Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.175
Filter
1.
Curr Pharm Des ; 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39092731

ABSTRACT

Microemulsion gel, as a promising transdermal nanoparticle delivery system, addresses the limitations of microemulsions and enhances their performance in drug delivery and release. This article aims to discuss the advantages of microemulsion gel, including improved drug bioavailability, reduced drug irritation, enhanced drug penetration and skin adhesion, and increased antimicrobial properties. It explores the methods for selecting microemulsion formulations and the general processes of microemulsion preparation, as well as commonly used oil phases, surfactants, and co-surfactants. Additionally, the biomedical applications of microemulsion gel in treating conditions, such as acne and psoriasis, are also discussed. Overall, this article elucidates the significant potential of microemulsion gel in topical drug delivery, providing insights into future development and clinical applications.

2.
Biomed Pharmacother ; 178: 117253, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39111084

ABSTRACT

Malignant ascites effusion (MAE) is a common complication of advanced malignant tumors with limited treatments. Euphorbia lathyris (EL) has a long history of application in patients with edema and ascites. Herein, we reported for the first time a mode in which EL and EL Pulveratum (PEL) spontaneously formed natural microemulsions (ELM and PELM) without the addition of any carriers and excipients, and found that the protein and phospholipid contained in them encapsulated fatty oil and diterpenoid esters through non-covalent interactions. The denaturation and degradation of protein in PELM resulted in stronger binding of diterpenoid esters to the hydrophobic region of protein, which facilitated the sustained and slow release of diterpenoid esters and improved their bioavailability in vivo, thereby retaining the efficacy of preventing MAE while alleviating the irritation of intestinal mucosa. The mechanism by which PELM retained efficacy might be related to increased feces moisture and urine volume, and decreased expression of AVPR2, cAMP, PKA and AQP3 in MAE mice. And its mechanism of reducing intestinal mucosal irritation was related to decreased cell apoptosis, amelioration of oxidative stress, elevation of mitochondrial membrane potential, and up-regulation of Occludin and Claudin-1 expression in IEC-6 cells. This nano-adjuvant-free natural microemulsions may be a promising therapeutic strategy in the field of phytochemistry for promoting the application of natural and efficient nano-aggregates spontaneously formed by medicinal plants in MAE, and provide a new perspective for advancing the development of the fusion of Chinese herbal medicine and nanomedicine and its clinical translation.

3.
J Cosmet Dermatol ; 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39135289

ABSTRACT

BACKGROUND: Methimazole, an oral antithyroid drug, has recently gained attention for its skin-brightening effects when applied topically to treat melasma. This study aims to develop, optimize, and characterize a methimazole microemulsion as a novel, safe approach for local melasma treatment. MATERIALS AND METHODS: We prepared microemulsion formulations containing 3% methimazole by combining appropriate amounts of surfactants (Tween 80 and Span 20), propylene glycol cosurfactant, and an oil phase (oleic acid-transcutol p at a 1:10 ratio). We then assessed droplet size, stability, viscosity, and skin permeation using rat skin models. RESULTS: The microemulsions' droplet sizes ranged from 7.06 to 28.13 nm, with viscosities between 120 and 254 centipoises. Our analysis identified droplet size, viscosity, and membrane release as significant independent variables. We determined the permeability parameters of the optimal formulation through rat skin, including steady-state permeability rate (Jss), permeability coefficient (p), lag time (Tlag), and apparent diffusion coefficient (Dapp). CONCLUSION: We found that the microemulsions' characteristics, physicochemical properties, and in vitro release depended on the surfactant-to-cosurfactant ratio, water content, and oil content. We developed an optimal formulation with a high surfactant-to-cosurfactant ratio and low water and oil percentages. This formulation shows potential for commercialization and manufacturing of final products.

4.
Poult Sci ; 103(10): 104121, 2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39121643

ABSTRACT

The overuse of antibiotics has resulted in a surge of drug-resistant bacteria, making the pursuit of natural antimicrobials an urgent and significant trend. Encapsulation and nanoparticulation are effective ways to enhance the antibacterial properties of natural drugs. In this study, we encapsulated tannic acid (TA) with chitosan (CS) and poly (lactide-co-glycolide) (PLGA) using the emulsion-solvent evaporation method to enhance the antimicrobial effect of TA. We prepared a bilayer membrane spherical nanoemulsion of TA-PLGA-CS (TPC) with uniform size of 559.87 ± 1.16 nm, and zeta potential of 59.53 ± 1.07 mV. TPC could be stably stored for 90 days at 4°C without affecting the properties of the emulsion, and the minimum bactericidal concentration against four strains of Escherichia coli (E. coli) remained unchanged for 60 d. The results indicated that TPC enhanced the inhibitory effect of TA against E. coli. Scanning electron microscope images revealed that TPC treatment caused damage to the bacterial cell membrane. In addition, in vivo experiments indicated that TPC exhibited a superior therapeutic effect on artificial colibacillosis in chickens infested with Avian pathogenic Escherichia coli, as evidenced by the changes in body weight and a reduction bacterial load in heart. Furthermore, TPC reversed the down-regulation of catalase, glutathione peroxidase1 (GPX1), and GPX7 gene expression levels in intestinal tissues. Compared to the model group, TPC treatment elevated serum glutathione peroxidase activities and lowered myeloperoxidase and lactate dehydrogenase levels, offering antioxidant protection that was slightly better than that of doxycycline hydrochlorid group. In summary, we prepared a novel TA antimicrobial preparation with significant antioxidant potential and inhibitory effect against E. coli both in vitro and in vivo.

5.
Iran J Pharm Res ; 23(1): e139381, 2024.
Article in English | MEDLINE | ID: mdl-39140102

ABSTRACT

Background: This study aimed to develop a microemulsion (ME)-based skin delivery platform containing sildenafil citrate (SC)-ME and evaluate its in vitro skin permeability. Methods: Accurate MEs were prepared using pseudo-ternary phase diagrams and a full factorial design with three variables at two levels. After the design phase, suitable ratios of oil, water, and a mixture of surfactant (S) and cosurfactant (CS) were selected to prepare various SC-ME formulations. These SC-MEs were analyzed for stability, droplet size, in vitro SC release, skin permeability, and viscosity properties. Results: The droplet size of the ME samples ranged from 6.24 to 32.65 nm, with viscosities between 114 to 239 cps. Release profiles indicated that 26 to 60% of SC was released from the different SC-MEs within 24 hours. All ME formulations significantly enhanced the permeability coefficient (P) through rat skin. Specifically, the flux (Jss) in SC-ME7 increased by approximately 117 times (Jss = 0.0235 mg/cm2.h) compared to the control sample (0.0002 mg/cm2.h). Conclusions: The study concluded that the proportions of the water or oil phase and the S/CS mixture in the MEs significantly influenced the physicochemical characteristics and permeation parameters. The selected MEs improved both the permeability coefficient and the rate of permeation through rat skin. The enhanced drug delivery through and into deep skin layers is a key attribute of an ideal dermal ME. These findings suggest that MEs could serve as effective transdermal delivery systems for SC and similar drugs. However, in vivo assays and clinical research are needed to confirm the therapeutic efficacy of MEs.

6.
R Soc Open Sci ; 11(5): 230632, 2024 May.
Article in English | MEDLINE | ID: mdl-39076814

ABSTRACT

Electrodeposition of iron (Fe) was investigated in three different media, namely a hydrophilic ionic liquid (IL), 1-ethyl-3-methylimidazolium trifluoromethanesulfonate, conventional reverse microemulsion (RME)/reverse micellar solution, and IL-based RME of a non-ionic surfactant, Triton X-100, with a view to electrodepositing iron with desired morphology. Electrochemical behaviour of Fe2+ was studied using cyclic voltammetric technique with a copper electrode as the working electrode. Electrochemical reduction of Fe2+ in all the studied media was found to be an electrochemically irreversible, diffusion-controlled process. Successful potentiostatic electrodeposition of metallic iron was performed in all the studied media on copper substrate using bulk electrolysis method. The obtained iron electrodeposits were characterized using a scanning electron microscope and an X-ray diffractometer. The controlled diffusion of Fe2+ towards electrode surface in all the media resulted in the formation of nanoparticles of iron, but compact layers of granular nanoparticles could be achieved from both the conventional and IL-based RME systems. The IL-based microemulsions synergistically combined the advantageous features of both the IL and RME and showed promise for tuning the size, shape, and morphology of the electrodeposited iron.

7.
Sci Total Environ ; 947: 174598, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38992350

ABSTRACT

The ultralow interfacial tension between the oil and aqueous phases and the solubilization characteristics in microemulsion systems make them useful for surface cleaning and enhanced oil recovery applications. Microemulsions can form an adsorbed barrier on rock, reducing the acid-rock reaction rate. However, as acid retardation additives, the adsorption patterns of microemulsions are not clearly defined. In this study, microemulsions composed of various electrical surfactants, oil cores, and oil core additives were obtained, and their phase behaviors were investigated. Through adsorption and reaction experiments, cleaning microemulsions that enhance adsorption effects were identified, and their adsorption patterns and adaptability under flow conditions were evaluated. The results demonstrate that incorporating negatively charged polar compounds forms an enhanced adsorption microemulsion characterized by an average droplet size of less than 30 nm after mixing with the acid. The introduction of negatively charged polar compounds resulted in a 177 % increase in adsorption and an 81 % improvement in static retardation effect. Dynamic adsorption tests indicate that the pseudo-second-order model more accurately describes the kinetics of dynamic adsorption of microemulsions on rock surfaces. Under a fixed flow rate, the dynamic retardation rate increased with the concentration of the microemulsion. In practical acidification, the adsorption of microemulsions results mainly from combined electrostatic forces and fluid scouring, characterized by a continuous process of adsorption and desorption. Scanning electron microscope also confirmed that microemulsions can form an adsorptive film on the rock, reducing the acid-rock reaction rate. This study offers practical guidelines for the selection and application of retardation additives, aiming to enhance the ecological compatibility of chemical treatments in low-permeability limestone reservoirs.

8.
ChemSusChem ; : e202301961, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39073232

ABSTRACT

How to retrieve and reuse surfactants efficiently from surfactant-based microemulsions (MEs) has long been a problem, which is full of challenges and needs to be solved urgently. To this end, a pH-triggered precipitation-dissolution (PTPD) strategy is developed. The surfactant sodium 3-(laurylamino)propane-1-sulfonate (LMPS) transforms into an insoluble precipitate (the inner salt of LMPS, LMP) after reaction with HCl, by which the monophasic LMPS-based MEs demulsified entirely, giving a separable mixture of oil, water and LMP. LMP can be retrieved efficiently (~95.3%) regardless of the ME type, and can then be conveniently restored to LMPS via reactions with NaOH. Conceptually, the retrieval of LMPS (~96.6%), toxic benzo[a]pyrene (BaP, ~99.5%) and a mixture of co-surfactant n-butanol and the oil phase n-heptane (~97.1%) from the sufficiently emulsified soil eluents is achievable by respectively using the PTPD strategy and distillation, wherein the soil eluents were generated from the remediation of BaP-contaminated soil using an oil-in-water LMPS-based ME as washing agent. It reveals a promising future for the PTPD strategy in the post-processing of soil eluents containing toxic hydrophobic organic contaminants and excessive surfactants.

9.
Gels ; 10(7)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39057458

ABSTRACT

Ketoprofen is a non-steroidal, anti-inflammatory drug frequently incorporated in topical dosage forms which are an interesting alternatives for oral formulations. However, due to the physiological barrier function of skin, topical formulations may require some approaches to improve drug permeation across the skin. In this study, ketoprofen-loaded microemulsion-based gels with the addition of menthol, commonly known for absorption-enhancing activity in dermal products, were investigated. The main objective of this study was to analyze the physicochemical properties of the obtained gels in terms of topical application and to investigate the correlation between the gel composition and its mechanical properties and the drug release process. Microemulsion composition was selected with the use of a pseudoternary plot and the selected systems were tested for electrical conductivity, viscosity, pH, and particle diameter. The polymer gels obtained with Carbopol® EZ-3 were subjected to rheological and textural studies, as well as the drug release experiment. The obtained results indicate that the presence of ketoprofen slightly decreased yield stress values. A stronger effect was exerted by menthol presence, even though it was independent of menthol concentration. A similar tendency was seen for hardness and adhesiveness, as tested in texture profile analysis. Sample cohesiveness and the drug release rate were independent of the gel composition.

10.
Food Res Int ; 191: 114649, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39059933

ABSTRACT

Clear emulsions are used as flavor carriers by the beverage industry because of their favorable optical properties. A transparent microemulsion with small droplets requires a high concentration of surfactants, and is often non-dilutable, posing a significant challenge to their application in the food industry. The formation of dilutable microemulsions by modulating the compatibility of oil composition and co-solvents was studied. While single-fold lemon oil exhibited poor loading capacity overall, no precipitation occurred due to the stronger interaction between monoterpenes and sucrose monopalmitate (SMP). Conversely, emulsification of five-fold lemon oil with 20 % ethanol demonstrated a higher loading capacity and a stronger dilution stability than other lemon oils. This is likely due to the balanced composition of surface-active monoterpenes and other components in five-fold lemon oil which facilitated the effective use of micellar space and aided in the retention of both surfactants and co-solvents post-dilution. The emulsification of higher-folded lemon oil, however, was favored by the use of propylene glycol as a surfactant exhibiting stronger dilution stability than ethanol, though it required twice as much co-solvent. The high concentration of surface-active monoterpene in the lower-folded lemon oils competes with propylene glycol for interfacial incorporation. This study demonstrated that co-solvents and oil composition play interactive roles in producing dilutable optically clear emulsions, and it provides a blueprint for the food industry to design colloidal systems using a minimum of surfactants.


Subject(s)
Emulsions , Plant Oils , Solvents , Surface-Active Agents , Emulsions/chemistry , Plant Oils/chemistry , Solvents/chemistry , Surface-Active Agents/chemistry , Particle Size , Citrus/chemistry , Ethanol/chemistry
11.
Nanomaterials (Basel) ; 14(13)2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38998735

ABSTRACT

Titania nanoparticles (NPs) find wide application in photocatalysis, photovoltaics, gas sensing, lithium batteries, etc. One of the most important synthetic challenges is maintaining control over the polymorph composition of the prepared nanomaterial. In the present work, TiO2 NPs corresponding to anatase, rutile, or an anatase/rutile/brookite mixture were obtained at 80 °C by an inverse microemulsion method in a ternary system of water/cetyltrimethylammonium bromide/1-hexanol in a weight ratio of 17:28:55. The only synthesis variables were the preparation of the aqueous component and the nature of the Ti precursor (Ti(IV) ethoxide, isopropoxide, butoxide, or chloride). The materials were characterized with X-ray diffraction, scanning/transmission electron microscopy, N2 adsorption-desorption isotherms, FTIR and Raman vibrational spectroscopies, and diffuse reflectance spectroscopy. The synthesis products differed significantly not only in phase composition, but also in crystallinity, textural properties, and adsorption properties towards water. All TiO2 NPs were active in the photocatalytic decomposition of rhodamine B, a model dye pollutant of wastewater streams. The mixed-phase anatase/rutile/brookite nanopowders obtained from alkoxy precursors showed the best photocatalytic performance, comparable to or better than the P25 reference. The exceptionally high photoactivity was attributed to the advantageous electronic effects known to accompany multiphase titania composition, namely high specific surface area and strong surface hydration. Among the single-phase materials, anatase samples showed better photoactivity than rutile ones, and this effect was associated, primarily, with the much higher specific surface area of anatase photocatalysts.

12.
Molecules ; 29(13)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38999184

ABSTRACT

Surfactants play a crucial role in tertiary oil recovery by reducing the interfacial tension between immiscible phases, altering surface wettability, and improving foam film stability. Oil reservoirs have high temperatures and high pressures, making it difficult and hazardous to conduct lab experiments. In this context, molecular dynamics (MD) simulation is a valuable tool for complementing experiments. It can effectively study the microscopic behaviors (such as diffusion, adsorption, and aggregation) of the surfactant molecules in the pore fluids and predict the thermodynamics and kinetics of these systems with a high degree of accuracy. MD simulation also overcomes the limitations of traditional experiments, which often lack the necessary temporal-spatial resolution. Comparing simulated results with experimental data can provide a comprehensive explanation from a microscopic standpoint. This article reviews the state-of-the-art MD simulations of surfactant adsorption and resulting interfacial properties at gas/oil-water interfaces. Initially, the article discusses interfacial properties and methods for evaluating surfactant-formed monolayers, considering variations in interfacial concentration, molecular structure of the surfactants, and synergistic effect of surfactant mixtures. Then, it covers methods for characterizing microstructure at various interfaces and the evolution process of the monolayers' packing state as a function of interfacial concentration and the surfactants' molecular structure. Next, it examines the interactions between surfactants and the aqueous phase, focusing on headgroup solvation and counterion condensation. Finally, it analyzes the influence of hydrophobic phase molecular composition on interactions between surfactants and the hydrophobic phase. This review deepened our understanding of the micro-level mechanisms of oil displacement by surfactants and is beneficial for screening and designing surfactants for oil field applications.

13.
AAPS J ; 26(4): 78, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38981948

ABSTRACT

A soft-core oil-in-water (o/w) nanoemulsion (NE) is composed of nanometer (nm) sized oil droplets, stabilized by a surfactant layer and dispersed in a continuous bulky water phase. Characterization of the o/w NE molecule arrangements non-invasively, particularly the drug phase distribution (DPD) and its correlation to oil globule size (OGS), remains a challenge. Here we demonstrated the analytical methods of intact 19F Nuclear Magnetic Resonance (NMR) and 1H diffusion ordered spectroscopy (DOSY) NMR for their specificity in measuring DPD and OGS, respectively, on three NE formulations containing the active ingredient difluprednate (DFPN) at the same concentration. The results illustrated synchronized molecular rearrangement reflected in the DPD and OGS upon alterations in formulation. Addition of surfactant resulted in a higher DPD in the surfactant layer, and concomitantly smaller OGS. Mechanic perturbation converted most of the NE globules to the smaller thermodynamically stable microemulsion (ME) globules, changing both DPD and OGS to ME phase. These microstructure changes were not observed using 1D 1H NMR; and dynamic light scattering (DLS) was only sensitive to OGS of ME globule in mechanically perturbed formulation. Collectively, the study illustrated the specificity and essential role of intact NMR methods in measuring the critical microstructure attributes of soft-core NE systems quickly, accurately, and non-invasively. Therefore, the selected NMR approach can be a unique diagnostic tool of molecular microstructure or Q3 property in o/w NE formulation development, and quality assurance after manufacture process or excipient component changes.


Subject(s)
Emulsions , Magnetic Resonance Spectroscopy , Oils , Water , Magnetic Resonance Spectroscopy/methods , Water/chemistry , Oils/chemistry , Surface-Active Agents/chemistry , Fluprednisolone/chemistry , Fluprednisolone/analogs & derivatives , Particle Size , Drug Compounding/methods , Nanoparticles/chemistry , Chemistry, Pharmaceutical/methods
14.
Int J Pharm ; 661: 124447, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39002820

ABSTRACT

None of transitional lipid-based drug delivery systems (LBDDS) includes compositions containing one lipid and one water-soluble surfactant that form stable microemulsions. The conversion of liquid LBDDS to solid LBDDS has been limited by low drug loading. Previously, we have developed drug solid microemulsions containing one lipid and TPGS (a water-soluble surfactant) that achieved high drug loading and remarkably increased oral bioavailability. This study aimed to test if binary lipid systems (BLS), composed of one lipid and one water-soluble surfactant that form stable self-emulsifying microemulsions, is not an exclusive but widely applicable type of LBDDS for other lipids and surfactants and evaluate the influences of chemical structures of lipids and surfactants on microemulsions and solid microemulsions. We systemically identified new BLS by using a library of lipids and surfactants. Propylene glycol diesters and glycerol triesters were favorable for forming stable microemulsions with Tween 80, Cremophor EL, or TPGS. To the best of our knowledge, this is the first report exploring and confirming that the BLS is a new addition to traditional LBDDS, provides a promising option for researchers, and has the potential to increase drug loading to facilitate the development of solid microemulsions.


Subject(s)
Drug Delivery Systems , Emulsions , Lipids , Polyethylene Glycols , Polysorbates , Solubility , Surface-Active Agents , Vitamin E , Water , Surface-Active Agents/chemistry , Drug Delivery Systems/methods , Lipids/chemistry , Polysorbates/chemistry , Polyethylene Glycols/chemistry , Water/chemistry , Vitamin E/chemistry , Glycerol/analogs & derivatives
15.
Proc Natl Acad Sci U S A ; 121(29): e2406337121, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38985759

ABSTRACT

Unlike inorganic nanoparticles, organic nanoparticles (oNPs) offer the advantage of "interior tailorability," thereby enabling the controlled variation of physicochemical characteristics and functionalities, for example, by incorporation of diverse functional small molecules. In this study, a unique inimer-based microemulsion approach is presented to realize oNPs with enhanced control of chemical and mechanical properties by deliberate variation of the degree of hyperbranching or cross-linking. The use of anionic cosurfactants led to oNPs with superior uniformity. Benefitting from the high initiator concentration from inimer and preserved chain-end functionality during atom transfer radical polymerization (ATRP), the capability of oNPs as a multifunctional macroinitiator for the subsequent surface-initiated ATRP was demonstrated. This facilitated the synthesis of densely tethered poly(methyl methacrylate) brush oNPs. Detailed analysis revealed that exceptionally high grafting densities (~1 nm-2) were attributable to multilayer surface grafting from oNPs due to the hyperbranched macromolecular architecture. The ability to control functional attributes along with elastic properties renders this "bottom-up" synthetic strategy of macroinitiator-type oNPs a unique platform for realizing functional materials with a broad spectrum of applications.

16.
Environ Res ; 260: 119626, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39019143

ABSTRACT

The utilization of bio-oil derived from biomass presents a promising alternative to fossil fuels, though it faces challenges when directly applied in diesel engines. Microemulsification has emerged as a viable strategy to enhance bio-oil properties, facilitating its use in hybrid fuels. This study explores the microemulsification of Jatropha bio-oil with ethanol, aided by a surfactant, to formulate a hybrid liquid fuel. Additionally, a bio-nano CaO heterogeneous catalyst synthesized from eggshells is employed to catalyse the production of Jatropha biodiesel from the microemulsified fuel using microwave irradiation. The catalyst is characterized through UV-Vis, XRD, and SEM analysis. The investigation reveals a significant reduction in CO, CO2, and NOX emissions with the utilization of microemulsion-based biodiesel blends. Various blends of conventional diesel, Jatropha biodiesel, and ethanol are prepared with different ethanol concentrations (5, 10, and 20 wt%). Engine performance parameters, including fuel consumption, NOX emission, and brake specific fuel consumption, are analyzed. Results indicate that the conventional diesel/Jatropha biodiesel/ethanol (10 wt%) blend exhibits superior performance compared to conventional diesel, Jatropha biodiesel, and other blends. The fuel consumption of the conventional diesel/Jatropha biodiesel/ethanol (10 wt%) blend is measured at 554.6 g/h, surpassing that of conventional diesel and other biodiesel blends. The presence of water (0.14 %) in the blend reduces the heating value, consequently increasing the energy requirement. CO and CO2 emissions for the conventional diesel/Jatropha biodiesel/ethanol (10 wt%) blend are notably lower compared to conventional C-18 hydrocarbons and various biodiesel blends. These findings accentuate the efficacy of the microemulsion process in enhancing fuel characteristics and reducing emissions. Further investigations could explore optimizing the emulsifying agents and their impact on engine performance and emission characteristics, contributing to the advancement of sustainable fuel technologies.

17.
J Control Release ; 373: 667-687, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39079659

ABSTRACT

In spite of available treatment options, glaucoma continues to be a leading cause of irreversible blindness in the world. Current glaucoma medications have multiple limitations including: lack of sustained action; requirement for multiple dosing per day, ocular irritation and limited options for drugs with different mechanisms of action. Previously, we demonstrated that pregabalin, a drug with high affinity and selectivity for CACNA2D1, lowered IOP in a dose-dependent manner. The current study was designed to evaluate pregabalin microemulsion eye drops and to estimate its efficacy in humans using in silico methods. Molecular docking studies of pregabalin against CACNA2D1 of mouse, rabbit, and human were performed. Pregabalin microemulsion eye drops were characterized using multiple in vivo studies and its stability was evaluated over one year at different storage conditions. Molecular docking analyses and QSPR of pregabalin confirmed its suitability as a new IOP-lowering medication that functions using a new mechanism of action by binding to CACNA2D1 in all species evaluated. Because of its prolonged corneal residence time and corneal penetration enhancement, a single topical application of pregabalin ME can provide an extended IOP reduction of more than day in different animal models. Repeated daily dosing for 2 months confirms the lack of any tachyphylactic effect, which is a common drawback among marketed IOP-lowering medications. In addition, pregabalin microemulsion demonstrated good physical stability for one year, and chemical stability for 3-6 months if stored below 25 °C. Collectively, these outcomes greatly support the use of pregabalin eye drops as once daily IOP-lowering therapy for glaucoma management.

18.
Ther Deliv ; : 1-24, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949622

ABSTRACT

Aim: The current study aims to develop and optimize microemulsions (ME) through Quality-by-Design (QbD) approach to improve the aqueous solubility and dissolution of poorly water-soluble drug disulfiram (DSF) for repurposing in melanoma and breast cancer therapy. Materials & methods: The ME was formulated using Cinnamon oil & Tween® 80, statistically optimized using a D-optimal mixture design-based QbD approach to develop the best ME with low vesicular size (Zavg) and polydispersity index (PDI). Results: The DSF-loaded optimized stable ME showed enhanced dissolution, in-vitro cytotoxicity and improved cellular uptake in B16F10 and MCF-7 cell lines compared with their unformulated free DSF. Conclusion: Our investigations suggested the potential of the statistically designed DSF-loaded optimized ME for repurposing melanoma and breast cancer therapy.


Identifying new medicinal uses of an existing marketed drug can save both money and time in the process of drug development. From many of the recently reported literature, disulfiram (a drug used for alcoholism) has shown its activity against various cancers, including breast and skin cancer. However, it possesses poor water solubility and absorption, leading to low medicinal activity. The current study aims to develop a novel microemulsion dosage form through a statistical design approach to enhance the solubility, dissolution and anticancer activity for repurposing in melanoma and breast cancer treatment. The novel microemulsion was prepared, statistically analyzed and optimized. The optimized microemulsion was found to be stable and showed improved medicinal activity against breast and skin cancer compared with the pure drug. Our research showed the potential of the developed microemulsion of the disulfiram for its new therapeutic use in skin cancer and breast cancer.

19.
Sci Rep ; 14(1): 15676, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977830

ABSTRACT

The practical application of sensitized TiO2 nanocomposites is very satisfying due to their high photon utilization in visible light, simple recovery without affecting the photocatalytic performance, high energy efficiency, low potential environmental risk, and low operational costs. The objective of this study is developing the ionic liquid (IL)-based surfactant-free microemulsion, as a soft template, for preparation of a novel type of sensitized poly(methyl methacrylate)/TiO2 nanocomposite (PMMA/TiO2/IL). For this purpose, a series of visible light-responsive PMMA/TiO2/IL transparent nanocomposites were prepared in microemulsion composed of methyl methacrylate monomer, 1-buthyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]), and 1-buthanol as amphi-solvent. Techniques such as diffuse reflectance spectroscopy (DRS)), attenuated total reflectance-fourier transform infrared (ATR-FTIR) spectroscopy, atomic force microscopy (AFM), field emission scanning electron microscopy (FE-SEM), and energy dispersive X-ray analysis (EDX) were used to characterize prepared nanocomposites. Photocatalytic degradation of methyl orange dye under visible light illumination, as an application in wastewater treatment, with the investigation of the influence of TiO2 content in the nanocomposite, pH, and nanocomposite reusability on photodegradation efficiency was studied and maximum value of 93.9% obtained at optimum conditions. The FESEM analysis indicated that the utilization of a relatively low amount of ionic liquid and also in absence of the surfactant ensures the monodispersity of the visible light sensitized TiO2 nanoparticles in the polymer matrix.

20.
Nanomaterials (Basel) ; 14(12)2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38921880

ABSTRACT

With the ongoing advancement in oil exploration, microemulsion, as an innovative oil displacement method, has garnered considerable attention owing to its exceptional physicochemical properties in enhancing crude oil recovery. As such, this study initially delineates the fundamental concepts, classifications, formation mechanisms, advantages, and preparation methodologies of microemulsions. Subsequently, it introduces the selection criteria for microemulsion components, followed by an elucidation of the characterization methods for microemulsions based on these criteria. Furthermore, it examines the factors influencing the efficacy of microemulsions in enhancing oil recovery through two distinct methods, along with the effects of various formulation microemulsions under laboratory and oilfield conditions. Additionally, it outlines prospects, challenges, and future development trends pertaining to microemulsions.

SELECTION OF CITATIONS
SEARCH DETAIL