Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 108
Filter
1.
J Agric Food Chem ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954479

ABSTRACT

The lack of practical platforms for bacterial separation remains a hindrance to the detection of bacteria in complex samples. Herein, a composite cryogel was synthesized by using clickable building blocks and boronic acid for bacterial separation. Macroporous cryogels were synthesized by cryo-gelation polymerization using 2-hydroxyethyl methacrylate and allyl glycidyl ether. The interconnected macroporous architecture enabled high interfering substance tolerance. Nanohybrid nanoparticles were prepared via surface-initiated atom transfer radical polymerization and immobilized onto cryogel by click reaction. Alkyne-tagged boronic acid was conjugated to the composite for specific bacteria binding. The physical and chemical characteristics of the composite cryogel were analyzed systematically. Benefitting from the synergistic, multiple binding sites provided by the silica-assisted polymer, the composite cryogel exhibited excellent affinity toward S. aureus and Salmonella spp. with capacities of 91.6 × 107 CFU/g and 241.3 × 107 CFU/g in 0.01 M PBS (pH 8.0), respectively. Bacterial binding can be tuned by variations in pH and temperature and the addition of monosaccharides. The composite was employed to separate S. aureus and Salmonella spp. from spiked tap water, 40% cow milk, and sea cucumber enzymatic hydrolysate, which resulted in high bacteria separation and demonstrated remarkable potential in bacteria separation from food samples.

2.
Bioresour Technol ; 403: 130888, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38788804

ABSTRACT

Downstream processing of biomolecules, particularly therapeutic proteins and enzymes, presents a formidable challenge due to intricate unit operations and high costs. This study introduces a novel cysteine (cys) functionalized aqueous two-phase system (ATPS) utilizing polyethylene glycol (PEG) and potassium phosphate, referred as PEG-K3PO4/cys, for selective extraction of laccase from complex protein mixtures. A 3D-baffle micro-mixer and phase separator was meticulously designed and equipped with computer vision controller, to enable precise mixing and continuous phase separation under automated-flow. Microfluidic-assisted ATPS exhibits substantial increase in partition coefficient (Kflow = 16.3) and extraction efficiency (EEflow = 88 %) for laccase compared to conventional batch process. Integrated and continuous-flow process efficiently partitioned laccase, even in low concentrations and complex crude extracts. Circular dichroism spectra of laccase confirm structural stability of enzyme throughout the purification process. Eventually, continuous-flow microfluidic bioseparation is highly useful for seamless downstream processing of target biopharmaceuticals in integrated and autonomous manner.


Subject(s)
Laccase , Polyethylene Glycols , Laccase/chemistry , Polyethylene Glycols/chemistry , Phosphates/chemistry , Cysteine/chemistry , Water/chemistry , Circular Dichroism , Potassium Compounds
3.
J Agric Food Chem ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38817042

ABSTRACT

To achieve effective separation and enrichment of bacteria, a novel synthetic scheme was developed to synthesize star-style boronate-functionalized copolymers with excellent hydrophilicity and temperature and pH responsiveness. A hydrophilic copolymer brush was synthesized by combining surface-initiated atom-transfer radical polymerization with amide reaction using bovine serum albumin as the core. The copolymer brush was further modified by introducing and immobilizing fluorophenylboronic acids through an amide reaction, resulting in the formation of boronate affinity material BSA@poly(NIPAm-co-AGE)@DFFPBA. The morphology and organic content of BSA@poly(NIPAm-co-AGE)@DFFPBA were systematically characterized. The BSA-derived composites demonstrated a strong binding capacity to both Gram-positive and Gram-negative bacteria. The binding capabilities of the affinity composite to Staphylococcus aureus and Salmonella spp. were 195.8 × 1010 CFU/g and 79.2 × 1010 CFU/g, respectively, which indicates that the novel composite exhibits a high binding capability to bacteria and shows a particularly more significant binding capacity toward Gram-positive bacteria. The bacterial binding of BSA@poly(NIPAm-co-AGE)@DFFPBA can be effectively altered by adjusting the pH and temperature. This study demonstrated that the star-shaped affinity composite had the potential to serve as an affinity material for the rapid separation and enrichment of bacteria in complex samples.

4.
Anal Sci ; 40(5): 827-841, 2024 May.
Article in English | MEDLINE | ID: mdl-38584205

ABSTRACT

In recent decades, various bioanalytical technologies have been investigated for appropriate medical treatment and effective therapy. Temperature-responsive chromatography is a promising bioanalytical technology owing to its functional properties. Temperature-responsive chromatography uses a poly(N-isopropylacrylamide)(PNIPAAm) modified stationary phase as the column packing material. The hydrophobic interactions between PNIPAAm and the analyte could be modulated by changing the column temperature because of the temperature-responsive hydrophobicity of PNIPAAm. Thus, the chromatography system does not require organic solvents in the mobile phase, making it suitable for therapeutic drug monitoring in medical settings such as hospitals. This review summarizes recent developments in temperature-responsive chromatography systems for therapeutic drug monitoring applications. In addition, separation methods for antibody drugs using PNIPAAm are also summarized because these methods apply to the therapeutic drug monitoring of biopharmaceutics. The temperature-responsive chromatography systems can also be utilized for clinical diagnosis, as they can assess multiple medicines simultaneously. This highlights the significant potential of temperature-responsive chromatography in medicine and healthcare.


Subject(s)
Temperature , Humans , Acrylic Resins/chemistry , Polymers/chemistry , Drug Monitoring/methods
5.
Protein Expr Purif ; 217: 106442, 2024 May.
Article in English | MEDLINE | ID: mdl-38336119

ABSTRACT

A novel tandem affinity tag is presented that enables the use of cation exchange resins for initial affinity purification, followed by an additional column step for enhanced purity and affinity tag self-removal. In this method, the highly charged heparin-binding tag binds strongly and selectively to either a strong or weak cation exchange resin based on electrostatic interactions, effectively acting as an initial affinity tag. Combining the heparin-binding tag (HB-tag) with the self-removing iCapTag™ provides a means for removing both tags in a subsequent self-cleaving step. The result is a convenient platform for the purification of diverse tagless proteins with a range of isoelectric points and molecular weights. In this work, we demonstrate a dual column process in which the tagged protein of interest is first captured from an E. coli cell lysate using a cation exchange column via a fused heparin-binding affinity tag. The partially purified protein is then diluted and loaded onto an iCapTag™ split-intein column, washed, and then incubated overnight to release the tagless target protein from the bound tag. Case studies are provided for enhanced green fluorescent protein (eGFP), beta galactosidase (ßgal), maltose binding protein (MBP) and beta lactamase (ßlac), where overall purity and host cell DNA clearance is provided. Overall, the proposed dual column process is shown to be a scalable platform technology capable of accessing both the high dynamic binding capacity of ion exchange resins and the high selectivity of affinity tags for the purification of recombinant proteins.


Subject(s)
Escherichia coli , Heparin , Recombinant Fusion Proteins/genetics , Escherichia coli/metabolism , Recombinant Proteins/chemistry , Chromatography, Affinity/methods , Heparin/metabolism
6.
Biotechnol J ; 19(1): e2300271, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38012961

ABSTRACT

The biopharmaceutical industry is under increased pressure to maximize efficiency, enhance quality compliance, and reduce the cost of drug substance manufacturing. Ways to reduce costs associated with manufacturing of complex biological molecules include maximizing efficiency of chromatography purification steps. For example, process analytical technology (PAT) tools can be employed to improve column resin life, prevent column operating failures, and decrease the time it takes to solve investigations of process deviations. We developed a robust method to probe the shape of the chromatogram for indications of column failure or detrimental changes in the process. The approach herein utilizes raw data obtained from manufacturing followed by a pre-processing routine to align chromatograms and patch together the different chromatogram phases in preparation for multivariate analysis. A principal component analysis (PCA) was performed on the standardized chromatograms to compare different batches, and resulted in the identification specific process change that affected the profile. In addition, changes in the chromatogram peaks were used to create predictive models for impurity clearance. This approach has the potential for early detection of column processing issues, improving timely resolution in large-scale chromatographic operations.


Subject(s)
Biological Products , Chromatography , Principal Component Analysis
7.
Bioorg Chem ; 143: 107040, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38141331

ABSTRACT

Rare earth elements (REEs) are a group of critical minerals and extensively employed in new material manufacturing. However, separation of lanthanides is difficult because of their similar chemical natures. Current lanthanide leaching and separation methods require hazardous compounds, resulting in severe environmental concerns. Bioprocessing of lanthanides offers an emerging class of tools for REE separation due to mild leaching conditions and highly selective separation scenarios. In the course of biopreparation, engineered microbes not only dissolve REEs from ores but also allow for selective separation of the lanthanides. In this review, we present an overview of recent advances in microbes and proteins used for the biomanufacturing of lanthanides and discuss high value-added applications of REE-derived biomaterials. We begin by introducing the fundamental interactions between natural microbes and REEs. Then we discuss the rational design of chassis microbes for bioleaching and biosorption. We also highlight the investigations on REE binding proteins and their applications in the synthesis of high value-added biomaterials. Finally, future opportunities and challenges for the development of next generation lanthanide-binding biological systems are discussed.


Subject(s)
Lanthanoid Series Elements , Metals, Rare Earth , Metals, Rare Earth/chemistry
8.
Biomolecules ; 13(9)2023 09 20.
Article in English | MEDLINE | ID: mdl-37759822

ABSTRACT

The yeast Hyphopichia wangnamkhiaoensis excretes a brilliant yellow fluorescent compound into its growth culture. In this study, we isolated and identified this compound using reverse-phase high-performance liquid chromatography-diode array detector (RP-HPLC-DAD) as well as 1H NMR and UV-Vis spectroscopy. Two of the three RP-HPLC-DAD methods used successfully separated the fluorescent compound and involved (1) a double separation step with isocratic flow elution, first on a C18 column and later on a cyano column, and (2) a separation with a linear gradient elution on a phenyl column. The wavelengths of maximum absorption of the fluorescent compound-containing HPLC fractions (~224, 268, 372, and 446 nm) are in good agreement with those exhibited by flavins. The 1H NMR spectra revealed methyl (δ 2.30 and 2.40) and aromatic proton (δ 7.79 and 7.77) signals of riboflavin. The 1H NMR spectra of the samples spiked with riboflavin confirmed that the brilliant yellow fluorescent compound is riboflavin. The maximum excitation and emission wavelengths of the fluorescent compound were 448 and 528 nm, respectively, which are identical to those of riboflavin.


Subject(s)
Riboflavin , Saccharomyces cerevisiae , Chromatography, High Pressure Liquid , Proton Magnetic Resonance Spectroscopy , Protons , Coloring Agents , Vitamins
9.
J Agric Food Chem ; 71(29): 11252-11262, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37392452

ABSTRACT

Quantification of neomycin residues in food samples demands an efficient purification platform. Herein, hierarchical macroporous agarose monoliths with multiple boronate affinity sites were established for selective separation of neomycin. The silica core was synthesized by "one-step" Stöber procedures followed by modification with amino group and incorporation of polyethyleneimine. A versatile macroporous agarose monolith was prepared by emulsification strategies and functionalized with epoxy groups. After introducing polyethyleneimine-integrated silica nanoparticles onto the agarose monolith, fluorophenylboronic acids were immobilized. The physical and chemical characteristics of the composite monolith were analyzed systematically. After optimization, neomycin showed high binding ability of 23.69 mg/g, and the binding capacity can be manipulated by changing the pH and adding monosaccharides. The composite monolith was subsequently utilized to purify neomycin from the spiked model aquatic products followed by high-performance liquid chromatography analysis, which revealed a remarkable neomycin purification effect, indicating the great potential in the separation of neomycin from complicated aquatic products.


Subject(s)
Boronic Acids , Polyethyleneimine , Polyethyleneimine/chemistry , Sepharose , Boronic Acids/chemistry , Silicon Dioxide/chemistry , Binding Sites , Chromatography, Affinity/methods
10.
J Biosci Bioeng ; 136(3): 232-238, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37393187

ABSTRACT

Hyaluronic acid (HA), an anionic, non-sulfated glycosaminoglycan, has several clinical applications. This study examines several downstream methods for purifying HA with maximum recovery and purity. Following the fermentation of Streptococcus zooepidemicus MTCC 3523 to produce HA, the broth was thoroughly purified to separate cell debris and insoluble impurities using a filtration procedure and a variety of adsorbents for soluble impurities. Nucleic acids, proteins with high molecular weight, were successfully removed from the broth using activated carbons and XAD-7 resins. In contrast, insoluble and low molecular weight impurities were removed using diafiltration, with HA recovery of 79.16% and purity close to 90%. Different analytical and characterization procedures such as Fourier transform-infrared spectroscopy, X-ray diffraction, nuclear magnetic resonance, and scanning electron microscopy validated the presence, purity, and structure of HA. Microbial HA showed activity in tests for 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) radical-scavenging (4.87 ± 0.45 kmol TE/g), total antioxidant capacity (13.32 ± 0.52%), hydroxyl radical-scavenging (32.03 ± 0.12%), and reducing power (24.85 ± 0.45%). The outcomes showed that the precipitation, adsorption, and diafiltration processes are suitable for extracting HA from a fermented broth under the chosen operating conditions. The HA produced was of pharmaceutical grade for non-injectable applications.


Subject(s)
Streptococcus equi , Hyaluronic Acid/biosynthesis , Hyaluronic Acid/isolation & purification , Hyaluronic Acid/pharmacology , Biotechnology , Antioxidants/pharmacology
11.
BioTech (Basel) ; 12(2)2023 May 03.
Article in English | MEDLINE | ID: mdl-37218748

ABSTRACT

Immobilized metal affinity chromatography (IMAC) is a popular and valuable method for the affinity purification of polyhistidine-tagged recombinant proteins. However, it often shows practical limitations, which might require cumbersome optimizations, additional polishing, and enrichment steps. Here, we present functionalized corundum particles for the efficient, economical, and fast purification of recombinant proteins in a column-free format. The corundum surface is first derivatized with the amino silane APTES, then EDTA dianhydride, and subsequently loaded with nickel ions. The Kaiser test, well known in solid-phase peptide synthesis, was used to monitor amino silanization and the reaction with EDTA dianhydride. In addition, ICP-MS was performed to quantify the metal-binding capacity. His-tagged protein A/G (PAG), mixed with bovine serum albumin (BSA), was used as a test system. The PAG binding capacity was around 3 mg protein per gram of corundum or 2.4 mg per 1 mL of corundum suspension. Cytoplasm obtained from different E. coli strains was examined as examples of a complex matrix. The imidazole concentration was varied in the loading and washing buffers. As expected, higher imidazole concentrations during loading are usually beneficial when higher purities are desired. Even when higher sample volumes, such as one liter, were used, recombinant protein down to a concentration of 1 µg/mL could be isolated selectively. Comparing the corundum material with standard Ni-NTA agarose beads indicated higher purities of proteins isolated using corundum. His6-MBP-mSA2, a fusion protein consisting of monomeric streptavidin and maltose-binding protein in the cytoplasm of E. coli, was purified successfully. To show that this method is also suitable for mammalian cell culture supernatants, purification of the SARS-CoV-2-S-RBD-His8 expressed in human Expi293F cells was performed. The material cost of the nickel-loaded corundum material (without regeneration) is estimated to be less than 30 cents for 1 g of functionalized support or 10 cents per milligram of isolated protein. Another advantage of the novel system is the corundum particles' extremely high physical and chemical stability. The new material should be applicable in small laboratories and large-scale industrial applications. In summary, we could show that this new material is an efficient, robust, and cost-effective purification platform for the purification of His-tagged proteins, even in challenging, complex matrices and large sample volumes of low product concentration.

13.
Biotechnol J ; 18(7): e2200610, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37014328

ABSTRACT

Despite the fact that yeast is a widely used microorganism in the food, beverage, and pharmaceutical industries, the impact of viability and age distribution on cultivation performance has yet to be fully understood. For a detailed analysis of fermentation performance and physiological state, we introduced a method of magnetic batch separation to isolate daughter and mother cells from a heterogeneous culture. By binding functionalised iron oxide nanoparticles, it is possible to separate the chitin-enriched bud scars by way of a linker protein. This reveals that low viability cultures with a high daughter cell content perform similarly to a high viability culture with a low daughter cell content. Magnetic separation results in the daughter cell fraction (>95%) showing a 21% higher growth rate in aerobic conditions than mother cells and a 52% higher rate under anaerobic conditions. These findings emphasise the importance of viability and age during cultivation and are the first step towards improving the efficiency of yeast-based processes.


Subject(s)
Saccharomyces cerevisiae , Saccharomyces , Saccharomyces cerevisiae/metabolism , Cell Cycle , Fermentation , Magnetic Phenomena
14.
Int J Biol Macromol ; 227: 307-315, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36509205

ABSTRACT

The most ubiquitous aromatic biopolymer in nature, lignin offers a promising foundation for the development of bio-based chemicals with wide-ranging industrial uses attributable to its aromatic structure. Lignin must first be depolymerized into smaller oligomeric and monomeric units at the initial stage of lignin bioconversion, followed by separation to recover valuable products. This study demonstrates an integrative biorefinery idea based on in-situ depolymerization of the lignin via microbial electro-Fenton reaction in a microbial peroxide-producing cell and recovery of the identified products i.e., phenolic or aromatic monomers by one step high throughput chromatography. The yield percentage of acetovanillone, ethylvanillin, and ferulic acid recovered from the depolymerized lignin using the integrative biorefinery strategy were 2.1 %, 9.1 %, and 9.04 %, respectively. These products have diverse industrial usage and can be employed as platform chemicals. The development of a novel system for efficient simultaneous lignin depolymerization and subsequent quality separation are demonstrated in this study.


Subject(s)
Lignin , Phenols , Lignin/chemistry
15.
ACS Appl Bio Mater ; 6(1): 146-156, 2023 01 16.
Article in English | MEDLINE | ID: mdl-36503228

ABSTRACT

Magnetic nanoparticles are an attractive bioseparation tool due to their magnetic susceptibility and high adsorption capacity for different types of molecules. A major challenge for separation is to generate selectivity for a target molecule, or for a group of molecules in complex environments such as cell lysates. It is crucial to understand the factors that determine the targets' adsorption behavior in mixtures for triggering intended interactions and selectivity. Here we use a model system containing three molecules, each of them a common representative of the more abundant types of macromolecules in living systems: sodium oleate (SO), a fatty acid; bovine serum albumin (BSA), a protein; and dextran, a polysaccharide. Our results show that (a) the BSA adsorption capacity on the iron oxide material depends markedly on the pH, with the maximum capacity at the pI of the protein (0.39 g gMNP-1 ); (b) sodium oleate, a strongly negatively charged molecule, an organic anion, renders a maximum adsorption capacity of 0.40 g gMNP-1, even at pHs at which oleate as well as the nanoparticle surface are negatively charged; (c) the adsorbed masses of dextran, a neutral sugar, are lower than for the other two molecules, between 0.09 and 0.13 g gMNP-1, regardless of the system's pH. We observe an unexpected behavior in mixtures: SO completely prevents the adsorption of BSA, and dextran decreases the adsorption of the other competitors, SO and BSA, while adsorbing at the same capacities, unaffected by either the presence of the other two molecules or the pH. BSA does not decrease the oleate adsorption capacity. We demonstrate the essential role of pH in the adsorption of BSA (a protein) and SO (a fatty acid), as well as its impact in the structural organization of the oleate molecules in water. Moreover, we present exciting data on the adsorption of the molecules in competition, revealing the need to focus on interaction studies in more complex environments. This study attempts to open the scope of the current research of bio-nano interactions to not only proteins but also to mixtures, and generally to molecules with other physicochemical characteristics. Furthermore, we contribute to the understanding of multicomponent systems with the vision set in enhancing biomass exploitation and biofractionation processes.


Subject(s)
Magnetite Nanoparticles , Oleic Acid , Oleic Acid/chemistry , Fatty Acids , Dextrans , Serum Albumin, Bovine/chemistry
16.
Front Chem ; 10: 1091243, 2022.
Article in English | MEDLINE | ID: mdl-36531319

ABSTRACT

The comprehensive profiling of glycoproteins is of great significance for the timely clinical diagnosis and therapy. However, inherent obstacles hamper their direct analysis from biological samples, and specific enrichment prior to analysis is indispensable. Among the various approaches for glycopeptide enrichment, hydrophilic interaction liquid chromatography (HILIC) has attracted special focus, especially for the development of novel hydrophilic materials, which is the key of HILIC. Metal-organic frameworks (MOFs) are a type of porous materials constructed from the self-assembly of metal and organic linkers. Advantages such as high surface area, flexible pore size, and easy modification render hydrophilic MOFs as ideal candidates for HILIC, which has inspired many studies over the past years. In this review, advances in hydrophilic MOFs for N-linked glycopeptide enrichment are summarized. According to the synthesis strategies, those materials are categorized into three classes, namely pristine MOFs, MOFs with chemical modifications, and MOFs-derived composite. In each categorization, the preparation and the function of different moieties are covered, as well as the enrichment performances of sensitivity, selectivity, and practical application. Finally, a summary and future perspective on the applications of hydrophilic MOFs for N-linked glycopeptide enrichment are briefly discussed. This review is expected to raise awareness of the properties of hydrophilic MOFs and offer some valuable information to further research in glycoproteomics.

17.
Colloids Surf B Biointerfaces ; 220: 112928, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36257279

ABSTRACT

Adipose-derived mesenchymal stem cells (ADSCs) have beneficial effects in cell transplantation therapy; these cells are collected from adipose tissue using low-invasive methods. However, to prepare ADSCs for cell therapy, a cell separation method that neither involves modification of the cell surface nor causes loss of cell activity is needed. Here, we aimed to develop ADSC separation columns using thermoresponsive cationic block copolymer brush-grafted beads as packing materials. The block copolymer brush was formed by a bottom cationic segment, poly(N,N-dimethylaminopropylacrylamide) (PDMAPAAm), and an upper thermoresponsive segment, poly(N-isopropylacrylamide) (PNIPAAm), and was grafted in two atom transfer radical polymerization reactions. The copolymer brush-grafted silica beads were packed into a column. An ADSC suspension was introduced into the columns at 37 °C and adsorbed on the copolymer brush-modified beads through electrostatic and hydrophobic interactions with the PDMAPAAm and PNIPAAm segments, respectively. The adsorbed ADSCs eluted from the column by lowering the temperature to 4 °C. In contrast, most Jurkat and vascular endothelial cells eluted at 37 °C, because of the relatively weaker electrostatic interactions with the block copolymer brush compared to ADSCs. Using the prepared column, a mixture of ADSCs and Jurkat cells was separated by changing the column temperature. The recovered ADSCs exhibited cell activity. The developed cell separation column may be useful for isolating ADSCs without cell surface modification, while maintaining cell activity.


Subject(s)
Mesenchymal Stem Cells , Silicon Dioxide , Humans , Silicon Dioxide/chemistry , Temperature , Endothelial Cells , Surface Properties , Polymers/chemistry , Cations , Adipose Tissue
18.
J Chromatogr A ; 1682: 463509, 2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36155074

ABSTRACT

Selective separation and purification of protein from complex medium is required to completely investigate the structure and function of the target protein. In this study, a composite macroporous agarose monolith containing iminodiacetate-chelated Ni2+ ligands was synthesized for selective separation and purification of histidine-tagged recombinant proteins. The large and interconnected pores in the monolith enabled fast binding of proteins with high matrix tolerance in treating complex mediums. To realize the selective protein binding, the iminodiacetate was directly conjugated to epoxy-functionalized agarose monolith via simple chemical reactions between epoxy and imino groups. After chelated Ni2+, the composite monolith could bind histidine-tagged recombinant proteins through the coordination interaction between transition metal ions and the imidazole ring of histidine. To further increase the binding capacities of the monolith, a hydrophilic intermediate polymer chain containing multiple iminodiacetate immobilization sites was conjugated to the azide-functionalized agarose monolith via Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. The morphology and chemical composition of the composite agarose monolith were characterized systematically. The protein binding capacities of the obtained composite agarose monolith were subsequently investigated. The binding capacities of the composite agarose monolith towards the model proteins Gp10 and Lys84 were 0.93 and 0.51 mg/mL, respectively. The protein binding of the composite agarose monolith could be manipulated by adjusting the temperature and concentrations of imidazole. These results demonstrate that the composite agarose monolith could be used as an affinity medium for rapid separation and purification of histidine-tagged recombinant proteins from biological samples.


Subject(s)
Histidine , Nickel , Alkynes , Azides , Chromatography, Affinity/methods , Histidine/chemistry , Imidazoles , Indicators and Reagents , Ions , Nickel/chemistry , Polymers , Recombinant Proteins/chemistry , Sepharose
19.
Talanta ; 248: 123627, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35661002

ABSTRACT

There is an urgent need to develop fast and sensitive detection methods for foodborne pathogens. But the conventional culture method that typically requires 2-3 days is not ideal for the rapid analysis. Food samples demonstrate a great challenge for direct detection due to the complex matrix. Hence, we present a new method based on the phage long-tail-fiber proteins (LTF4-a) immobilized magnetic nanoparticles (MNPs) for specific separation and concentration of Salmonella. The LTF4-a-MNP was prepared via the coupling of recombinant LTF4-a with MNPs and used to isolate and enrich Salmonella cells from contaminated food samples. The captured material was further integrated with the direct PCR program for accurate detection of Salmonella. Our study successfully established a new method for detecting contaminated food samples of Salmonella, the overall approach took no more than 3 h, which allowed a detection limit of 7 CFU/mL, demonstrating a promising alternative to the immunomagnetic separation method by replacing antibodies or aptamers, that is compatible with downstream analysis.


Subject(s)
Bacteriophages , Magnetite Nanoparticles , Food Microbiology , Immunomagnetic Separation/methods , Polymerase Chain Reaction , Salmonella typhimurium/genetics
20.
Article in English | MEDLINE | ID: mdl-35730027

ABSTRACT

Exosomes, the subclass of small membrane extracellular vesicles, have great diagnostic and therapeutic potential, but the lack of standardized methods for their efficient isolation and analysis limits the introduction of exosomal technologies into clinical practice. This review discusses the problems associated with the isolation of exosomes from biological fluids, as well as the principles of traditional and alternative methods of isolation. The aim of the presented review is to illustrate the variety of approaches based on the physical and biochemical properties of exosomes that can be used for exosome isolation. The advantages and disadvantages of different methods are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...