Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 160.548
Filter
1.
J Environ Sci (China) ; 149: 221-233, 2025 Mar.
Article in English | MEDLINE | ID: mdl-39181637

ABSTRACT

Catalytic reduction of nitrate over bimetallic catalysts has emerged as a technology for sustainable treatment of nitrate-containing groundwater. However, the structure of bimetallic has been much less investigated for catalyst optimization. Herein, two main types of Pd-Cu bimetallic nanocrystal structures, heterostructure and intermetallic, were prepared and characterized using high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The results show that two individual Pd and Cu nanocrystals with a mixed interface exist in the heterostructure nanocrystals, while Pd and Cu atoms are uniformly distributed across the intermetallic Pd-Cu nanocrystals. The catalytic nitrate reduction experiments were carried out in a semibatch reactor under constant hydrogen flow. The nitrate conversion rate of the heterostructure Pd-Cu nanocrystals supported on α-Al2O3, γ-Al2O3, SBA-15, and XC-72R exhibited 3.82-, 6.76-, 4.28-, 2.44-fold enhancements relative to the intermetallic nanocrystals, and the nitrogen and nitrite were the main products for the heterostructure and intermetallic Pd-Cu nanocrystals, respectively. This indicates that the catalytic nitrate reduction over Pd-Cu catalyst is sensitive to the bimetallic structures of the catalysts, and heterostructure bimetallic nanocrystals exhibit better catalytic performances on both the activity and selectivity, which may provide new insights into the design and optimization of catalysts to improve catalytic activity and selectivity for nitrate reduction in water.


Subject(s)
Copper , Nitrates , Oxidation-Reduction , Palladium , Catalysis , Copper/chemistry , Palladium/chemistry , Nitrates/chemistry , Metal Nanoparticles/chemistry , Nanoparticles/chemistry , Water Pollutants, Chemical/chemistry , Models, Chemical
2.
Methods Mol Biol ; 2854: 19-28, 2025.
Article in English | MEDLINE | ID: mdl-39192114

ABSTRACT

The classic dual luciferase reporter assay has been widely used to rapidly and accurately determine the transcriptional activity of a given promoter induced by certain signal pathways in the cells. In particular, the sensitive characteristics of luciferase highlight its significance in many experiments, such as weak promoter analysis, transfection studies using small amounts of DNA, and detection in cell lines with low transfection efficiency. This chapter presents detailed information and experimental procedures for measuring interferon (IFN)-induced Interferon-Stimulated Response Element (ISRE) promoter activity using the dual luciferase reporter assay.


Subject(s)
Genes, Reporter , Interferons , Luciferases , Promoter Regions, Genetic , Response Elements , Signal Transduction , Humans , Interferons/metabolism , Interferons/genetics , Luciferases/metabolism , Luciferases/genetics , Transfection , Animals
3.
J Ethnopharmacol ; 336: 118719, 2025 Jan 10.
Article in English | MEDLINE | ID: mdl-39179057

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Morus alba L. are widely used as ethnomedicine and functional food in China, Japan, Korea and other Asian countries. Morus alba L. have a variety of pharmacological activity such as antiviral, antioxidation, anti-cholesterol, anticancer, hypoglycemia, and neuroprotection. Morus alba L. has demonstrated antiviral efficacy against influenza viruses, SARS-CoV-2 and so on, but its potential activity against pseudorabies virus (PRV) remains uncertain. AIM OF THE STUDY: This study endeavors to delve into the anti-pseudorabies virus (PRV) potential of the ethanol extract of Morus alba L. leaves (MLE), while simultaneously elucidating its underlying mechanism of action. MATERIALS AND METHODS: The anti-PRV activities of Morus alba L. extracts at different concentrations were evaluated by qPCR and immunoblotting. The inhibitory effects of MLE on PRV replication in three distinct treatment modes (pretreatment, co-treatment, and post-treatment) were detected by qPCR and indirect immunofluorescence assays. qPCR was used to investigate the effects of MLE on PRV attachment, entrance, and cytokine expression in PRV-infected cells. The chemical components in MLE were analyzed by UPLC-MS/MS. RESULTS: MLE significantly inhibits PRV replication and protein expression in a dose-dependent manner. MLE displays inhibitory effects against PRV at three different modes of treatment. The most significant inhibitory effect of MLE was observed when used in co-treatment mode, resulting in an inhibition rate of 99.42%. MLE inhibits PRV infection in the early stage. MLE inhibits PRV infection by affecting viral attachment and viral entry. Furthermore, MLE exerts its inhibition on PRV replication by mitigating the heightened expression of cytokines (TNF-α and IFN-α) triggered by PRV. Analysis of its chemical composition highlights phenolic acids and flavonoids as the principal constituents of MLE. CONCLUSION: The results illustrate that MLE effectively impedes PRV infection by suppressing viral adsorption and entry, while also curbing the expression of antiviral cytokines. Therefore, MLE may be a potential resource for creating new medications to treat human and animal PRV infections.


Subject(s)
Antiviral Agents , Herpesvirus 1, Suid , Morus , Plant Extracts , Plant Leaves , Virus Replication , Herpesvirus 1, Suid/drug effects , Morus/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/isolation & purification , Plant Extracts/pharmacology , Animals , Virus Replication/drug effects , Plant Leaves/chemistry , Cytokines/metabolism , Dogs , Madin Darby Canine Kidney Cells , Virus Internalization/drug effects , Virus Attachment/drug effects
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124995, 2025 Jan 05.
Article in English | MEDLINE | ID: mdl-39208544

ABSTRACT

Raman Optical Activity combined with Circularly Polarized Luminescence (ROA-CPL) was used in the spectral recognition of glutathione peptide (GSH) and its model post-translational modifications (PTMs). We demonstrate the potential of ROA spectroscopy and CPL probes (EuCl3, Na3[Eu(DPA)3], NaEuEDTA) in the study of unmodified peptide, i.e. GSH, and its derivatives, i.e. glutathione oxidized (GSSG), S-acetylglutathione (GSAc) and S-nitrosoglutathione (GSNO). ROA spectral features of GSH, GSSG, and GSAc were determined along with thier changes upon the different pH conditions. Apart from the ROA, induced CPL signals of Eu(III) probes also proved to be sensitive to the structural modifications of GSH-based model PTMs, enabling their spectral recognition, especially by the NaEuEDTA probe.


Subject(s)
Glutathione , Spectrum Analysis, Raman , Glutathione/chemistry , Luminescence , Luminescent Measurements , Protein Processing, Post-Translational , Hydrogen-Ion Concentration
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124948, 2025 Jan 05.
Article in English | MEDLINE | ID: mdl-39146630

ABSTRACT

Herein, a nanocomposite of Cu,Ce-containing phosphotungstates (Cu,Ce-PTs) with outstanding laccase-like activity was fabricated via a one-pot microwave-assisted hydrothermal method. Notably, it was discovered that both Fe3+ and Cr6+ could significantly enhance the electron transfer rates of Ce3+ and Ce4+, along with generous Cu2+ with high catalytic activity, thereby promoting the laccase-like activity of Cu,Ce-PTs. The proposed system can be used for the detection of Fe3+ and Cr6+ in a range of 0.667-333.33 µg/mL and 0.033-33.33 µg/mL with a low detection limit of 0.135 µg/mL and 0.0288 µg/mL, respectively. The proposed assay exhibits excellent reusability and selectivity and can be used in traditional Chinese medicine samples analysis.


Subject(s)
Cerium , Chromium , Colorimetry , Copper , Iron , Laccase , Copper/analysis , Copper/chemistry , Chromium/analysis , Colorimetry/methods , Laccase/metabolism , Laccase/chemistry , Iron/analysis , Iron/chemistry , Cerium/chemistry , Limit of Detection , Phosphotungstic Acid/chemistry , Nanocomposites/chemistry , Catalysis
6.
Food Chem ; 462: 140920, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-39208732

ABSTRACT

The use of direct injection ion mobility mass spectrometry (DI-IM-MS) to detect and identify betacyanin pigments in A. hortensis 'rubra' extracts was explored for the first time, with results compared to conventional LC-MS/MS analysis. The anti-inflammatory activities of leaf and seed extracts, alongside purified amaranthin and celosianin pigments, were investigated using a model of lipopolysaccharide (LPS)-activated murine macrophages. Extracts and purified pigments significantly inhibited the production of prostaglandin E2 and NO by up to 90% and 70%, respectively, and reduced the expression of Il6, Il1b, Nos2, and Cox2. Leaf and seed extracts also decreased secretion of Il6 and Il1b cytokines and reduced protein levels of Nos2 and Cox2. Furthermore, extracts and purified pigments demonstrated potent dose-dependent radical scavenging activity in a cellular antioxidant activity assay (CAA) without any cytotoxic effects. Our research highlights the promising biological potential of edible, climate-resilient A. hortensis 'rubra' as a valuable source of bioactive compounds.


Subject(s)
Lipopolysaccharides , Macrophages , Oxidative Stress , Plant Extracts , Mice , Animals , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Extracts/isolation & purification , RAW 264.7 Cells , Oxidative Stress/drug effects , Macrophages/drug effects , Macrophages/immunology , Lipopolysaccharides/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Cyclooxygenase 2/genetics , Cyclooxygenase 2/immunology , Cyclooxygenase 2/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Tandem Mass Spectrometry
7.
Food Chem ; 462: 141027, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-39213963

ABSTRACT

Integrating multiple functionalities into a single entity is highly important, especially when a broad spectrum of application is required. In the present work, we synthesized a novel manganese-based MOF (denoted as UoZ-6) that functions as a cold/hot-adapted and recyclable oxidase nanozyme (Km 0.085 mM) further developed for ratiometric-based colorimetric and color tonality visual-mode detection of nitrite in water and food. Nitrite ions promote the diazotization process of the oxTMB product, resulting in a decay in the absorbance signal at 652 nm and the emergence of a new signal at 461 nm. The dual-absorbance ratiometric platform for nitrite ion detection functions effectively across a wide temperature range (0 °C to 100 °C), offering a linear detection range of 5-45 µM with a detection limit of 0.15 µM using visual-mode. This approach is sensitive, reliable, and selective, making it effective for detecting nitrite ions in processed meat and water.


Subject(s)
Colorimetry , Nitrites , Nitrites/analysis , Colorimetry/methods , Metal-Organic Frameworks/chemistry , Oxidoreductases/chemistry , Oxidoreductases/metabolism , Limit of Detection , Cold Temperature , Hot Temperature , Food Contamination/analysis , Color
8.
Food Chem ; 462: 141006, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-39213974

ABSTRACT

Aquatic products are highly susceptible to spoilage, and preparing composite edible film with essential oil is an effective solution. In this study, composite edible films were prepared using perilla essential oil (PEO)-glycerol monolaurate emulsions incorporated with chitosan and nisin, and the film formulation was optimized by response surface methodology. These films were applied to ready-to-eat fish balls and evaluated over a period of 12 days. The films with the highest inhibition rate against Staphylococcus aureus were acquired using a polymer composition of 6 µL/mL PEO, 18.4 µg/mL glycerol monolaurate, 14.2 mg/mL chitosan, and 11.0 µg/mL nisin. The fish balls coated with the optimal edible film showed minimal changes in appearance during storage and significantly reduced total bacterial counts and total volatile basic nitrogen compared to the control groups. This work indicated that the composite edible films containing essential oils possess ideal properties as antimicrobial packaging materials for aquatic foods.


Subject(s)
Anti-Bacterial Agents , Chitosan , Edible Films , Emulsions , Food Packaging , Laurates , Monoglycerides , Nisin , Oils, Volatile , Staphylococcus aureus , Nisin/pharmacology , Nisin/chemistry , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Laurates/chemistry , Laurates/pharmacology , Food Packaging/instrumentation , Staphylococcus aureus/drug effects , Staphylococcus aureus/growth & development , Emulsions/chemistry , Chitosan/chemistry , Chitosan/pharmacology , Monoglycerides/chemistry , Monoglycerides/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Plant Oils/chemistry , Plant Oils/pharmacology , Perilla/chemistry
9.
Food Chem ; 462: 140951, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-39213975

ABSTRACT

Inflammatory bowel disease is a multifaceted condition that is influenced by nutritional, microbial, environmental, genetic, psychological, and immunological factors. Polyphenols and polysaccharides have gained recognition for their therapeutic potential. This review emphasizes the biological effects of polyphenols and polysaccharides, and explores their antioxidant, anti-inflammatory, and microbiome-modulating properties in the management of inflammatory bowel disease (IBD). However, polyphenols encounter challenges, such as low stability and low bioavailability in the colon during IBD treatment. Hence, polysaccharide-based encapsulation is a promising solution to achieve targeted delivery, improved bioavailability, reduced toxicity, and enhanced stability. This review also discusses the significance of covalent and non-covalent interactions, and simple and complex encapsulation between polyphenols and polysaccharides. The administration of these compounds in appropriate quantities has proven beneficial in preventing the development of Crohn's disease and ulcerative colitis, ultimately leading to the management of IBD. The use of polyphenols and polysaccharides has been found to reduce histological scores and colon injury associated with IBD, increase the abundance of beneficial microbes, inhibit the development of colitis-associated cancer, promote the production of microbial end-products, such as short-chain fatty acids (SCFAs), and improve anti-inflammatory properties. Despite the combined effects of polyphenols and polysaccharides observed in both in vitro and in vivo studies, further human clinical trials are needed to comprehend their effectiveness on inflammatory bowel disease.


Subject(s)
Anti-Inflammatory Agents , Inflammatory Bowel Diseases , Polyphenols , Polysaccharides , Polyphenols/chemistry , Polyphenols/pharmacology , Polyphenols/administration & dosage , Humans , Polysaccharides/chemistry , Polysaccharides/pharmacology , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/metabolism , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/administration & dosage , Gastrointestinal Microbiome/drug effects , Antioxidants/chemistry , Antioxidants/pharmacology
10.
Food Chem ; 462: 141002, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-39216371

ABSTRACT

Making health-enhancing tea from Forsythia suspensa leaves has been a tradition of Chinese folk culture for centuries. However, these leaves were not officially recognized as a new food source until 2017 by the Chinese government. In this study, ethyl acetate fractions from Forsythia suspensa fruit and leaves exhibited excellent antioxidant activity in vitro antioxidant assays and in vivo D-galactose-induced aging mice model. The antioxidant activity of the leaves was higher than that of fruit both in vitro and in vivo. The chemical constituents present in these ethyl acetate fractions were comprehensively analyzed using UHPLC-Q-Exactive-Orbitrap/MS. A total of 20 compounds were identified, among which forsythoside E, (+)-epipinoresinol, dihydromyricetin, chlorogenic acid, and ursolic acid were exclusively detected in the ethyl acetate fraction of Forsythia suspensa leaves, but absent in the ethyl acetate fraction derived from its fruit. This study provides theoretical support for the utilization of Forsythia suspensa fruit and leaves.


Subject(s)
Aging , Antioxidants , Forsythia , Fruit , Galactose , Plant Extracts , Plant Leaves , Animals , Forsythia/chemistry , Plant Leaves/chemistry , Mice , Fruit/chemistry , Plant Extracts/chemistry , Chromatography, High Pressure Liquid , Antioxidants/chemistry , Antioxidants/pharmacology , Aging/drug effects , Male , Humans , Mass Spectrometry
11.
J Colloid Interface Sci ; 678(Pt A): 818-826, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39217697

ABSTRACT

Manipulating the chirality at nanoscale has drawn great attention among scientists, considering its pivotal role in various applications of current interest, including nano-optics, biomedicine, and photocatalysis. In this work, we delve into this arena by fabricating chiral Swiss roll nanoarray (SRNA) continuous films employing colloidal lithography. The technique permits the dimension of Swiss roll metamaterials to reduce to nanoscale, thus achieving chiroptical response (circular dichroism (CD)) in the visible region. The interplay between the CD signals and plasmon resonance modes is revealed through theoretical simulations, enabling a deep understanding of chiral plasmonic metamaterials. The polarization-sensitive photocatalytic activity of chiral SRNAs is investigated, noting a marked increase in the reaction rate when the chirality of SRNAs matches with the handedness of circularly polarized light (CPL). Notably, the SRNA continuous films based on substrate possess integration and reusability without complex recycling process, enhancing their practicality in applications like sensing and plasmonic nanochemistry, particularly toward polarization-dependent photocatalysis.

12.
Talanta ; 280: 126785, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39217709

ABSTRACT

In the present research, Fe-based metal-organic frameworks (MIL-101(Fe)-NH2) nanoparticles were synthesized by simple solvothermal methods and used to assay Cr(Ⅵ). The MIL-101(Fe)-NH2 performs dual functions: the 2-aminoterephthalic acid (NH2-BDC) ligand endows a strong fluorescence emission, and the Fe metal nodes are able to facilitate the oxidation of 3,3',5,5'- tetramethylbenzidine (TMB) directly, resulting in the generation of oxidized-TMB (ox-TMB). Our research results showed that reducing agents such as ascorbic acid (AA) can collapse the structures of MIL-101(Fe)-NH2 because of the reduction of Fe3+ by AA, resulting in release of NH2-BDC. In the presence of Cr(Ⅵ), the fluorescence intensity of the MIL-101(Fe)-NH2 + AA system will be decreased due to the competitive reduction of Fe3+ and Cr(Ⅵ). Nevertheless, Cr(Ⅵ) can significantly accelerate the oxidation of TMB by MIL-101(Fe)-NH2 as it boosts the electron transfer rate between Fe3+ and Fe2+. Therefore, a fluorescent/colorimetric dual-mode platform was developed for the detection of Cr(Ⅵ) with an extensive linear range (7.5-750 µg/L and 13.3-1000 µg/L) as well as a remarkably low detection limit (0.99 µg/L and 1.98 µg/L). This MOF with the ability to release ligands not only provides inspiration for the design of new luminescent materials, but also offers a novel and reliable solution for the detection of Cr(Ⅵ).

13.
Soc Sci Med ; 359: 117265, 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39217719

ABSTRACT

Use of natural green spaces (NGS) is associated with improved psychological well-being (PWB). Ethnic minorities, particularly South Asian (SA) communities in the UK, face unequal access to NGS and experience a greater prevalence of health challenges than the general population. Improving access to green space can contribute to addressing current health inequalities. Following PRISMA guidelines, this systematic literature review aimed to synthesise existing research on NGS access barriers experienced by SAs and associations between NGS use and PWB. A comprehensive search was conducted through SAGE, Science Direct, and SCOPUS in August 2022; we included qualitative, quantitative and mixed-methods studies with findings on NGS access and/or associations between NGS use and PWB for SAs in the UK. We employed deductive thematic analysis to explore inhibitors and enablers of access which were then conceptualised through a multidimensional framework. Associations between NGS and PWB were coded inductively and mapped separately. This review is registered on PROSPERO: CRD42022353711. Twenty-six studies were included in the review which varied substantially in their aims, methods, context, and participants. Included studies on NGS grouped SAs within broader demographic categories such as minority ethnic communities or Muslims. Our findings indicate that SAs are disadvantaged in their access to NGS due to numerous intersecting factors including unequal distribution, inadequate transport, racialisation of NGS, and safety concerns. Whilst these findings generally aligned with broader literature on NGS access, certain access barriers and enablers are particularly significant to SA communities. We also identified several dimensions of PWB that are enhanced for SAs through interacting with NGS including overall mental health outcomes, physical wellbeing, and social relatedness. This review highlights opportunities to improve access to NGS and thereby enhance PWB outcomes for SA people. It also identifies the lack of primary research exploring NGS access and PWB associations for SA communities, specifically in rural contexts.

14.
Eur J Surg Oncol ; 50(12): 108647, 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39217765

ABSTRACT

BACKGROUND: Breast cancer poses a significant threat to women's health worldwide. This study aimed to evaluate the association between various levels of physical activity and the incidence of breast cancer. METHODS: The data for this study were obtained from the National Health and Nutrition Examination Survey (NHANES), spanning 2011 to 2020. The study included female participants aged 20 years or older, who provided detailed data on breast cancer incidence, physical activity levels, and other pertinent variables. Adjusted odds ratios (ORs) and 95 % confidence intervals (CIs) were calculated using multivariate logistic regression analyses, alongside subgroup and sensitivity analyses. RESULTS: After adjusting for potential confounders, multivariate logistic regression analyses indicated that compared to individuals with low physical activity (<600 METs min/week), light physical activity (600 to < 1800 METs min/week), moderate physical activity (1800 to < 3000 METs min/week) and high physical activity (≥3000 METs min/week) were associated with breast cancer with adjusted ORs of 0.95 (95 % CI 0.68-1.34, P = 0.787), 0.92 (95 % CI 0.57-1.49, P = 0.747), and 0.56 (95 % CI 0.37-0.86, P = 0.009) respectively. These results were consistent across sensitivity and subgroup analyses. CONCLUSION: High-intensity physical activity may decrease the risk of breast cancer, highlighting the importance of proactively implementing healthy lifestyle interventions to protect the health of adult women.

15.
J Hazard Mater ; 479: 135676, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39217921

ABSTRACT

Plants affect soil microorganisms through the release of root exudates under pollution stress. This process may affect rhizosphere priming effect (RPE) and alter the rate of soil organic matter decomposition. However, the influence of plants on the decomposition of organic matter in soil subjected to pollution stress remains unclear. We studied the effects of exposure to perfluorooctanesulfonic (PFOS) and its alternative, chlorinated polyfluoroalkyl ether sulfonic (F-53B), at concentrations of 0.1 mg/kg and 50 mg/kg on the RPE of reed. We conducted our experiments in an artificial climate chamber and used the natural 13C tracer method to determine RPE. In the PFOS-exposed groups, the RPE was negative, with values of -11.45 mg C kg-1 soil d-1 in the low PFOS group and -8.04 mg C kg-1 soil d-1 in the high PFOS group. In contrast, in the F-53B-exposed groups, the RPE was positive, with values of 8.26 mg C kg-1 soil d-1 in the low F-53B group and 12.18 mg C kg-1 soil d-1 in the high F-53B group. Exposure of reeds to PFOS/F-53B stress resulted in differential effects on extracellular enzyme activities. The observed positive and negative RPE phenomena could be attributed to variations in extracellular enzyme activities. In conclusion, RPE responded differently under PFOS/F-53B exposure.

16.
Biochemistry (Mosc) ; 89(7): 1300-1312, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39218026

ABSTRACT

To date, the molecular mechanisms of the common neurodegenerative disorder Parkinson's disease (PD) are unknown and, as a result, there is no neuroprotective therapy that may stop or slow down the process of neuronal cell death. The aim of the current study was to evaluate the prospects of using the mTOR molecule as a potential target for PD therapy due to the dose-dependent effect of mTOR kinase activity inhibition on cellular parameters associated with, PD pathogenesis. The study used peripheral blood monocyte-derived macrophages and SH-SY5Y neuroblastoma cell line. As a result, we have for the first time showed that inhibition of mTOR by Torin1 only at a concentration of 100 nM affects the level of the lysosomal enzyme glucocerebrosidase (GCase), encoded by the GBA1 gene. Mutations in GBA1 are considered a high-risk factor for PD development. This concentration led a decrease in pathological phosphorylated alpha-synuclein (Ser129), an increase in its stable tetrameric form with no changes in the lysosomal enzyme activities and concentrations of lysosphingolipids. Our findings suggest that inhibition of the mTOR protein kinase could be a promising approach for developing therapies for PD, particularly for GBA1-associated PD.


Subject(s)
Lysosomes , Macrophages , Parkinson Disease , TOR Serine-Threonine Kinases , alpha-Synuclein , Humans , alpha-Synuclein/metabolism , Lysosomes/metabolism , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/antagonists & inhibitors , Parkinson Disease/metabolism , Parkinson Disease/drug therapy , Parkinson Disease/pathology , Cell Line, Tumor , Macrophages/metabolism , Macrophages/drug effects , Neuroblastoma/metabolism , Neuroblastoma/drug therapy , Neuroblastoma/pathology , Dose-Response Relationship, Drug , Glucosylceramidase/metabolism , Glucosylceramidase/antagonists & inhibitors , Naphthyridines
17.
Am J Med ; 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39218054

ABSTRACT

BACKGROUND: Body composition, blood pressure, estimated maximal oxygen uptake (VO2max), lung function, physical activity, muscle architecture, and endothelial function had not previously been examined in people with young onset dementia. Therefore, the study measured these variables in a young onset dementia group, compared them to age-matched controls. METHODS: Estimated VO2max (via the Astrand-Rhyming test), body composition, blood pressure, lung function (via spirometry), muscle architecture (via ultrasonography) and endothelial function (via flow mediated dilation) were assessed. Physical activity was measured using ActiGraph accelerometers for 7 days. RESULTS: We recruited 33 participants (16 young onset dementia, 17 controls). The young onset dementia group had shorter fascicle lengths of the vastus lateralis, were sedentary for longer over a seven-day period, and completed less moderate-vigorous physical activity than controls (p=0.028, d=0.81; large effect, p=0.029, d=0.54; moderate effect, and p=0.014, d=0.97; large effect, respectively for pairwise comparisons). Pairwise comparisons suggest no differences at the p<0.05 level between young onset dementia and controls for estimated VO2max (despite a moderate effect size [d=0.66]), height, body mass, BMI, blood pressure, light physical activity, lung function, muscle thickness, pennation angle, or endothelial function. CONCLUSION: This study highlights differences between people with young onset dementia and controls, underscoring the need for multicomponent exercise interventions. Future interventions should target muscle architecture, increase moderate-vigorous physical activity, and reduce sedentariness, with the goal of improving quality of life and promoting functional independence.

18.
J Dairy Sci ; 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39218060

ABSTRACT

There is growing interest in the origin, preparation, and application of bioactive peptides. This study investigated the impact of 6 enzymes on the structural, physicochemical properties, antioxidant activities, and antidiabetic potential of defatted fresh goat milk. Structural and functional changes resulting from enzymatic hydrolysis were assessed using gel electrophoresis, laser particle size analysis, multi-spectroscopy, and evaluations of foaming and emulsification properties. Antioxidant capacity was determined through free radical scavenging, Fe2+ chelation, and reducing ability experiments. Additionally, the inhibitory effects of the hydrolysates on α-glucosidase and α-amylase were measured to evaluate antidiabetic activity. Results showed that enzymatic hydrolysis disrupted the spatial structure of goat milk protein and reduced its molecular weight. Papain hydrolysate exhibited the highest degree of hydrolysis (32.87 ± 0.11%) and smallest particle size (294.75 ± 3.33 nm), followed by alcalase hydrolysate (29.12 ± 0.09%, 302.03 ± 7.28 nm). Alcalase hydrolysate showed the best foaming properties, while papain hydrolysate demonstrated the strongest DPPH and hydroxyl radical scavenging activity, Fe2+ chelation, and antidiabetic potential. These findings provide solid theoretical basis for utilizing defatted goat milk as functional ingredients or excipients in the food, medical, and cosmetic industries.

19.
Article in English | MEDLINE | ID: mdl-39219427

ABSTRACT

AIM: Novel MRP modulators are needed to combat MRP-mediated multidrug resistance (MDR) in cancer cells. BACKGROUND: Anticancer drug resistance is the main problem in cancer therapy. Causative multidrug efflux pumps are attractive target structures for the development of inhibitors of their activity. OBJECTIVE: We synthesized novel cage dimeric 1,4-dihydropyridines to evaluate them as MRP modulators in cancer cells targeting MRP1, MRP2, and MRP4. METHOD: Cage compounds were synthesized by solution dimerization of monomeric 1,4-dihydropyridines and a final functionalization reaction. The MRP modulation was determined in cellular efflux assays by the use of the flow cytometry technique as well as cellular fluorescent measurements with each fluorescent substrate of the efflux pumps. RESULTS: Difluoro phenyl and methoxy or dimethoxy benzyl substitutions were most favourable for the MRP1 and MRP2 inhibition, whereas monofluor phenyl and dimethoxy benzyl substitutions were most favourable for the MRP4 inhibition. CONCLUSION: Effective inhibitors were identified that were demonstrated to restore the respective cancer cell line sensitivity for the anticancer drug as a proof-of-concept that encourages further preclinical studies.

.

20.
Food Sci Technol Int ; : 10820132241278220, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39219490

ABSTRACT

Fortification of yogurt with orange pulp tends to increase its protein network strength resulting in reduced syneresis. The aim of the current study was to prepare set-type orange yogurt with cow milk, skim milk powder, guar gum, and orange pulp at 0%, 1.0%, 2.0%, 3.0%, and 4.0% concentrations, respectively. The changes in proximate, total soluble solid, antioxidant activity, ascorbic acid, and syneresis were assessed. Yogurt was stored for consecutive three weeks during that duration all attributes were evaluated weekly. Set-type orange pulp incorporated yogurt significantly increased the fat (3.91% to 4.9%), protein (3.90% to 3.94%), moisture (84% to 84.80%), total soluble solids (16.01% to 18.51%), ascorbic acid (16.99% to 20.43%), and syneresis (28.90% to 29.94%), respectively. Overall results indicate that 4% orange pulp-enriched set-type yogurt presented more stable parameters as compared to other formulas.

SELECTION OF CITATIONS
SEARCH DETAIL