductive ability-related parameters including penile index, mating ability, testicular morphology, and sperm storage were dramatically improved by SCP intervention. Notably, SCPs markedly reversed the AES-induced decrease in serum testosterone (T), estradiol (E2), and follicle-stimulating hormone (FSH) levels. Moreover, treatment with a high dose of SCP (0.6 mg per g bw) significantly enhanced the expression of testosterone synthesis-related proteins in testis, meanwhile markedly increasing the gene expression of StAR, Hsd17b3, Hsd17b2, Ldlr, and Cyp19a1. Serum metabolomics results indicated that SCP intervention notably upregulated the expression of 1-stearoyl-2-arachidonoyl-sn-glycerol but downregulated the concentrations of succinate and DL-lactate. Furthermore, serum metabolomics combined with testicular transcriptome, western blot, and correlation analyses demonstrated that SCPs may regulate testosterone synthesis via the Ca2+/PKA signaling pathway. This study indicated that the SCP could be a potential dietary supplement to improve the symptoms of decreased sex hormones related to exercise fatigue.


Subject(s)
Follicle Stimulating Hormone , Sea Cucumbers , Mice , Male , Animals , Sea Cucumbers/metabolism , Swimming , Semen/metabolism , Testis/metabolism , Testosterone , Gonadal Steroid Hormones , Signal Transduction
10.
Biochem Biophys Res Commun ; 683: 149079, 2023 11 26.
Article in English | MEDLINE | ID: mdl-37871447

ABSTRACT

BACKGROUND: Several studies have investigated the detection of plasma cell-free DNA (cfDNA) using metagenomic next-generation sequencing (mNGS). However, to our knowledge, no study has evaluated the diagnostic value of mNGS detection using blood cells. In this study, we aimed to evaluate the performance of a whole blood mNGS assay which includes the results of plasma and blood cells mNGS detection. METHODS: We selected a panel of seven microorganisms to validate both the plasma and blood cells assay for their limits of detection (LoD), linearity, precision, and robustness to interference. In a multicentered prospective study conducted from January 2021 to April 2022, we tested 253 septic patients with plasma and blood cells mNGS and compared it with blood cultures (BCs). The performance of pathogen detection was compared between mNGS and BCs. RESULTS: The LoD for plasma and blood cells mNGS was 8.3-140 genome equivalents (GE)/mL and 26 to 534 colony-forming units (CFU) or copies/mL, respectively. The inter- and intra-assay reproducibility of both plasma and blood cells mNGS was 100%. Compared to plasma mNGS alone, the sensitivity of whole blood mNGS was increased by 18.04% when using BCs as the standard (67.21% vs 85.25%). Furthermore, the sensitivity of whole blood mNGS in diagnosing bloodstream infections (BSIs) was 85.21%, which was significantly higher than that of BCs (36.09%, P<0.0001) and plasma mNGS (69.82%; P = 0.0007). Additional analysis showed that blood cells mNGS was able to detect bacteria missed by plasma mNGS, while plasma mNGS was effective at detecting viruses. CONCLUSIONS: Our findings indicate that whole blood mNGS shows great potential as a promising diagnostic technique for BSIs owing to its ability to identify pathogens with higher sensitivity.


Subject(s)
Sepsis , Humans , Prospective Studies , Reproducibility of Results , Sepsis/diagnosis , Blood Cells , High-Throughput Nucleotide Sequencing , Metagenomics , Sensitivity and Specificity
11.
Foods ; 12(18)2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37761221

ABSTRACT

Given its high biological and pharmacological activities, curcumin (CUR) offers promising applications in functional foods. However, its low stability and bioavailability have greatly hindered its application in the food industry. The present study prepared cellulose nanofiber (CNF) from bamboo shoot processing byproducts and investigated its potential as a low-cost carrier. Our results showed that CUR was immobilized on CNF surfaces mainly through hydrogen bonding and eventually encapsulated in CNF matrices, forming a CNF-CUR complex with an encapsulation efficiency of 88.34% and a loading capacity of 67.95%. The CUR encapsulated in the complex showed improved stability after thermal and UV light treatments. Moreover, a slow and extended release pattern of CUR in a simulated gastrointestinal tract was observed, which could be appropriately described using the Korsmeyer-Peppas model. These results revealed that CNF is a promising protective carrier for the slow release of CUR, making it a better candidate for functional foods.

12.
Int J Biol Macromol ; 233: 123492, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36736984

ABSTRACT

Phosphorylation is a key route to achieve varieties of biological activities for polysaccharides. Here, we report the phosphorylated surface deacetylated chitin nanofibers (PS-ChNFs) using the sodium tripolyphosphate/sodium trimetaphosphate (STPP/STMP) method. Response surface methodology (RSM) was employed to optimize in this study. Under optimal conditions, a maximum degree of substitution (DS) of 0.13 was obtained. In addition, the structures of PS-ChNFs were investigated by Fourier transform infrared spectroscopy (FT-IR), Nuclear Magnetic Resonance spectra (NMR), X-ray photoelectron spectroscopy (XPS), Scanning electron microscope (SEM) and (Energy Dispersive Spectroscopy-mapping) EDS-mapping. The findings revealed that the FT-IR spectroscopy and XPS analysis confirmed the appearance of phosphate groups in PS-ChNFs. The 31P NMR results indicate that the PS-ChNFs structure has characteristic peaks of P elements. SEM images showed that PS-ChNFs had a rough surface with many cavities, but the P elements on the surface of the EDS-mapping are uniformly distributed throughout the sample without any enrichment. Antioxidant and antibacterial test showed that PS-ChNFs had significant scavenging effect on free radicals and antibacterial effect. The above results indicate that the chemical modification of PS-ChNFs was successful.


Subject(s)
Nanofibers , Nanofibers/chemistry , Chitin/chemistry , Spectroscopy, Fourier Transform Infrared , Polysaccharides , Photoelectron Spectroscopy
13.
Food Chem X ; 16: 100506, 2022 Dec 30.
Article in English | MEDLINE | ID: mdl-36404893

ABSTRACT

Using a novel natural cryoprotectant to maintain better quality of frozen aquatic products is attracting increasing interests in recent years. This study investigated the cryoprotective effects of bamboo shoot nanocrystalline cellulose (NCC) on Nemipterus virgatus surimi during 60 days of frozen storage. Compared with surimi without any cryoprotectant, NCC addition significantly retard the quick decrease of salt soluble protein content, Ca2+-ATPase activity and sulfhydryl content of myofibrillar protein. SDS-PAGE results suggested that NCC could protect the structural integrity of myofibrillar protein, which was confirmed by the enhanced stability of α-helix content of protein. It was also observed that surimi gel incorporated with NCC showed improved gel strength and a more compact microstructure with dense surfaces. This study demonstrated that NCC could potentially serve as a novel natural cryoprotectant for the surimi.

14.
Foods ; 11(17)2022 Aug 31.
Article in English | MEDLINE | ID: mdl-36076830

ABSTRACT

A water-soluble polysaccharide BSP was extracted from the basal part of bamboo shoot, a main by-product of bamboo shoot processing. BSP is composed of glucose (72.8%), xylose (19.43%) and a small amount of galactose, arabinose, glucuronic acid and mannose. The effects of BSP on mice with antibiotic-associated diarrhea (AAD) were investigated. The mice fed with BSP exhibited significant higher bodyweight gain, lower pH value and higher concentrations of SCFAs in the feces compared with those fed with saline. BSP administration reduced the inflammatory cells in the small intestine and colon in the AAD mice, and Firmicutes/Bacteroidetes ratio in the gut was decreased from 0.56 to 0.19. Moreover, BSP administration affected the composition and diversity of the gut microbiota in the AAD mice, particularly on the improvement of beneficial bacteria such as Bacteroides, Lactobacillus and Lachnospiraceae_NK4A136_group. Our results suggest that the polysaccharides from bamboo shoot by-products could be an attractive natural component for gut health and AAD treatment.

15.
Front Chem ; 10: 922437, 2022.
Article in English | MEDLINE | ID: mdl-35774859

ABSTRACT

Nanocellulose has gained increasing interest due to its excellent properties and great potential as a functional component or carrier in food and pharmaceutical industries. This study investigated the structural, thermal, and physicochemical properties of nanofibrillated cellulose (NFC) and nanocrystalline cellulose (CNC) extracted from bamboo shoot (Leleba oldhami Nakal) processing byproducts. NFCs were prepared through low concentration acid hydrolysis combined with ultrasonic treatment. CNCs were further isolated from NFCs using sulfuric acid hydrolysis treatment. TEM images showed that NFC and CNC exhibited typical long-chain and needle-like structures, respectively. CNC suspension was stable due to its zeta potential of -34.3 ± 1.23 mV. As expected, both NFC and CNC displayed high crystallinity indexes of 68.51 and 78.87%, and FTIR analysis confirmed the successful removal of lignin and hemicellulose during the treatments. However, the thermogravimetric analysis indicated that sulfuric acid hydrolysis decreased the thermal stability of CNCs. The improved physicochemical properties of NFC and CNC suggested their potential in various applications.

16.
Biotechnol Biofuels Bioprod ; 15(1): 40, 2022 Apr 30.
Article in English | MEDLINE | ID: mdl-35490247

ABSTRACT

BACKGROUND: Natural microbial consortia could efficiently produce 1,3-propanediol (1,3-PDO), a most promising bulk biochemical derived from glycerol that can be used as a monomer in the synthesis of polytrimethylene terephthalate (PTT). While natural microbial communities are made up of a diverse range of microbes with frequently unknown functions, the construction of synthetic microbial consortia allows for the creation of more defined systems with lower complexity. RESULTS: In this study, the synthetic microbial consortia were constructed by combining facultative microbes of Klebsiella pneumoniae DUT2 (KP) and/or Escherichia coli DUT3 (EC) cultures with the strictly anaerobic microbe of Clostridium butyricum DUT1 (CB) cultures under micro-aerobic conditions. The function of EC and KP during the fermentation process was to deplete oxygen and create an anaerobic environment for CB. Furthermore, KP competes with CB for the consumption of crude glycerol and the production of 1,3-PDO. The interaction of commensalism and competition resulted in the construction of synthetic microbial consortia capable of efficiently converting crude glycerol to 1,3-PDO even under micro-aerobic conditions. In a batch fermentation, the synthetic CB:KP co-culture at an initial abundance ratio of 92.5:7.5, yielded a maximum 1,3-PDO concentration of 52.08 g/L, with a yield of 0.49 g/g and a productivity of 1.80 g/(L.h), which increased by 10%, 9%, and 12%, respectively, when compared to the CB mono-culture under strictly anaerobic conditions. The final 1,3-PDO concentration, yield, and productivity by the synthetic CB:KP consortia increased by 16%, 19%, and 84%, respectively, when compared to the KP mono-culture. At an initial abundance ratio of 85:7.5:7.5, the synthetic CB:KP:EC co-culture achieved the highest 1,3-PDO flux of 49.17%, while 7.43%, 5.77%, 3.15% 4.24%, and 2.13% of flux was distributed to butyric acid, acetic acid, lactic acid, ethanol, and succinic acid pathways. In a fed-batch fermentation, the synthetic CB:KP:EC co-culture demonstrated a maximum 1,3-PDO concentration of 77.68 g/L with a yield of 0.51 g/g which is 30% and 13% higher than the production by the CB mono-culture at 0.02 vvm (nitrogen volume/culture volume/min) N2 supply. The initial abundance of CB, which is guaranteed to be at least 85%, enables efficient 1,3-PDO production from crude glycerol via the development of synthetic microbial consortia. CONCLUSION: The synthetic microbial consortia demonstrated excellent performance on 1,3-propanediol production under micro-aerobic conditions through the interaction of commensalism and competition. The experimental results demonstrated the potential benefit of using synthetic microbial consortia to produce 1,3-propanediol from crude glycerol.

17.
Cancer Biother Radiopharm ; 37(9): 766-778, 2022 Nov.
Article in English | MEDLINE | ID: mdl-32644859

ABSTRACT

Background: Cervical cancer (CC) is a common gynecological malignancy with a high risk of recurrence and death. Circular RNAs play a crucial role in the occurrence and development of tumors. This study aimed to investigate the function and mechanism of circ_0000745 in CC. Materials and Methods: The levels of circ_0000745, miR-409-3p, and activating transcription factor 1 (ATF1) were determined by quantitative real-time polymerase chain reaction or Western blot assay. Cell proliferation was assessed by colony formation assay. Cell migration and invasion were evaluated by transwell assay. Glycolysis was analyzed by measuring extracellular acidification rate, glucose uptake, and lactate production. Also, the protein levels of glucose transporter 1 and lactate dehydrogenase A were detected using Western blot. The relationship among circ_0000745, miR-409-3p, and ATF1 were confirmed by dual-luciferase reporter assay. Moreover, xenograft assay was performed to analyze tumor growth in vivo. Results: Circ_0000745 and ATF1 were upregulated, whereas miR-409-3p was downregulated in CC tissues and cells. Knockdown of circ_0000745 repressed proliferation, migration, invasion, and glycolysis of CC cells. Circ_0000745 regulated CC progression by targeting miR-409-3p. Circ_0000745 modulated ATF1 expression through sponging miR-409-3p. MiR-409-3p hindered CC progression by targeting ATF1. Furthermore, depletion of circ_0000745 impeded tumor growth in vivo. Conclusion: Circ_0000745 promoted the progression of CC through modulating miR-409-3p/ATF1 axis, indicating a promising biomarker for CC therapy.


Subject(s)
MicroRNAs , Uterine Cervical Neoplasms , Female , Humans , Activating Transcription Factor 1 , Uterine Cervical Neoplasms/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Line, Tumor , RNA, Circular/genetics , Cell Proliferation
18.
Sci Rep ; 11(1): 11926, 2021 06 07.
Article in English | MEDLINE | ID: mdl-34099740

ABSTRACT

Endometriosis (EMS) is a disease that shows immune dysfunction and chronic inflammation characteristics, suggesting a role of complement system in its pathophysiology. To find out the hub genes and pathways involved in the pathogenesis of EMs, three raw microarray datasets were recruited from the Gene Expression Omnibus database (GEO). Then, a series of bioinformatics technologies including gene ontology (GO), Hallmark pathway enrichment, protein-protein interaction (PPI) network and gene co-expression correlation analysis were performed to identify hub genes. The hub genes were further verified by the Real-time quantitative polymerase chain reaction (RT-PCR) and Western Blot (WB). We identified 129 differentially expressed genes (DEGs) in EMs, of which 78 were up-regulated and 51 were down-regulated. Through GO functional enrichment analysis, we found that the DEGs are mainly enriched in cell adhesion, extracellular matrix remodeling, chemokine regulation, angiogenesis regulation, epithelial cell proliferation, et al. In Hallmark pathway enrichment analysis, coagulation pathway showed great significance and the terms in which included the central complement factors. Moreover, the genes were dominating in PPI network. Combined co-expression analysis with experimental verification, we found that the up-regulated expression of complement (C1S, C1QA, C1R, and C3) was positively related to tissue factor (TF) in EMs. In this study, we discovered the over expression complement and the positive correlation between complement and TF in EMs, which suggested that interaction of complement and coagulation system may play a role within the pathophysiology of EMS.


Subject(s)
Blood Coagulation Factors/genetics , Complement System Proteins/genetics , Endometriosis/genetics , Gene Expression Profiling/methods , Blood Coagulation Factors/metabolism , Complement C1q/genetics , Complement C1q/metabolism , Complement C1r/genetics , Complement C1r/metabolism , Complement C1s/genetics , Complement C1s/metabolism , Complement C3/genetics , Complement C3/metabolism , Complement System Proteins/metabolism , Endometriosis/metabolism , Female , Gene Ontology , Gene Regulatory Networks , Humans , Protein Interaction Maps/genetics , Signal Transduction/genetics , Thromboplastin/genetics , Thromboplastin/metabolism
19.
Acta Biochim Pol ; 68(4): 673-677, 2021 Jun 28.
Article in English | MEDLINE | ID: mdl-34181826

ABSTRACT

OBJECTIVE: The specific objective of this investigation is to explore the impact of miR-198 on proliferation, migration as well as invasion of ovarian cancer (OC) cells. METHODS: OC tissue and adjacent normal tissue samples from OC patients were collected, and normal human ovarian epithelial cell IOSE80 and OC cell lines SKOV3, Caov3, A2780 and OVCAR3 were selected in this study for investigation. MiR-198 expression level was assessed using RT-qPCR. MTT, colony formation assay, Transwell and wound healing assay, and flow cytometry were adopted to analyze the role of miR-198 in OVCAR cell proliferation, invasion, migration, as well as apoptosis. Meanwhile, the levels of P13K/Akt signaling pathway-related proteins were determined by western blotting. RESULTS: A significant decrease in miR-198 level was revealed in the OC tissues and cells, contributing to the promotion of OVCAR3 cells in terms of proliferation, migration, invasion, and inhibition of apoptosis. MiR-198 overexpression had an opposite effect on these biological processes of OVCAR3 cells. Further study found that down-regulation of miR-198 caused a significant increase in the activity of PI3K/Akt signaling pathway in the OVCAR3 cells. In contrast, overexpressed miR-198 led to inhibition of this pathway's activity. CONCLUSION: MiR-198 may possess an ability to inhibit activation of the P13K/Akt pathway, thus suppressing the OC cell proliferation, migration, as well as invasion.


Subject(s)
Cell Movement/genetics , Cell Proliferation/genetics , MicroRNAs/physiology , Neoplasm Invasiveness/genetics , Ovarian Neoplasms/pathology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/genetics , Apoptosis/genetics , Cell Line, Tumor , Female , Humans , Ovarian Neoplasms/enzymology , Ovarian Neoplasms/metabolism
20.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Article in English | MEDLINE | ID: mdl-34031248

ABSTRACT

Germ cells (GCs) are the key carriers delivering genetic information from one generation to the next. In a majority of animals, GCs segregate from somatic cells during embryogenesis by forming germlines. In land plants, GCs segregate from somatic cells during postembryonic development. In a majority of angiosperms, male GCs (archesporial cells) initiate at the four corners of the anther primordia. Little is known about the mechanism underlying this initiation. Here, we discovered that the dynamic auxin distribution in developing anthers coincided with GC initiation. A centripetal auxin gradient gradually formed toward the four corners where GCs will initiate. Local auxin biosynthesis was necessary for this patterning and for GC specification. The GC determinant protein SPOROCYTELESS/NOZZLE (SPL/NZZ) mediated the effect of auxin on GC specification and modified auxin biosynthesis to maintain a centripetal auxin distribution. Our work reveals that auxin is a key factor guiding GC specification in Arabidopsis anthers. Moreover, we demonstrate that the GC segregation from somatic cells is not a simple switch on/off event but rather a complicated process that involves a dynamic feedback circuit among local auxin biosynthesis, transcription of SPL/NZZ, and a progressive GC specification. This finding sheds light on the mystery of how zygote-derived somatic cells diverge into GCs in plants.


Subject(s)
Arabidopsis/physiology , Flowers/metabolism , Gametogenesis, Plant , Germ Cells, Plant , Indoleacetic Acids/metabolism , Arabidopsis/cytology , Arabidopsis Proteins/metabolism , Flowers/cytology , Nuclear Proteins/metabolism , Repressor Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...