Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Biomolecules ; 14(9)2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39334839

ABSTRACT

Dietary phytic acid/phytate/myo-inositol hexaphosphate (IP6), a phosphate reservoir in plants, was viewed as antinutrient, caused by an influence on the bioavailability of minerals through its chelating activity. However, there is a growing body of evidence indicating that IP6 has beneficial (e.g., antiinflammatory, antibacterial, and anticancer) effects on multiple biological processes. Also, IP6 and its metabolites are known to exist in mammalian cells, including human cells, and the role of IP6 as a functional molecule is attracting attention. IP6 can bind to the growth sites of hydroxy-apatite (HA) and calcium oxalate crystals to prevent their growth and hence inhibit pathological calcification. SNF472, hexasodium IP6, is currently being evaluated in clinical studies as a treatment for vascular calcification and calciphylaxis. However, since HA crystal growth within bone matrix is an essential process in bone formation, it is possible that IP6 intake may inhibit physiological mineralization and bone formation, although currently more published studies suggest that IP6 may contribute to bone health rather than inhibit bone formation. Given that IP6 and its metabolites are thought to have diverse activities and many health benefits, it remains important to consider the range of effects of IP6 on bone.


Subject(s)
Bone and Bones , Phytic Acid , Humans , Phytic Acid/metabolism , Phytic Acid/pharmacology , Animals , Bone and Bones/metabolism , Bone and Bones/drug effects , Bone Diseases/metabolism , Bone Diseases/drug therapy
2.
Saudi Dent J ; 36(8): 1093-1096, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39176168

ABSTRACT

Phytic acid (inositol hexaphosphate/IP6) is a versatile chemical that is abundant in nature and is required for a variety of biological processes. It is harnessed in a wide range of fields, including drug discovery, daily supplies, chemical industries, medicine, and dentistry. IP6 is becoming increasingly popular in dentistry, with promising results. Several properties, such as cariostatic ability, beneficial impact on enamel disintegration, and anti-plaque, anti-tartar, and dental adhesive-forming properties, have been investigated thus far. Due to many constraints in the literature, there was a point in time when IP6 received less attention, which impacted knowledge in this field. Nevertheless, the positive outcomes of the flourishing of IP6 have recently been reconsidered from a number of papers that have improved our understanding of its modes of action in the aforementioned applications. The role of phytic acid in refining the properties and manoeuvring of dental resources is being investigated in novel endeavors in treating diseases of pulp and tissues supporting tooth structure, but to show its novel therapeutic potential, more precisely calibrated clinical trials are needed. This review examines and discusses the various uses proposed in the literature, as well as the applications of IP6 in dentistry.

3.
Mol Cell ; 84(15): 2882-2899.e10, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39032489

ABSTRACT

The modular Integrator complex is a transcription regulator that is essential for embryonic development. It attenuates coding gene expression via premature transcription termination and performs 3'-processing of non-coding RNAs. For both activities, Integrator requires endonuclease activity that is harbored by an RNA cleavage module consisting of INTS4-9-11. How correct assembly of Integrator modules is achieved remains unknown. Here, we show that BRAT1 and WDR73 are critical biogenesis factors for the human cleavage module. They maintain INTS9-11 inactive during maturation by physically blocking the endonuclease active site and prevent premature INTS4 association. Furthermore, BRAT1 facilitates import of INTS9-11 into the nucleus, where it is joined by INTS4. Final BRAT1 release requires locking of the mature cleavage module conformation by inositol hexaphosphate (IP6). Our data explain several neurodevelopmental disorders caused by BRAT1, WDR73, and INTS11 mutations as Integrator assembly defects and reveal that IP6 is an essential co-factor for cleavage module maturation.


Subject(s)
RNA Cleavage , Humans , HEK293 Cells , Phytic Acid/metabolism , Mutation , Cell Nucleus/metabolism , Cell Nucleus/genetics , Catalytic Domain , Protein Binding , RNA Nucleotidyltransferases
4.
Food Chem ; 456: 139957, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-38870808

ABSTRACT

The antioxidant effect of purified phytic acid (PPA) from rice bran (rice polishing by-product) combined with sodium erythorbate (SE) was evaluated for the first time in mortadella (added with 60% mechanically separated meat), a cured product with high-fat content and highly prone to oxidation, characteristic in Brazil. PPA proved effective compared to standard analytical grade phytic acid (SPA). Two central composite rotational designs (CCRD) (A and B) were employed to investigate the influence of PPA and SE, and SPA and SE, respectively, on mortadella lipid oxidation evaluated by TBARS after 30 days at 30 °C. Due to the high phytic acid's potent antioxidant capacity, the combination of PPA and SE synergistically reduced mortadella lipid oxidation. Furthermore, PPA from rice bran effectively controlled lipid oxidation in mortadella when combined with SE in the range of 5.0 to 9.0 mmol/kg of SPA and 25.0 to 50.0 mmol/kg of SE.


Subject(s)
Antioxidants , Chickens , Meat Products , Oryza , Phytic Acid , Animals , Phytic Acid/chemistry , Oryza/chemistry , Antioxidants/chemistry , Antioxidants/isolation & purification , Meat Products/analysis , Oxidation-Reduction
5.
Pharmacol Res ; 204: 107200, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38710241

ABSTRACT

Targeting specific molecular drivers of tumor growth is a key approach in cancer therapy. Among these targets, the low-density lipoprotein receptor-related protein 6 (LRP6), a vital component of the Wnt signaling pathway, has emerged as an intriguing candidate. As a cell-surface receptor and vital co-receptor, LRP6 is frequently overexpressed in various cancer types, implicating its pivotal role in driving tumor progression. The pursuit of LRP6 as a target for cancer treatment has gained substantial traction, offering a promising avenue for therapeutic intervention. Here, this comprehensive review explores recent breakthroughs in our understanding of LRP6's functions and underlying molecular mechanisms, providing a profound discussion of its involvement in cancer pathogenesis and drug resistance. Importantly, we go beyond discussing LRP6's role in cancer by discussing diverse potential therapeutic approaches targeting this enigmatic protein. These approaches encompass a wide spectrum, including pharmacological agents, natural compounds, non-coding RNAs, epigenetic factors, proteins, and peptides that modulate LRP6 expression or disrupt its interactions. In addition, also discussed the challenges associated with developing LRP6 inhibitors and their advantages over Wnt inhibitors, as well as the drugs that have entered phase II clinical trials. By shedding light on these innovative strategies, we aim to underscore LRP6's significance as a valuable and multifaceted target for cancer treatment, igniting enthusiasm for further research and facilitating translation into clinical applications.


Subject(s)
Antineoplastic Agents , Low Density Lipoprotein Receptor-Related Protein-6 , Molecular Targeted Therapy , Neoplasms , Animals , Humans , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Low Density Lipoprotein Receptor-Related Protein-6/antagonists & inhibitors , Neoplasms/drug therapy , Neoplasms/metabolism , Wnt Signaling Pathway/drug effects
6.
Biol Pharm Bull ; 46(8): 1145-1151, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37286513

ABSTRACT

Inositol hexaphosphate (IP6), a widely found natural bioactive substance in grains, effectively inhibits the progression of colorectal cancer (CRC) when used in combination with inositol (INS). We previously showed that supplementation of IP6 and INS upregulated the claudin 7 gene in orthotropic CRC xenografts in mice. The aim of this study was to elucidate the role of claudin 7 in the inhibition of CRC metastasis by IP6 and INS, and explore the underlying mechanisms. We found that IP6, INS and their combination inhibited the epithelial-mesenchymal transition (EMT) of colon cancer cell lines (SW480 and SW620), as indicated by upregulation of claudin 7 and E-cadherin, and downregulation of N-cadherin. The effect of IP6 and INS was stronger compared to either agent alone (combination index < 1). Furthermore, the silencing of the claudin 7 gene diminished the anti-metastatic effects of IP6 and INS on SW480 and SW620 cells. Consistent with in vitro findings, the combination of IP6 and INS suppressed CRC xenograft growth in a mouse model, which was neutralized by claudin 7. Taken together, the combination of IP6 and INS can inhibit CRC metastasis by blocking EMT of tumor cells through upregulation of claudin 7.


Subject(s)
Colonic Neoplasms , Colorectal Neoplasms , Humans , Mice , Animals , Colorectal Neoplasms/metabolism , Phytic Acid/pharmacology , Phytic Acid/therapeutic use , Inositol/pharmacology , Inositol/therapeutic use , Cell Line, Tumor , Epithelial-Mesenchymal Transition , Claudins/genetics
7.
Chemosphere ; 336: 139251, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37331662

ABSTRACT

Metal ions or metal (hydrogen) oxides are widely used as active sites in the construction of phosphate-adsorbing materials in water, but the removal of soluble organophosphorus from water remains technically difficult. Herein, synchronous organophosphorus oxidation and adsorption removal were achieved using electrochemically coupled metal-hydroxide nanomaterials. La-Ca/Fe-layered double hydroxide (LDH) composites prepared using the impregnation method removed both phytic acid (inositol hexaphosphate, IHP) and hydroxy ethylidene diphosphonic acid (HEDP) acid under an applied electric field. The solution properties and electrical parameters were optimized under the following conditions: organophosphorus solution pH = 7.0, organophosphorus concentration = 100 mg L-1, material dosage = 0.1 g, voltage = 15 V, and plate spacing = 0.3 cm. The electrochemically coupled LDH accelerates the removal of organophosphorus. The IHP and HEDP removal rates were 74.9% and 47%, respectively in only 20 min, 50% and 30% higher, respectively, than that of La-Ca/Fe-LDH alone. The removal rate in actual wastewater reached 98% in only 5 min. Meanwhile, the good magnetic properties of electrochemically coupled LDH allow easy separation. The LDH adsorbent was characterized using scanning electron microscopy with energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction analysis. It exhibits a stable structure under electric field conditions, and its adsorption mechanism mainly includes ion exchange, electrostatic attraction, and ligand exchange. This new approach for enhancing the adsorption capacity of LDH has broad application prospects in organophosphorus removal from water.


Subject(s)
Organophosphorus Compounds , Water Pollutants, Chemical , Adsorption , Etidronic Acid , Hydrogen-Ion Concentration , Hydroxides/chemistry , Kinetics , Wastewater , Water , Water Pollutants, Chemical/chemistry , Organophosphorus Compounds/chemistry
8.
Int J Pharm ; 639: 122937, 2023 May 25.
Article in English | MEDLINE | ID: mdl-37068717

ABSTRACT

Polysaccharide-based nanoparticles (NPs) such as pectin/ chitosan (PN/CN) had always been of greatest interest because of their excellent solubility, biocompatibility, and higher suitability for oral drug delivery. This study employed blending-crosslinking of polymers (PN&CN) followed by emulsification-solvent evaporation to prepare and compare two sets of PEGylated NPs to deliver phytic acid (IP6) to colon orally as it has potential to manage colon cancer but fails to reach colon when ingested in pure form. The first set was crosslinked with Glutaraldehyde (GE) (GE*PN-CN-NPs) while the second set was crosslinked with sodium tripolyphosphate (TPP) (TPP*PN-CN-NPs). IP6-loaded-GE/TPP*PN-CN-NPs were optimized using a central composite design. Developed TPP*PN-CN-NPs had a smaller size (210.6 ± 7.93 nm) than GE*PN-CN-NPs (557.2 ± 5.027 nm). Prepared NPs showed <12% IP6 release at pH 1.2 whereas >80% release was observed at pH 7.4. Further, NPs were explored for cytocompatibility in J774.2 cell lines, cytotoxicity, and cellular uptake in HT-29 and DLD-1 cell lines. While exhibiting substantial cytotoxicity and cellular uptake in HT-29 and DLD-1, the NPs were deemedsafe in J774.2. The PEGylated-TPP*PN-CN-NPs showed time-dependent uptake in J774.2 cell lines. Conclusively, the employed NP development method successfully delivered IP6 to colon and may also open avenues for the oral delivery of other drugs to colon.


Subject(s)
Chitosan , Nanoparticles , Phytic Acid , Pectins , Colon , Polyethylene Glycols , Drug Carriers
9.
Food Nutr Res ; 672023.
Article in English | MEDLINE | ID: mdl-36794012

ABSTRACT

Background: Short bowel syndrome (SBS) has high morbidity and mortality rates, and promoting intestinal adaptation of the residual intestine is a critical treatment. Dietary inositol hexaphosphate (IP6) plays an important role in maintaining intestinal homeostasis, but its effect on SBS remains unclear. This study aimed at investigating the effect of IP6 on SBS and clarified its underlying mechanism. Methods: Forty male Sprague-Dawley rats (3-week-old) were randomly assigned into four groups (Sham, Sham + IP6, SBS, and SBS + IP6 groups). Rats were fed standard pelleted rat chow and underwent resection of 75% of the small intestine after 1 week of acclimation. They received 1 mL IP6 treatment (2 mg/g) or sterile water daily for 13 days by gavage. Intestinal length, levels of inositol 1,4,5-trisphosphate (IP3), histone deacetylase 3 (HDAC3) activity, and proliferation of intestinal epithelial cell-6 (IEC-6) were detected. Results: IP6 treatment increased the length of the residual intestine in rats with SBS. Furthermore, IP6 treatment caused an increase in body weight, intestinal mucosal weight, and IEC proliferation, and a decrease in intestinal permeability. IP6 treatment led to higher levels of IP3 in feces and serum, and higher HDAC3 activity of the intestine. Interestingly, HDAC3 activity was positively correlated with the levels of IP3 in feces (r = 0.49, P = 0.01) and serum (r = 0.44, P = 0.03). Consistently, IP3 treatment promoted the proliferation of IEC-6 cells by increasing HDAC3 activity in vitro. IP3 regulated the Forkhead box O3 (FOXO3)/Cyclin D1 (CCND1) signaling pathway. Conclusion: IP6 treatment promotes intestinal adaptation in rats with SBS. IP6 is metabolized to IP3 to increase HDAC3 activity to regulate the FOXO3/CCND1 signaling pathway and may represent a potential therapeutic approach for patients with SBS.

10.
Cancers (Basel) ; 14(17)2022 Aug 30.
Article in English | MEDLINE | ID: mdl-36077751

ABSTRACT

Herein, we assessed the stage-specific efficacy of inositol hexaphosphate (IP6, phytic acid), a bioactive food component, on prostate cancer (PCa) growth and progression in a transgenic mouse model of prostate cancer (TRAMP). Starting at 4, 12, 20, and 30 weeks of age, male TRAMP mice were fed either regular drinking water or 2% IP6 in water for ~8-15 weeks. Pathological assessments at study endpoint indicated that tumor grade is arrested at earlier stages by IP6 treatment; IP6 also prevented progression to more advanced forms of the disease (~55-70% decrease in moderately and poorly differentiated adenocarcinoma incidence was observed in advanced stage TRAMP cohorts). Next, we determined whether the protective effects of IP6 are mediated via its effect on the expansion of the cancer stem cells (CSCs) pool; results indicated that the anti-PCa effects of IP6 are associated with its potential to eradicate the PCa CSC pool in TRAMP prostate tumors. Furthermore, in vitro assays corroborated the above findings as IP6 decreased the % of floating PC-3 prostaspheres (self-renewal of CSCs) by ~90%. Together, these findings suggest the multifaceted chemopreventive-translational potential of IP6 intervention in suppressing the growth and progression of PCa and controlling this malignancy at an early stage.

11.
Molecules ; 27(17)2022 Aug 25.
Article in English | MEDLINE | ID: mdl-36080228

ABSTRACT

Phytate has been classified as an anti-nutrient, but there are no adverse effects from the consumption of a balanced diet with 1 to 2 g of daily phytate (inositol-hexaphosphate, InsP6) as a calcium magnesium salt, the form naturally present in grains. Furthermore, recent research has shown that phytate consumption may prevent pathological calcifications, such as kidney stones and cardiovascular calcifications. However, many endogenous and exogenous enzymes can hydrolyze phytate to lower inositol phosphates (InsPs) that also have biological activity. We performed a controlled hydrolysis of phytate and identified the products (InsPs) using tandem mass spectrometry (MS/MS). The total level of all InsPs was measured using a non-specific methodology. In addition, we evaluated the effects of the InsP6 hydrolysates on calcium oxalate crystallization using scanning electron microscopy and measuring the time needed for the induction of crystallization. Our results indicate that InsP6 and its hydrolysis products functioned as effective inhibitors of calcium oxalate crystallization. Thus, even though InsP6 is hydrolyzed after consumption, the enzymatic products also have the potential to reduce pathological calcifications. Finally, although it is useful to measure the overall level of InsPs in biological fluids, such as urine, there is a need to develop simple analytical methods to quantify the level of individual InsPs.


Subject(s)
Calcium Oxalate , Phytic Acid , Calcium/chemistry , Crystallization , Inositol Phosphates , Magnesium , Phytic Acid/pharmacology , Tandem Mass Spectrometry
12.
Foods ; 11(3)2022 Jan 30.
Article in English | MEDLINE | ID: mdl-35159556

ABSTRACT

This study evaluated the inhibitory effect of phytic acid (PA) on the spore germination and vegetative cells growth of Clostridium perfringens type A, as well as its effect in combination with maltodextrin (MD) in cooked sausages. The addition of 1% PA showed a satisfactory inhibition of spores' germination and vegetative cells growth of C. perfringens in BHI media. The inhibitory effect of 1% PA on vegetative cells was similar to the additive sodium sorbate (SS) at 10%. Subsequently, a mixture of PA-MD (1:1; w/w) was evaluated for the inhibition of C. perfringens spores in cooked sausages. The PA-MD 1.5% and 2.5% had a similar performance to SS 10% and a similar or higher performance than 0.015% NO2 (p < 0.05). In an unprecedented way, the present study demonstrated that PA inhibited spore germination and vegetative cells growth of C. perfringens, highlighting its potential use as an alternative and natural preservative for the meat industry.

13.
J Cancer ; 12(20): 6071-6080, 2021.
Article in English | MEDLINE | ID: mdl-34539880

ABSTRACT

Hepatocellular carcinoma (HCC) is a drastic problem in China. Oxaliplatin, a platinum-based chemotherapy drug, has limited efficacy in treating HCC, characterized by intrinsic and acquired resistance. Inositol hexaphosphate (IP6), a carbohydrate abundant in grains, has contributed to the rising popularity of whole grain products consumption for the potential protection against dozens of diseases. However, the therapeutic potential of IP6 in halting the progression of HCC remains unclear, especially in combination with oxaliplatin. The anti-proliferation and anti-migration effects of IP6 were evaluated in vitro and in vivo. The synergistic and sequential anti-proliferative effect with IP6 and oxaliplatin were also evaluated in HCC. Finally, the role of CCN2-LRP6-ß-catenin-ABCG1 signaling in oxaliplatin resistance and IP6 treatment was evaluated. We proved that IP6 treatment exhibited independent anticancer effect and synergistic anti-proliferative effects in combination with oxaliplatin in HCC. Specifically, up-regulation of ABCG1 and CCN2 were associated with oxaliplatin resistance. ABCG1 was acting as a downstream molecule of the CCN2-LRP6-Wnt/ß-catenin signaling pathway in HCC cells. The IP6 treatment exhibited inhibition of CCN2-LRP6-Wnt/ß-catenin signaling pathway and downregulation of ABCG1 in HCC cells. When combined with ABCG1 knocking down in HCC cells, the anti-proliferative effect of oxaliplatin was partly impaired in combination with IP6. We suggested that IP6 treatment renders HCC sensitive to oxaliplatin and breaking the CCN2-LRP6-ß-catenin-ABCG1 signaling pathway is one of the mechanism after IP6 treatment.

14.
J Pers Med ; 11(8)2021 Jul 30.
Article in English | MEDLINE | ID: mdl-34442400

ABSTRACT

BACKGROUND: Treatment of breast cancer (BC) includes locoregional and systemic therapies depending on tumor and patient's characteristics. Inositol hexaphosphate (IP6) is known as a strong antioxidant agent, able to improve local (i.e., breast region) side effects, functional status and quality-of-life. We investigated some potential beneficial effects, including hematological and local, of the combined therapy with oral myo-inositol administration and topical IP6 application in patients undergoing surgery for BC and eligible to adjuvant chemotherapy. METHODS: We considered BC patients randomly assigned to the Inositol Group (oral myo-inositol + IP6 local application for the entire neoadjuvant treatment period) and to the Control Group (standard of care). The EORTC QLQ-BR23 and QLQ-C30 questionnaires were administered to both groups and blood parameters were assessed as per clinical routine practice at baseline (before starting adjuvant chemotherapy), T1 (after the first two doses of epirubicin-cyclophosphamide regimen), T2 (at the end of epirubicin-cyclophosphamide regimen), T3 (after the first six doses of paclitaxel regimen), and T4 (at the end of the paclitaxel treatment). RESULTS: A total of 36 BC patients were considered, 18 in the Inositol Group and 18 in the Control Group. The Inositol Group showed a lower decrease in red blood cells, hemoglobin levels and white blood cells with respect to controls (p ≤ 0.02), as well as amelioration in scores related to breast and arm local symptoms (p ≤ 0.02), body image (p = 0.04) and quality-of-life related symptoms (p ≤ 0.04). CONCLUSIONS: In our cohort of BC patients, a combined treatment with oral myo-inositol + IP6 local application was able to improve local symptoms and quality-of-life related symptoms which represent clinically relevant aspects associated with patient's prognosis.

15.
Food Sci Nutr ; 9(6): 3240-3249, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34136188

ABSTRACT

Inositol hexaphosphate (IP6) is a dietary compound commonly obtained from corn, rice, etc. Although we may consume significant amount of IP6 daily, it is unclear whether this diet will impact macrophages' fate and function. Therefore, we characterized the underlying relationship between IP6 and macrophage polarization in this study. We specifically examined the signature gene expression profiles associated with pro- and anti-inflammatory responses, and resolution of inflammation pathways in macrophages under the influence of IP6. Interestingly, our data suggested that IP6 polarizes bone marrow-derived macrophages (BMDM) into an M2a-like subtype. Our results also demonstrated that IP6 reduces lipopolysaccharide-induced apoptosis and pro-inflammatory responses in macrophages. In contrast, the expression levels of genes related to anti-inflammatory responses and resolution of inflammation pathways are upregulated. Our findings collectively demonstrated that IP6 has profound modulation effects on macrophages, which warrant further research on the therapeutic benefits of IP6 for inflammatory diseases.

16.
Materials (Basel) ; 14(8)2021 Apr 12.
Article in English | MEDLINE | ID: mdl-33921373

ABSTRACT

Clinically used mineral bone cements lack high strength values, absorbability and drillability. Therefore, magnesium phosphate cements have recently received increasing attention as they unify a high mechanical performance with presumed degradation in vivo. To obtain a drillable cement formulation, farringtonite (Mg3(PO4)2) and magnesium oxide (MgO) were modified with the setting retardant phytic acid (C6H18O24P6). In a pre-testing series, 13 different compositions of magnesium phosphate cements were analyzed concentrating on the clinical demands for application. Of these 13 composites, two cement formulations with different phytic acid content (22.5 wt% and 25 wt%) were identified to meet clinical demands. Both formulations were evaluated in terms of setting time, injectability, compressive strength, screw pullout tests and biomechanical tests in a clinically relevant fracture model. The cements were used as bone filler of a metaphyseal bone defect alone, and in combination with screws drilled through the cement. Both formulations achieved a setting time of 5 min 30 s and an injectability of 100%. Compressive strength was shown to be ~12-13 MPa and the overall displacement of the reduced fracture was <2 mm with and without screws. Maximum load until reduced fracture failure was ~2600 N for the cements only and ~3800 N for the combination with screws. Two new compositions of magnesium phosphate cements revealed high strength in clinically relevant biomechanical test set-ups and add clinically desired characteristics to its strength such as injectability and drillability.

17.
Front Chem ; 8: 582746, 2020.
Article in English | MEDLINE | ID: mdl-33173770

ABSTRACT

The formation of metal complexes with phytic acid is a complex process that depends strongly on the metal-to-ligand molar ratio, pH value and consequent protonation level of the phytate ligand as well as accompanying side reactions, in particular metal hydrolysis and precipitation of the formed coordination compounds. In the present work, the potentiometric titration technique was used in combination with a detailed analysis of the equivalent point dependencies for selected biologically relevant monovalent and divalent cations from the groups of alkaline earths and transition metals, namely: Mg(II), Zn(II), Fe(II), Cu(I), and Cu(II) ions. The investigation of complex formation mechanism, the evaluation of the species formed, and the identification of other side reactions was based on the examination of three distinct equivalent points, which were detectable by alkalimetric titrations of phytic acid in the presence of selected metal ions. It has been demonstrated that alkaline earth metals interact with different binding site(s) than the transition metals, and experiments with both oxidation states of copper revealed similar complexing characteristics, which depend mainly on the ionic radius (and not on the ionic charge as initially expected). Quantitative data on phytate complexation, hydroxide formation and complex precipitation are presented herein for all metals studied, including Cu(I), which was investigated for the first time by means of alkalimetric titration.

18.
Toxicol Rep ; 7: 844-851, 2020.
Article in English | MEDLINE | ID: mdl-32714839

ABSTRACT

A 90-day subchronic oral toxicity study was conducted to evaluate the safety of a consensus bacterial phytase variant 6-phytase (PhyG) for use as an animal feed additive. This phytase is produced by fermentation with a fungal (Trichoderma reesei) production strain expressing a biosynthetic variant of a consensus bacterial phytase gene assembled via ancestral reconstruction with sequence bias for the phytase from Buttiauxella sp. Rats were administered PhyG daily via oral gavage at dose-levels of 0 (distilled water), 250, 500 or 1000 mg total organic solids (TOS)/kg bodyweight (bw)/day (equivalent to 0, 112,500, 225,000 and 450,000 phytase units (FTU)/kg bw/day, respectively). No test article-related adverse effects were observed. A no-observed-adverse-effect level (NOAEL) for PhyG was established as 1000 mg TOS/kg bw/day, the highest test concentration. Based on this NOAEL and an estimate of broiler consumption determined from the proposed inclusion of the phytase in feed at the maximum recommended level (4000 FTU/kg), a margin of safety value of 1613 was calculated. Results of in vitro genotoxicity testing and in silico protein toxin evaluation further confirmed PhyG to be non-genotoxic and not likely to be a protein toxin upon consumption. These data support the safety of PhyG as an animal feed additive.

19.
Br J Pharmacol ; 177(19): 4400-4415, 2020 10.
Article in English | MEDLINE | ID: mdl-32557649

ABSTRACT

BACKGROUND AND PURPOSE: No therapy is approved for vascular calcification or calcific uraemic arteriolopathy (calciphylaxis), which increases mortality and morbidity in patients undergoing dialysis. Deposition of hydroxyapatite (HAP) crystals in arterial walls is the common pathophysiologic mechanism. The mechanism of action of SNF472 to reduce HAP deposition in arterial walls was investigated. EXPERIMENTAL APPROACH: We examined SNF472 binding features (affinity, release kinetics and antagonism type) for HAP crystals in vitro, inhibition of calcification in excised vascular smooth muscle cells from rats and bone parameters in osteoblasts from dogs and rats. KEY RESULTS: SNF472 bound to HAP with affinity (KD ) of 1-10 µM and saturated HAP at 7.6 µM. SNF472 binding was fast (80% within 5 min) and insurmountable. SNF472 inhibited HAP crystal formation from 3.8 µM, with complete inhibition at 30.4 µM. SNF472 chelated free calcium with an EC50 of 539 µM. Chelation of free calcium was imperceptible for SNF472 1-10 µM in physiological calcium concentrations. The lowest concentration tested in vascular smooth muscle cells, 1 µM inhibited calcification by 67%. SNF472 showed no deleterious effects on bone mineralization in dogs or in rat osteoblasts. CONCLUSION AND IMPLICATIONS: These experiments show that SNF472 binds to HAP and inhibits further HAP crystallization. The EC50 for chelation of free calcium is 50-fold greater than a maximally effective SNF472 dose, supporting the selectivity of SNF472 for HAP. These findings indicate that SNF472 may have a future role in the treatment of vascular calcification and calcific uraemic arteriolopathy in patients undergoing dialysis.


Subject(s)
Calciphylaxis , Vascular Calcification , Animals , Calciphylaxis/drug therapy , Dogs , Humans , Phytic Acid , Rats , Renal Dialysis , Vascular Calcification/drug therapy
20.
Onco Targets Ther ; 13: 3223-3235, 2020.
Article in English | MEDLINE | ID: mdl-32368081

ABSTRACT

INTRODUCTION: Colorectal cancer, one of the most common tumors, is mainly fatal because of the occurrence of liver metastasis. Inositol hexaphosphate (IP6) and inositol (INS) were found, both, in vitro and in vivo to play an anti-tumor effect, whereas the combination of IP6 and INS was more effective than IP6 or INS alone. MATERIALS AND METHODS: The inhibitory effects of IP6, INS and the combination of IP6+INS on tumor progression and liver metastasis of colorectal cancer were investigated in an orthotopic transplantation model of colorectal cancer. The tumor-bearing mice were selected by in vivo bioluminescence imaging and were treated with IP6, INS, and IP6 combined with INS, respectively. All mice were sacrificed after 6 weeks of treatment. The cancer development and metastasis were compared among the groups. The expression of genes related to the Wnt/ß-catenin in the model was analyzed. RESULTS: The results demonstrated that liver metastasis was inhibited after treatment with IP6, INS, and IP6+INS. Compared to that of the M_G, survival period was extended, and tumor weight was lowered in IP6_G, INS_G, and IP6+INS_G. Besides, the liver metastatic area of mice in IP6+INS_G was relatively smaller than that in M_G, IP6_G, or INS_G. The results of RNA-seq analysis showed that the expressions of Wnt10b, Tcf7, and c-Myc were significantly downregulated in IP6+INS_G compared to that in M_G (P<0.05). Results of real-time PCR and Western blot showed that mRNA and protein expressions of ß-catenin, Wnt10b, Tcf7, and c-Myc were significantly lower in IP6+INS_G compared to that in M_G (P<0.05). DISCUSSION: IP6+INS was more effective in inhibiting liver metastasis of colorectal cancer than IP6 or INS alone. The better inhibition effect may be accomplished through regulating the mutation of Wnt/ß-catenin signaling pathway by inhibiting Wnt10b, Tcf7, ß-catenin, and c-Myc from abnormally high expression.

SELECTION OF CITATIONS
SEARCH DETAIL