Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 486
Filter
1.
Br J Anaesth ; 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39107166

ABSTRACT

Malignant hyperthermia susceptibility (MHS) designates individuals at risk of developing a hypermetabolic reaction triggered by halogenated anaesthetics or the depolarising neuromuscular blocking agent suxamethonium. Over the past few decades, beyond the operating theatre, myopathic manifestations impacting daily life are increasingly recognised as a prevalent phenomenon in MHS patients. At the request of the European Malignant Hyperthermia Group, we reviewed the literature and gathered the opinion of experts to define MHS-related myopathy as a distinct phenotype expressed across the adult lifespan of MHS patients unrelated to anaesthetic exposure; this serves to raise awareness about non-anaesthetic manifestations, potential therapies, and management of MHS-related myopathy. We focused on the clinical presentation, biochemical and histopathological findings, and the impact on patient well-being. The spectrum of symptoms of MHS-related myopathy encompasses muscle cramps, stiffness, myalgias, rhabdomyolysis, and weakness, with a wide age range of onset mainly during adulthood. Histopathological analysis can reveal nonspecific abnormalities suggestive of RYR1 involvement, while metabolic profiling reflects altered energy metabolism in MHS muscle. Myopathic manifestations can significantly impact patient quality of life and lead to functional limitations and socio-economic burden. While currently available therapies can provide symptomatic relief, there is a need for further research into targeted treatments addressing the underlying pathophysiology. Counselling early after establishing the MHS diagnosis, followed by multidisciplinary management involving various medical specialties, is crucial to optimise patient care.

2.
J Neuromuscul Dis ; 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38968056

ABSTRACT

Background: Congenital myopathies (CMs) are a diverse group of inherited muscle disorders with broad genotypic and phenotypic heterogeneity. While the literature on CM is available from European countries, comprehensive data from the Indian subcontinent is lacking. Objectives: This study aims to describe the clinical and histopathological characteristics of a cohort of genetically confirmed CMs from India and attempts to do phenotype-genotype correlation. Methods: A retrospective chart review of genetically confirmed CMs was evaluated between January 2016 and December 2020 at the neuromuscular clinic. The clinical, genetic, and follow-up data were recorded in a pre-structured proforma as per the medical records, and the data was analyzed. Results: A total of 31(M: F = 14 : 17) unrelated patients were included. The median age at onset and duration of illness are 2.0(IQR:1-8) years and 6.0(IQR:3-10) years respectively. Clinical features observed were proximodistal weakness (54.8%), facial weakness (64.5%), and myopathic facies (54.8%), followed by ptosis (33.3%), and ophthalmoplegia (19.4%). Muscle histopathology was available in 38.7% of patients, and centronuclear myopathy was the most common histopathology finding. The pathogenic genetic variants were identified in RYR1 (29.0%), DNM2 (19.4%), SELENON (12.9%), KBTBD13 (9.7%), NEB (6.5%), and MYPN (6.5%) genes. Novel mutations were observed in 30.3% of the cohort. Follow-up details were available in 77.4% of children, and the median duration of follow-up and age at last follow-up was 4.5 (Range 0.5-11) years and 13 (Range 3-35) years, respectively. The majority were ambulant with minimal assistance at the last follow-up. Mortality was noted in 8.3% due to respiratory failure in Centronuclear myopathy 1 and congenital myopathy 3 with rigid spines (SELENON). Conclusion: This study highlights the various phenotypes and patterns of genetic mutations in a cohort of pediatric patients with congenital myopathy from India. Centronuclear myopathy was the most common histological classification and the mutations in RYR1 followed by DNM2 gene were the common pathogenic variants identified. The majority were independent in their activities of daily living during the last follow-up, highlighting the fact that the disease has slow progression irrespective of the genotype.

3.
Muscle Nerve ; 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39045890

ABSTRACT

INTRODUCTION/AIMS: Ryanodine receptor 1 (RYR1)-related myopathies associated with variants in the RYR1 gene present with a wide range of symptoms and severity. Two of the milder phenotypes associated with dominant pathogenic variants in RYR1 are rhabdomyolysis and myalgia. Only a few studies have investigated the muscle function and structure of individuals with RYR1-related rhabdomyolysis/myalgia objectively, showing inconsistent results. This study aimed to describe structural changes and contractility of muscles in individuals with RYR1-related rhabdomyolysis/myalgia. METHODS: We investigated 15 individuals with dominant variants in the RYR1-gene and compared them with 15 age-, sex-, and body mass index (BMI)-matched controls using MRI, stationary isokinetic dynamometry, and comprehensive clinical evaluation. RESULTS: No significant differences were found between individuals with RYR1-related rhabdomyolysis/myalgia and healthy controls in peak torque, fat fraction, cross-sectional area, contractile cross-sectional area, or contractility (p > .05) in muscles of the lower back (MRI data only), thigh, or calf. On clinical examination, three individuals exhibited weakness in hip or back extension on the Medical Research Council (MRC) test and eight had muscle hypertrophy. Individuals with weakness were not hypertrophic. DISCUSSION: Most individuals with RYR1-related rhabdomyolysis/myalgia have close to normal strength, and normal fat fraction and contractility of muscles, and therefore constitute a mild phenotype of RYR1-related myopathies.

4.
BMC Cardiovasc Disord ; 24(1): 333, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961333

ABSTRACT

BACKGROUND: Oxidative stress may contribute to cardiac ryanodine receptor (RyR2) dysfunction in diabetic cardiomyopathy. Ginsenoside Rb1 (Rb1) is a major pharmacologically active component of ginseng to treat cardiovascular diseases. Whether Rb1 treat diabetes injured heart remains unknown. This study was to investigate the effect of Rb1 on diabetes injured cardiac muscle tissue and to further investigate its possible molecular pharmacology mechanisms. METHODS: Male Sprague-Dawley rats were injected streptozotocin solution for 2 weeks, followed 6 weeks Rb1 or insulin treatment. The activity of SOD, CAT, Gpx, and the levels of MDA was measured; histological and ultrastructure analyses, RyR2 activity and phosphorylated RyR2(Ser2808) protein expression analyses; and Tunel assay were performed. RESULTS: There was decreased activity of SOD, CAT, Gpx and increased levels of MDA in the diabetic group from control. Rb1 treatment increased activity of SOD, CAT, Gpx and decreased the levels of MDA as compared with diabetic rats. Neutralizing the RyR2 activity significantly decreased in diabetes from control, and increased in Rb1 treatment group from diabetic group. The expression of phosphorylation of RyR2 Ser2808 was increased in diabetic rats from control, and were attenuated with insulin and Rb1 treatment. Diabetes increased the apoptosis rate, and Rb1 treatment decreased the apoptosis rate. Rb1 and insulin ameliorated myocardial injury in diabetic rats. CONCLUSIONS: These data indicate that Rb1 could be useful for mitigating oxidative damage, reduced phosphorylation of RyR2 Ser2808 and decreased the apoptosis rate of cardiomyocytes in diabetic cardiomyopathy.


Subject(s)
Antioxidants , Apoptosis , Diabetes Mellitus, Experimental , Diabetic Cardiomyopathies , Ginsenosides , Myocytes, Cardiac , Oxidative Stress , Rats, Sprague-Dawley , Ryanodine Receptor Calcium Release Channel , Streptozocin , Animals , Diabetes Mellitus, Experimental/drug therapy , Male , Oxidative Stress/drug effects , Ryanodine Receptor Calcium Release Channel/metabolism , Ryanodine Receptor Calcium Release Channel/drug effects , Ginsenosides/pharmacology , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/drug therapy , Diabetic Cardiomyopathies/pathology , Diabetic Cardiomyopathies/physiopathology , Diabetic Cardiomyopathies/etiology , Apoptosis/drug effects , Antioxidants/pharmacology , Phosphorylation , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Myocytes, Cardiac/metabolism , Myocardium/pathology , Myocardium/metabolism , Insulin , Malondialdehyde/metabolism
5.
Int J Mol Sci ; 25(13)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-39000424

ABSTRACT

Cardiomyocyte dysfunction and cardiovascular diseases (CVDs) can be classified as ischemic or non-ischemic. We consider the induction of cardiac tissue dysfunction by intracellular advanced glycation end-products (AGEs) in cardiomyocytes as a novel type of non-ischemic CVD. Various types of AGEs can be generated from saccharides (glucose and fructose) and their intermediate/non-enzymatic reaction byproducts. Recently, certain types of AGEs (Nε-carboxymethyl-lycine [CML], 2-ammnonio-6-[4-(hydroxymetyl)-3-oxidopyridinium-1-yl]-hexanoate-lysine [4-hydroxymethyl-OP-lysine, hydroxymethyl-OP-lysine], and Nδ-(5-hydro-5-methyl-4-imidazolone-2-yl)-ornithine [MG-H1]) were identified and quantified in the ryanodine receptor 2 (RyR2) and F-actin-tropomyosin filament in the cardiomyocytes of mice or patients with diabetes and/or heart failure. Under these conditions, the excessive leakage of Ca2+ from glycated RyR2 and reduced contractile force from glycated F-actin-tropomyosin filaments induce cardiomyocyte dysfunction. CVDs are included in lifestyle-related diseases (LSRDs), which ancient people recognized and prevented using traditional medicines (e.g., Kampo medicines). Various natural compounds, such as quercetin, curcumin, and epigallocatechin-3-gallate, in these drugs can inhibit the generation of intracellular AGEs through mechanisms such as the carbonyl trap effect and glyoxalase 1 activation, potentially preventing CVDs caused by intracellular AGEs, such as CML, hydroxymethyl-OP, and MG-H1. These investigations showed that bioactive herbal extracts obtained from traditional medicine treatments may contain compounds that prevent CVDs.


Subject(s)
Cardiovascular Diseases , Glycation End Products, Advanced , Myocytes, Cardiac , Glycation End Products, Advanced/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Humans , Animals , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/drug therapy , Mice
6.
Adv Exp Med Biol ; 1441: 1057-1090, 2024.
Article in English | MEDLINE | ID: mdl-38884769

ABSTRACT

Arrhythmias account for over 300,000 annual deaths in the United States, and approximately half of all deaths are associated with heart disease. Mechanisms underlying arrhythmia risk are complex; however, work in humans and animal models over the past 25 years has identified a host of molecular pathways linked with both arrhythmia substrates and triggers. This chapter will focus on select arrhythmia pathways solved by linking human clinical and genetic data with animal models.


Subject(s)
Arrhythmias, Cardiac , Disease Models, Animal , Animals , Humans , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/physiopathology , Arrhythmias, Cardiac/metabolism , Signal Transduction/genetics
7.
J Int Med Res ; 52(6): 3000605241261962, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38907364

ABSTRACT

Malignant hyperthermia (MH), characterized by severe myoclonus, pyrexia, tachycardia, hypertension, elevated muscle enzymes, and hypercapnia, often occurs in patients with congenital deformities or genetic disorders. Although the reported incidence rate is as low as 1:5000 to 1:100,000, patients with MH exhibit rapid aggravation and an elevated mortality rate. Thus, MH is associated with substantial perioperative risk. Successful treatment of patients with MH largely depends on early diagnosis and timely effective treatment. This clinical report provides a detailed description of a patient with newly diagnosed MH who developed a rapid rise in body temperature, end-tidal carbon dioxide, and heart rate during maxillary osteotomy. After successful rescue, the patient recovered smoothly during the postoperative period, indicating the importance of intraoperative monitoring, early diagnosis, effective treatment, and postoperative monitoring. This case is expected to serve as a reference for future interventions and healthcare practices in managing other patients with MH.


Subject(s)
Anesthesia, General , Malignant Hyperthermia , Humans , Malignant Hyperthermia/diagnosis , Anesthesia, General/adverse effects , Anesthesia, General/methods , Male , Female , Adult , Osteotomy
8.
Front Genet ; 15: 1405437, 2024.
Article in English | MEDLINE | ID: mdl-38859939

ABSTRACT

Objective: The aim of this study was to analyze the diagnosis, treatment, and follow-up of six cases of complex arrhythmias associated with RYR2 gene mutations in children. Method: A retrospective analysis was conducted on six children diagnosed with complex arrhythmias associated with RYR2 gene mutations. The study included an analysis of the age of onset, initial symptoms, electrocardiographic characteristics, genetic results, treatment course, and follow-up outcomes. Results: Among the six cases included in the study, there were four males and two females, with an average age of 3.5 ± 0.5 years. The average time from initial symptoms to diagnosis was 2.7 ± 1.3 years. The most common clinical manifestation was syncope, with exercise and emotions being the main triggers. All six children had de novo missense mutations in the RYR2 gene identified through whole-exome sequencing. In Holter electrocardiogram, atrial arrhythmias and sinoatrial node dysfunction were commonly observed in younger children. Four patients underwent exercise stress testing, with two experiencing bidirectional ventricular premature contractions and two experiencing bidirectional ventricular tachycardia and polymorphic ventricular tachycardia. Initial treatment involved oral propranolol or metoprolol. If arrhythmias persisted, flecainide or propafenone was added as adjunctive therapy. Two patients received permanent cardiac pacemaker treatment (single chamber ventricular pacemaker, VVI). All patients survived, with three experiencing occasional syncope during treatment. The follow-up period ranged from 12 to 37 months, with an average follow-up time of 24.3 ± 3.7 months. Conclusion: Complex arrhythmias associated with RYR2 gene mutations in children can present with various clinical manifestations. Atrial arrhythmias combined with sinoatrial node dysfunction are commonly observed in younger children, and the combination of pharmacological therapy and cardiac pacemaker treatment yields favourable treatment outcomes.

9.
Br J Pharmacol ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773354

ABSTRACT

BACKGROUND AND PURPOSE: The ryanodine receptor 2 (RyR2) is present in both the heart and kidneys, and plays a crucial role in maintaining intracellular Ca2+ homeostasis in cells in these organs. This study aimed to investigate the impact of M201-A on RyR2, as well as studying its effects on cardiac and renal functions in preclinical and clinical studies. EXPERIMENTAL APPROACH: Following the administration of M201-A (1,4-benzothiazepine-1-oxide derivative), we monitored diastolic Ca2+ leak via RyR2 and intracellular Ca2+ concentration in isolated rat cardiomyocytes and in cardiac and renal function in animals. In a clinical study, M201-A was administered intravenously at doses of 0.2 and 0.4 mg·kg-1 once daily for 20 min for four consecutive days in healthy males, with the assessment of haemodynamic responses. KEY RESULTS: In rat heart cells, M201-A effectively inhibited spontaneous diastolic Ca2+ leakage through RyR2 and exhibited positive lusi-inotropic effects on the rat heart. Additionally, it enhanced natriuresis and improved renal function in dogs. In human clinical studies, when administered intravenously, M201-A demonstrated an increase in natriuresis, glomerular filtration rate and creatinine clearance, while maintaining acceptable levels of drug safety and tolerability. CONCLUSIONS AND IMPLICATIONS: The novel drug M201-A inhibited diastolic Ca2+ leak via RyR2, improved cardiac lusi-inotropic effects in rats, and enhanced natriuresis and renal function in humans. These findings suggest that this drug may offer a potential new treatment option for chronic kidney disease and heart failure.

10.
Per Med ; 21(3): 145-150, 2024.
Article in English | MEDLINE | ID: mdl-38722226

ABSTRACT

Background: Statins are commonly used medications. Variants in SLCO1B1, CYP2C9, and ABCG2 are known predictors of muscle effects when taking statins. More exploratory genes include RYR1 and CACNA1S, which can also be associated with disease conditions. Methods: Patients with pathogenic/likely pathogenic variants in RYR1 or CACNA1S were identified through an elective genomic testing program. Through chart review, patients with a history of statin use were assessed for statin-associated muscle symptoms (SAMS) along with collection of demographics and other known risk factors for SAMS. Results: Of the 23 patients who had a pathogenic or likely pathogenic RYR1 or CACNA1S variant found, 12 had previous statin use; of these, SAMS were identified in four patients. Conclusion: These data contribute to previous literature suggesting patients with RYR1 variants may have an increased SAMS risk. Additional research will be helpful in further investigating this relationship and providing recommendations.


[Box: see text].


Subject(s)
Calcium Channels, L-Type , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Ryanodine Receptor Calcium Release Channel , Humans , Ryanodine Receptor Calcium Release Channel/genetics , Hydroxymethylglutaryl-CoA Reductase Inhibitors/adverse effects , Male , Calcium Channels, L-Type/genetics , Female , Middle Aged , Aged , Incidence , Muscular Diseases/genetics , Muscular Diseases/chemically induced , Adult , Risk Factors , Calcium Channels/genetics
11.
BMC Pulm Med ; 24(1): 194, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649898

ABSTRACT

BACKGROUND: Patients with congenital myopathies may experience respiratory involvement, resulting in restrictive ventilatory dysfunction and respiratory failure. Pulmonary hypertension (PH) associated with this condition has never been reported in congenital ryanodine receptor type 1(RYR1)-related myopathy. CASE PRESENTATION: A 47-year-old woman was admitted with progressively exacerbated chest tightness and difficulty in neck flexion. She was born prematurely at week 28. Her bilateral lower extremities were edematous and muscle strength was grade IV-. Arterial blood gas analysis revealed hypoventilation syndrome and type II respiratory failure, while lung function test showed restrictive ventilation dysfunction, which were both worse in the supine position. PH was confirmed by right heart catheterization (RHC), without evidence of left heart disease, congenital heart disease, or pulmonary artery obstruction. Polysomnography indicated nocturnal hypoventilation. The ultrasound revealed reduced mobility of bilateral diaphragm. The level of creatine kinase was mildly elevated. Magnetic resonance imaging showed myositis of bilateral thigh muscle. Muscle biopsy of the left biceps brachii suggested muscle malnutrition and congenital muscle disease. Gene testing revealed a missense mutation in the RYR1 gene (exon33 c.C4816T). Finally, she was diagnosed with RYR1-related myopathy and received long-term non-invasive ventilation (NIV) treatment. Her symptoms and cardiopulmonary function have been greatly improved after 10 months. CONCLUSIONS: We report a case of RYR1-related myopathy exhibiting hypoventilation syndrome, type II respiratory failure and PH associated with restrictive ventilator dysfunction. Pulmonologists should keep congenital myopathies in mind in the differential diagnosis of type II respiratory failure, especially in patients with short stature and muscle weakness.


Subject(s)
Hypertension, Pulmonary , Muscle Weakness , Respiratory Insufficiency , Ryanodine Receptor Calcium Release Channel , Humans , Female , Ryanodine Receptor Calcium Release Channel/genetics , Middle Aged , Muscle Weakness/etiology , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/genetics , Respiratory Insufficiency/etiology , Mutation, Missense , Magnetic Resonance Imaging , Muscular Diseases/genetics , Muscular Diseases/diagnosis , Muscular Diseases/complications
12.
J Electrocardiol ; 84: 75-80, 2024.
Article in English | MEDLINE | ID: mdl-38574633

ABSTRACT

In this case report, we describe a 14-year-old patient with a novel RyR2 gene mutation (c.6577G > T/p.Val2193Leu), identified through a comprehensive review of medical history, examination findings, and follow-up data. The pathogenic potential of this mutation, which results in the loss of some interatomic forces and compromises the closure of the RyR2 protein pore leading to calcium leakage, was analyzed using the I-TASSER Suite to predict the structural changes in the protein. This mutation manifested clinically as co-morbid catecholaminergic polymorphic ventricular tachycardia (CPVT) and benign epilepsy with centrotemporal spikes (BECTS), a combination not previously documented in the same patient. While seizures were successfully managed with levetiracetam, the patient's exercise-induced syncope episodes could not be controlled with metoprolol, highlighting the complexity and challenge in managing CPVT associated with this novel RyR2 variation.


Subject(s)
Mutation , Ryanodine Receptor Calcium Release Channel , Tachycardia, Ventricular , Humans , Ryanodine Receptor Calcium Release Channel/genetics , Tachycardia, Ventricular/genetics , Tachycardia, Ventricular/drug therapy , Adolescent , Male , Epilepsy, Rolandic/genetics , Epilepsy, Rolandic/drug therapy , Electrocardiography
13.
J Cardiovasc Transl Res ; 17(3): 481-495, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38652413

ABSTRACT

The effect of Ryanodine receptor2 (RyR2) and its stabilizer on cardiac hypertrophy is not well known. C57/BL6 mice underwent transverse aortic contraction (TAC) or sham surgery were administered dantrolene, the RyR2 stabilizer, or control drug. Dantrolene significantly alleviated TAC-induced cardiac hypertrophy in mice, and RNA sequencing was performed implying calcineurin/NFAT3 and TNF-α/NF-κB/NLRP3 as critical signaling pathways. Further expression analysis and Western blot with heart tissue as well as neonatal rat cardiomyocyte (NRCM) model confirmed dantrolene decreases the activation of calcineurin/NFAT3 signaling pathway and TNF-α/NF-κB/NLRP3 signaling pathway, which was similar to FK506 and might be attenuated by calcineurin overexpression. The present study shows for the first time that RyR2 stabilizer dantrolene attenuates cardiac hypertrophy by inhibiting the calcineurin, therefore downregulating the TNF-α/NF-κB/NLRP3 pathway.


Subject(s)
Calcineurin , Dantrolene , Disease Models, Animal , Down-Regulation , Mice, Inbred C57BL , Myocytes, Cardiac , NF-kappa B , NLR Family, Pyrin Domain-Containing 3 Protein , Ryanodine Receptor Calcium Release Channel , Signal Transduction , Tumor Necrosis Factor-alpha , Animals , Signal Transduction/drug effects , Tumor Necrosis Factor-alpha/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Ryanodine Receptor Calcium Release Channel/genetics , Ryanodine Receptor Calcium Release Channel/drug effects , Calcineurin/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , NF-kappa B/metabolism , Dantrolene/pharmacology , Male , Calcineurin Inhibitors/pharmacology , NFATC Transcription Factors/metabolism , Cells, Cultured , Cardiomegaly/metabolism , Cardiomegaly/prevention & control , Cardiomegaly/pathology , Cardiomegaly/drug therapy , Rats, Sprague-Dawley , Rats , Hypertrophy, Left Ventricular/prevention & control , Hypertrophy, Left Ventricular/metabolism , Hypertrophy, Left Ventricular/pathology , Hypertrophy, Left Ventricular/physiopathology
14.
Med Hypotheses ; 1852024 Apr.
Article in English | MEDLINE | ID: mdl-38585412

ABSTRACT

Duchenne Muscular Dystrophy (DMD) is marked by genetic mutations occurring in the DMD gene, which is widely expressed in the cardiovascular system. In addition to developing cardiomyopathy, patients with DMD have been reported to be susceptible to the development of symptomatic hypotension, although the mechanisms are unclear. Analysis of single-cell RNA sequencing data has identified potassium voltage-gated channel subfamily Q member 5 (KCNQ5) and possibly ryanodine receptor 2 (RyR2) as potential candidate hypotension genes whose expression is significantly upregulated in the vascular smooth muscle cells of DMD mutant mice. We hypothesize that heightened KCNQ5 and RyR2 expression contributes to decreased arterial blood pressure in patients with DMD. Exploring pharmacological approaches to inhibit the KCNQ5 and RyR2 channels holds promise in managing the systemic hypotension observed in individuals with DMD. This avenue of investigation presents new prospects for improving clinical outcomes for these patients.

15.
J Neuromuscul Dis ; 11(3): 647-653, 2024.
Article in English | MEDLINE | ID: mdl-38489196

ABSTRACT

Congenital myopathies (CMs) are rare genetic disorders for which the diagnostic yield does not typically exceed 60% . We performed deep phenotyping, histopathological studies, clinical exome and trio genome sequencing and a phenotype-driven analysis of the genomic data, that led to the molecular diagnosis in a child with CM. We identified a heterozygous variant in RYR1 in the affected child, inherited from her asymptomatic mother. Given the alignment of the clinical and histopathological phenotype with RYR1-CM, we considered the potential existence of a missing second variant in trans in the proband, but also hypothesized that the variant might be mosaic in the mother, as subsequently demonstrated. Our study is an example of how heterozygous variants inherited from asymptomatic parents are frequently dismissed. When the genotype-phenotype correlation is strong, it is recommended to consider a parental mosaicism.


Subject(s)
Mosaicism , Phenotype , Ryanodine Receptor Calcium Release Channel , Humans , Genetic Association Studies , Myotonia Congenita/genetics , Myotonia Congenita/diagnosis , Ryanodine Receptor Calcium Release Channel/genetics , Male , Child, Preschool
16.
Physiol Rev ; 104(3): 1335-1385, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38451235

ABSTRACT

The endomembrane system consists of organellar membranes in the biosynthetic pathway [endoplasmic reticulum (ER), Golgi apparatus, and secretory vesicles] as well as those in the degradative pathway (early endosomes, macropinosomes, phagosomes, autophagosomes, late endosomes, and lysosomes). These endomembrane organelles/vesicles work together to synthesize, modify, package, transport, and degrade proteins, carbohydrates, and lipids, regulating the balance between cellular anabolism and catabolism. Large ion concentration gradients exist across endomembranes: Ca2+ gradients for most endomembrane organelles and H+ gradients for the acidic compartments. Ion (Na+, K+, H+, Ca2+, and Cl-) channels on the organellar membranes control ion flux in response to cellular cues, allowing rapid informational exchange between the cytosol and organelle lumen. Recent advances in organelle proteomics, organellar electrophysiology, and luminal and juxtaorganellar ion imaging have led to molecular identification and functional characterization of about two dozen endomembrane ion channels. For example, whereas IP3R1-3 channels mediate Ca2+ release from the ER in response to neurotransmitter and hormone stimulation, TRPML1-3 and TMEM175 channels mediate lysosomal Ca2+ and H+ release, respectively, in response to nutritional and trafficking cues. This review aims to summarize the current understanding of these endomembrane channels, with a focus on their subcellular localizations, ion permeation properties, gating mechanisms, cell biological functions, and disease relevance.


Subject(s)
Ion Channels , Humans , Animals , Ion Channels/metabolism , Intracellular Membranes/metabolism , Organelles/metabolism , Organelles/physiology
17.
Transl Pediatr ; 13(2): 359-369, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38455755

ABSTRACT

Background: Ryanodine receptor 2 (RYR2) gene mutation causing catecholaminergic polymorphic ventricular tachycardia (CPVT) is one of the identified causes of sudden death in adults and children. Case Description: We report a case of RYR2 gene mutation presented with cardiac arrest and recurrent syncopal attack with accidental finding of cardiac tumour. For the systematic review, we used four databases (Scopus, PubMed, Ovid and Google Scholar) to search articles with the terms "RYR2 gene mutation" and "catecholaminergic polymorphic ventricular tachycardia (CPVT)". Fourteen studies were chosen and reviewed together with our reported patient. Most of the patients presented initially with syncopal attack and developed cardiac arrest later. Some of them presented with both syncopal attack and seizures precipitated by exercise or stress. We found that 43.8% of patients shared similar variants or coding effects in RYR2 gene mutation. Demographically, the mean age at presentation is 11 years old with 53% of reported cases were male. Conclusions: Refractory arrhythmias cardiac arrest not responding to adrenaline should raise the suspicion towards RYR2 gene mutations. Recognition of this condition is important as it affects the outcome of resuscitation. Untimely diagnosis of RYR2 gene mutations with appropriate use of pharmacological agents during resuscitation is important to ensure a better outcome.

18.
Mol Metab ; 82: 101914, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38479548

ABSTRACT

OBJECTIVE: The intrauterine environment during pregnancy is a critical factor in the development of obesity, diabetes, and cardiovascular disease in offspring. Maternal exercise prevents the detrimental effects of a maternal high fat diet on the metabolic health in adult offspring, but the effects of maternal exercise on offspring cardiovascular health have not been thoroughly investigated. METHODS: To determine the effects of maternal exercise on offspring cardiovascular health, female mice were fed a chow (C; 21% kcal from fat) or high-fat (H; 60% kcal from fat) diet and further subdivided into sedentary (CS, HS) or wheel exercised (CW, HW) prior to pregnancy and throughout gestation. Offspring were maintained in a sedentary state and chow-fed throughout 52 weeks of age and subjected to serial echocardiography and cardiomyocyte isolation for functional and mechanistic studies. RESULTS: High-fat fed sedentary dams (HS) produced female offspring with reduced ejection fraction (EF) compared to offspring from chow-fed dams (CS), but EF was preserved in offspring from high-fat fed exercised dams (HW) throughout 52 weeks of age. Cardiomyocytes from HW female offspring had increased kinetics, calcium cycling, and respiration compared to CS and HS offspring. HS offspring had increased oxidation of the RyR2 in cardiomyocytes coupled with increased baseline sarcomere length, resulting in RyR2 overactivity, which was negated in female HW offspring. CONCLUSIONS: These data suggest a role for maternal exercise to protect against the detrimental effects of a maternal high-fat diet on female offspring cardiac health. Maternal exercise improved female offspring cardiomyocyte contraction, calcium cycling, respiration, RyR2 oxidation, and RyR2 activity. These data present an important, translatable role for maternal exercise to preserve cardiac health of female offspring and provide insight on mechanisms to prevent the transmission of cardiovascular diseases to subsequent generations.


Subject(s)
Calcium , Ryanodine Receptor Calcium Release Channel , Pregnancy , Mice , Female , Animals , Ryanodine Receptor Calcium Release Channel/metabolism , Calcium/metabolism , Obesity/metabolism , Diet, High-Fat/adverse effects , Oxidative Stress
19.
Front Endocrinol (Lausanne) ; 15: 1258982, 2024.
Article in English | MEDLINE | ID: mdl-38444585

ABSTRACT

Genome-wide association studies have identified several hundred loci associated with type 2 diabetes mellitus (T2DM). Additionally, pathogenic variants in several genes are known to cause monogenic diabetes that overlaps clinically with T2DM. Whole-exome sequencing of related individuals with T2DM is a powerful approach to identify novel high-penetrance disease variants in coding regions of the genome. We performed whole-exome sequencing on four related individuals with T2DM - including one individual diagnosed at the age of 33 years. The individuals were negative for mutations in monogenic diabetes genes, had a strong family history of T2DM, and presented with several characteristics of metabolic syndrome. A missense variant (p.N2291D) in the type 2 ryanodine receptor (RyR2) gene was one of eight rare coding variants shared by all individuals. The variant was absent in large population databases and affects a highly conserved amino acid located in a mutational hotspot for pathogenic variants in Catecholaminergic polymorphic ventricular tachycardia (CPVT). Electrocardiogram data did not reveal any cardiac abnormalities except a lower-than-normal resting heart rate (< 60 bpm) in two individuals - a phenotype observed in CPVT individuals with RyR2 mutations. RyR2-mediated Ca2+ release contributes to glucose-mediated insulin secretion and pathogenic RyR2 mutations cause glucose intolerance in humans and mice. Analysis of glucose tolerance testing data revealed that missense mutations in a CPVT mutation hotspot region - overlapping the p.N2291D variant - are associated with complete penetrance for glucose intolerance. In conclusion, we have identified an atypical missense variant in the RyR2 gene that co-segregates with diabetes in the absence of overt CPVT.


Subject(s)
Diabetes Mellitus, Type 2 , Glucose Intolerance , Adult , Animals , Humans , Mice , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/genetics , Exome Sequencing , Genome-Wide Association Study , Glucose , Mutation, Missense , Ryanodine Receptor Calcium Release Channel/genetics
20.
J Cardiovasc Aging ; 4(1)2024 Jan.
Article in English | MEDLINE | ID: mdl-38464671

ABSTRACT

Introduction: Heterozygous autosomal-dominant single nucleotide variants in RYR2 account for 60% of cases of catecholaminergic polymorphic ventricular tachycardia (CPVT), an inherited arrhythmia disorder associated with high mortality rates. CRISPR/Cas9-mediated genome editing is a promising therapeutic approach that can permanently cure the disease by removing the mutant RYR2 allele. However, the safety and long-term efficacy of this strategy have not been established in a relevant disease model. Aim: The purpose of this study was to assess whether adeno-associated virus type-9 (AAV9)-mediated somatic genome editing could prevent ventricular arrhythmias by removal of the mutant allele in mice that are heterozygous for Ryr2 variant p.Arg176Gln (R176Q/+). Methods and Results: Guide RNA and SaCas9 were delivered using AAV9 vectors injected subcutaneously in 10-day-old mice. At 6 weeks after injection, R176Q/+ mice had a 100% reduction in ventricular arrhythmias compared to controls. When aged to 12 months, injected R176Q/+ mice maintained a 100% reduction in arrhythmia induction. Deep RNA sequencing revealed the formation of insertions/deletions at the target site with minimal off-target editing on the wild-type allele. Consequently, CRISPR/SaCas9 editing resulted in a 45% reduction of total Ryr2 mRNA and a 38% reduction in RyR2 protein. Genome editing was well tolerated based on serial echocardiography, revealing unaltered cardiac function and structure up to 12 months after AAV9 injection. Conclusion: Taken together, AAV9-mediated CRISPR/Cas9 genome editing could efficiently disrupt the mutant Ryr2 allele, preventing lethal arrhythmias while preserving normal cardiac function in the R176Q/+ mouse model of CPVT.

SELECTION OF CITATIONS
SEARCH DETAIL