Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31.055
Filter
1.
J Environ Sci (China) ; 148: 139-150, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39095153

ABSTRACT

Herein, a modified screen printed carbon electrode (SPCE) based on a composite material, graphene oxide-gold nanoparticles (GO-AuNPs), and poly(3-aminobenzoic acid)(P3ABA) for the detection of paraquat (PQ) is introduced. The modified electrode was fabricated by drop casting of the GO-AuNPs, followed by electropolymerization of 3-aminobenzoic acid to achieve SPCE/GO-AuNPs/P3ABA. The morphology and microstructural characteristics of the modified electrodes were revealed by scanning electron microscopy (SEM) for each step of modification. The composite GO-AuNPs can provide high surface area and enhance electroconductivity of the electrode. In addition, the presence of negatively charged P3ABA notably improved PQ adsorption and electron transfer rate, which stimulate redox reaction on the modified electrode, thus improving the sensitivity of PQ analysis. The SPCE/GO-AuNPs/P3ABA offered a wide linear range of PQ determination (10-9-10-4 mol/L) and low limit of detection (LOD) of 0.45 × 10-9 mol/L or 0.116 µg/L, which is far below international safety regulations. The modified electrode showed minimum interference effect with percent recovery ranging from 96.5% to 116.1% after addition of other herbicides, pesticides, metal ions, and additives. The stability of the SPCE/GO-AuNPs/P3ABA was evaluated, and the results indicated negligible changes in the detection signal over 9 weeks. Moreover, this modified electrode was successfully implemented for PQ analysis in both natural and tapped water with high accuracy.


Subject(s)
Electrochemical Techniques , Electrodes , Gold , Graphite , Metal Nanoparticles , Paraquat , Graphite/chemistry , Paraquat/analysis , Gold/chemistry , Metal Nanoparticles/chemistry , Electrochemical Techniques/methods , Limit of Detection , Carbon/chemistry , Water Pollutants, Chemical/analysis , Herbicides/analysis
2.
J Hazard Mater ; 477: 135365, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39088946

ABSTRACT

The rapid and accurate identification of live pathogens with high proliferative ability is in great demand to mitigate foodborne infection outbreaks. Herein, we have developed an ultrasensitive image-based aptasensing array to directly detect live Salmonella typhimurium (S.T) cells. This method relies on the long-range orientation of surfactant-decorated liquid crystals (LCs) and the superiority of aptamers (aptST). The self-assembling of hydrophobic surfactant tails leads to a perpendicular/vertical ordered film at the aqueous/LC interface and signal-off response. The addition of aptST perturbed LCs' ordering into a planar/tilted state at the aqueous phase due to electrostatic interactions between the surfactant with the aptST, and a signal-on response. Following the conformational switch of aptST in the presence of live S. typhimurium, a relative reversing signal-off response was observed upon the target concentration. This aptasensor could promptly confirm the presence of S. typhimurium without intricate DNA-extraction or pre-enrichment stats over a linear range of 1-1.1 × 106 CFU/mL and a detection limit of 1.2 CFU/mL within ∼30 min. These results were successfully validated using molecular and culture-based methods in spiked-milk samples, with a 92.61-104.61 % recovery value. Meanwhile, the flexibility of this portable sensing platform allows for its development and adoption for the precise detection of various pathogens in food and the environment.

3.
J Hazard Mater ; 477: 135366, 2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39088943

ABSTRACT

Deoxynivalenol-3-glucoside (D3G), the masked form of the important mycotoxin deoxynivalenol (DON), displays potential toxicity but is difficult to control owing to the lack of rapid detection methods. Herein, an innovative molecularly imprinted polymer (MIP)-based electrochemical sensor was developed for the rapid detection of D3G. MIP, an efficient recognition element for D3G, was electropolymerized using o-phenylenediamine based on a surface functional monomer-directing strategy for the first time. CeO2, which contains both Ce3+ and Ce4+ oxidation states, was introduced as a nanozyme to catalyze H2O2 reduction, while Mn doping generated more oxygen vacancies and considerably improved the catalytic activity. Mn-CeO2 also served as a promising substrate material because of its large surface area and excellent conductivity. Under optimal conditions, a good linear relationship was observed for D3G detection over the concentration range of 0.01-50 ng/mL. The proposed sensor could detect D3G down to 0.003 ng/mL with excellent selectivity, even distinguishing its precursor DON in complex samples. The sensor exhibited acceptable stability with high reproducibility and accuracy, and could successfully determine D3G in grain samples. To the best of our knowledge, this is the first electrochemical sensing platform for rapid D3G detection that can easily be expanded to other masked mycotoxins.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124854, 2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39089061

ABSTRACT

Ion specificity is crucial for developing fluorescence probes. Using a recently reported optical sensor (BDA-1) of Zn2+ as a representative, we carried out extensive quantum chemical calculations on its photophysical properties using density function theory. According to the calculated optimized geometries, excitation energies and transition oscillator strengths, the weak fluorescence of BDA-1 observed in experiments is attributed to the suppression of fluorescence emission by efficient internal conversion, rather than the previously proposed photoinduced electron transfer (PET) mechanism. With the addition of Zn2+ or Cd2+ ions, the tetradentate chelates [M:BDA-1-H+]+ (M=Zn, Cd) are produced. According to frontier molecular orbital and interfragment charge transfer analyses of these complexes, PET is preferentially confirmed to occur upon photo-excitation. Notably, as one coordination bond in the excited [Cd:BDA-1-H+]+ complex is significantly weakened in comparison to that of [Zn:BDA-1-H+]+, their molecular orbital compositions in the S1 state are completely different. As a result, absorption and radiation transitions of [Zn:BDA-1-H+]+ both have considerable oscillator strength, while fluorescence radiation from the excited [Cd:BDA-1-H+]+ is doubly suppressed. This difference causes that the fluorescence intensity of BDA-1 is sensitive to the addition of metal ions, and exhibits the zinc ion-specificity.

5.
Comput Biol Med ; 180: 108959, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39089109

ABSTRACT

Neuropsychiatric symptoms (NPS) and mood disorders are common in individuals with mild cognitive impairment (MCI) and increase the risk of progression to dementia. Wearable devices collecting physiological and behavioral data can help in remote, passive, and continuous monitoring of moods and NPS, overcoming limitations and inconveniences of current assessment methods. In this longitudinal study, we examined the predictive ability of digital biomarkers based on sensor data from a wrist-worn wearable to determine the severity of NPS and mood disorders on a daily basis in older adults with predominant MCI. In addition to conventional physiological biomarkers, such as heart rate variability and skin conductance levels, we leveraged deep-learning features derived from physiological data using a self-supervised convolutional autoencoder. Models combining common digital biomarkers and deep features predicted depression severity scores with a correlation of r = 0.73 on average, total severity of mood disorder symptoms with r = 0.67, and mild behavioral impairment scores with r = 0.69 in the study population. Our findings demonstrated the potential of physiological biomarkers collected from wearables and deep learning methods to be used for the continuous and unobtrusive assessments of mental health symptoms in older adults, including those with MCI. TRIAL REGISTRATION: This trial was registered with ClinicalTrials.gov (NCT05059353) on September 28, 2021, titled "Effectiveness and Safety of a Digitally Based Multidomain Intervention for Mild Cognitive Impairment".

6.
Biosens Bioelectron ; 263: 116606, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39089190

ABSTRACT

The pH of human sweat is highly related with a variety of diseases, whereas the monitoring of sweat pH still remains challenging for ordinary families. In this study, we developed a novel dual-emission Tb-MOF using DPA as the ligand and further designed and constructed a skin-attachable Tb-MOF ratio fluorescent sensor for real-time detection of human sweat pH. With the increased concentration of H+, the interaction of H+ with carbonyl organic ligand leads to the collapse of the Tb-MOF crystal structure, resulting in the interruption of antenna effect, and correspondingly increasing the emission of the ligand at 380 nm and decreasing the emission of the central ion Tb3+ at 544 nm. This Tb-MOF nanoprobe has a good linear response in the pH range of 4.12-7.05 (R2 = 0.9914) with excellent anti-interference ability. Based on the merits of fast pH response and high sensitivity, the nanoprobe was further used to prepare flexible wearable sensor. The wearable sensor can detect pH in the linear range of 3.50-6.70, which covers the pH range of normal human sweat (4.50-6.50). Subsequently, the storage stability and detection accuracy of the sensors were evaluated. Finally, the sensor has been successfully applied for the detection of pH in actual sweat samples from 21 volunteer and the real-time monitoring of pH variation during movement processing. This skin-attachable Tb-MOF sensor, with the advantages of low cost, visible color change and long shelf-life, is appealing for sweat pH monitoring especially for ordinary families.

7.
ACS Sens ; 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39086324

ABSTRACT

One challenge for gas sensors is humidity interference, as dynamic humidity conditions can cause unpredictable fluctuations in the response signal to analytes, increasing quantitative detection errors. Here, we introduce a concept: Select humidity sensors from a pool to compensate for the humidity signal for each gas sensor. In contrast to traditional methods that extremely suppress the humidity response, the sensor pool allows for more accurate gas quantification across a broader range of application scenarios by supplying customized, high-dimensional humidity response data as extrinsic compensation. As a proof-of-concept, mitigation of humidity interference in colorimetric gas quantification was achieved in three steps. First, across a ten-dimensional variable space, an algorithm-driven high-throughput experimental robot discovered multiple local optimum regions where colorimetric humidity sensing formulations exhibited high evaluations on sensitivity, reversibility, response time, and color change extent for 10-90% relative humidity (RH) in room temperature (25 °C). Second, from the local optimum regions, 91 sensing formulations with diverse variables were selected to construct a parent colorimetric humidity sensor array as the sensor pool for humidity signal compensation. Third, the quasi-optimal sensor subarrays were identified as customized humidity signal compensation solutions for different gas sensing scenarios across an approximately full dynamic range of humidity (10-90% RH) using an ingenious combination optimization strategy, and two accurate quantitative detections were attained: one with a mean absolute percentage error (MAPE) reduction from 4.4 to 0.75% and the other from 5.48 to 1.37%. Moreover, the parent sensor array's excellent humidity selectivity was validated against 10 gases. This work demonstrates the feasibility and superiority of robot-assisted construction of a customizable parent colorimetric sensor array to mitigate humidity interference in gas quantification.

8.
Small ; : e2405493, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39087376

ABSTRACT

Simultaneous monitoring of critical parameters (e.g., pressure, shear, and temperature) at bony prominences is essential for the prevention of pressure injuries in a systematic manner. However, the development of wireless sensor array for accurate mapping of risk factors has been limited due to the challenges in the convergence of wireless technologies and wearable sensor arrays with a thin and small form factor. Herein, a battery-free, wireless, miniaturized multi-modal sensor array is introduced for continuous mapping of pressure, shear, and temperature at skin interfaces. The sensor array includes an integrated pressure and shear sensor consisting of 3D strain gauges and micromachined components. The mechanically decoupled design of the integrated sensor enables reliable data acquisition of pressure and shear at skin interfaces without the need for additional data processing. The sensor platform enables the analysis of interplay among localized pressure, shear, and temperature in response to changes in the patient's movement, posture, and bed inclination. The validation trials using a novel combination of wireless sensor arrays and customized pneumatic actuator demonstrate the efficacy of the platform in continuous monitoring and efficient redistribution of pressure and shear without repositioning, thereby improving the patient's quality of life.

9.
J Phys Ther Sci ; 36(8): 435-440, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39092410

ABSTRACT

[Purpose] We investigated the utility of wearable inertial and magnetic sensing modules for analyzing neck and trunk movements during the rolling over movement. [Participants and Methods] The participants were instructed to roll over from the supine to the side-lying position with three sensor units attached to their forehead, xiphoid process of the sternum, and abdomen. Experiments were conducted on two prescribed patterns: one emphasizing hip joint flexion and adduction, and the other focusing on scapular protraction and horizontal shoulder joint adduction in two healthy participants (one male and one female). The flexion and rotation angles of the neck and trunk were calculated using conventional spreadsheet software with data obtained from the sensors. The obtained values were compared for agreement with those derived from a three-dimensional (3D) motion analysis device. [Results] The cross-correlation coefficient for the flexion and rotation angles of the neck and trunk between the two measurement methods was approximately 0.85, and the root mean square (RMS) angle difference was approximately 5.0°. [Conclusion] Wearable inertial and magnetic sensors can be used to quantitatively evaluate neck and trunk movements during the rolling over movement.

10.
JMIR Rehabil Assist Technol ; 11: e57953, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39093610

ABSTRACT

BACKGROUND: Low back pain (LBP) is a significant public health problem that can result in physical disability and financial burden for the individual and society. Physical therapy is effective for managing LBP and includes evaluation of posture and movement, interventions directed at modifying posture and movement, and prescription of exercises. However, physical therapists have limited tools for objective evaluation of low back posture and movement and monitoring of exercises, and this evaluation is limited to the time frame of a clinical encounter. There is a need for a valid tool that can be used to evaluate low back posture and movement and monitor exercises outside the clinic. To address this need, a fabric-based, wearable sensor, Motion Tape (MT), was developed and adapted for a low back use case. MT is a low-profile, disposable, self-adhesive, skin-strain sensor developed by spray coating piezoresistive graphene nanocomposites directly onto commercial kinesiology tape. OBJECTIVE: The objectives of this study were to (1) validate MT for measuring low back posture and movement and (2) assess the acceptability of MT for users. METHODS: A total of 10 participants without LBP were tested. A 3D optical motion capture system was used as a reference standard to measure low back kinematics. Retroreflective markers and a matrix of MTs were placed on the low back to measure kinematics (motion capture) and strain (MT) simultaneously during low back movements in the sagittal, frontal, and axial planes. Cross-correlation coefficients were calculated to evaluate the concurrent validity of MT strain in reference motion capture kinematics during each movement. The acceptability of MT was assessed using semistructured interviews conducted with each participant after laboratory testing. Interview data were analyzed using rapid qualitative analysis to identify themes and subthemes of user acceptability. RESULTS: Visual inspection of concurrent MT strain and kinematics of the low back indicated that MT can distinguish between different movement directions. Cross-correlation coefficients between MT strain and motion capture kinematics ranged from -0.915 to 0.983, and the strength of the correlations varied across MT placements and low back movement directions. Regarding user acceptability, participants expressed enthusiasm toward MT and believed that it would be helpful for remote interventions for LBP but provided suggestions for improvement. CONCLUSIONS: MT was able to distinguish between different low back movements, and most MTs demonstrated moderate to high correlation with motion capture kinematics. This preliminary laboratory validation of MT provides a basis for future device improvements, which will also involve testing in a free-living environment. Overall, users found MT acceptable for use in physical therapy for managing LBP.

11.
ACS Sens ; 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39093722

ABSTRACT

Exhaled breath electrochemical sensing is a promising biomedical technology owing to its portability, painlessness, cost-effectiveness, and user-friendliness. Here, we present a novel approach for target analysis in exhaled breath by integrating a comfortable paper-based collector into an N95 face mask, providing a universal solution for analyzing several biomarkers. As a model analyte, we detected SARS-CoV-2 spike protein from the exhaled breath by sampling the target analyte into the collector, followed by its detection out of the N95 face mask using a magnetic bead-based electrochemical immunosensor. This approach was designed to avoid any contact between humans and the chemicals. To simulate human exhaled breath, untreated saliva samples were nebulized on the paper collector, revealing a detection limit of 1 ng/mL and a wide linear range of 3.7-10,000 ng/mL. Additionally, the developed immunosensor exhibited high selectivity toward the SARS-CoV-2 spike protein, compared to other airborne microorganisms, and the SARS-CoV-2 nucleocapsid protein. Accuracy assessments were conducted by analyzing the simulated breath samples spiked with varying concentrations of SARS-CoV-2 spike protein, resulting in satisfactory recovery values (ranging from 97 ± 4 to 118 ± 1%). Finally, the paper-based hybrid immunosensor was successfully applied for the detection of SARS-CoV-2 in real human exhaled breath samples. The position of the collector in the N95 mask was evaluated as well as the ability of this paper-based analytical tool to identify the positive patient.

12.
Biosens Bioelectron ; 263: 116604, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39094293

ABSTRACT

Achieving rapid, cost effective, and intelligent identification and quantification of flavonoids is challenging. For fast and uncomplicated flavonoid determination, a sensing platform of smartphone-coupled colorimetric sensor arrays (electronic noses) was developed, relying on the differential competitive inhibition of hesperidin, nobiletin, and tangeretin on the oxidation reactions of nanozymes with a 3,3',5,5'-tetramethylbenzidine substrate. First, density functional theory calculations predicted the enhanced peroxidase-like activities of CeO2 nanozymes after doping with Mn, Co, and Fe, which was then confirmed by experiments. The self-designed mobile application, Quick Viewer, enabled a rapid evaluation of the red, green, and blue values of colorimetric images using a multi-hole parallel acquisition strategy. The sensor array based on three channels of CeMn, CeFe, and CeCo was able to discriminate between different flavonoids from various categories, concentrations, mixtures, and the various storage durations of flavonoid-rich Citri Reticulatae Pericarpium through a linear discriminant analysis. Furthermore, the integration of a "segmentation-extraction-regression" deep learning algorithm enabled single-hole images to be obtained by segmenting from a 3 × 4 sensing array to augment the featured information of array images. The MobileNetV3-small neural network was trained on 37,488 single-well images and achieved an excellent predictive capability for flavonoid concentrations (R2 = 0.97). Finally, MobileNetV3-small was integrated into a smartphone as an application (Intelligent Analysis Master), to achieve the one-click output of three concentrations. This study developed an innovative approach for the qualitative and simultaneous multi-ingredient quantitative analysis of flavonoids.

13.
Food Chem ; 460(Pt 2): 140620, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39094338

ABSTRACT

Food contamination has long plagued agriculture, posing significant health risks to consumers. The use of volatile gases for food safety detection has proven highly effective, with composite gas sensors that leverage the two-dimensional material MXene exhibiting notable advancements in detecting various target gases. This paper reviews the progress of MXene-based composite gas sensors in the detection of food safety-related gases. The review begins by examining MXene material synthesis methods and then presents an overview of techniques aimed at enhancing MXene-based sensor detection capabilities. Recently, advancements in MXene composite gas sensors tailored for food safety gases have been highlighted. Finally, challenges encountered in gas-sensing applications of MXene-based composites are outlined, alongside predictions for their future development, aiming to offer insights for the application and advancement of intelligent gas sensors for target gases in food safety.

14.
J Colloid Interface Sci ; 677(Pt A): 273-281, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39094488

ABSTRACT

Wearable electronics based on conductive hydrogels (CHs) offer remarkable flexibility, conductivity, and versatility. However, the flexibility, adhesiveness, and conductivity of traditional CHs deteriorate when they freeze, thereby limiting their utility in challenging environments. In this work, we introduce a PHEA-NaSS/G hydrogel that can be conveniently fabricated into a freeze-resistant conductive hydrogel by weakening the hydrogen bonds between water molecules. This is achieved through the synergistic interaction between the charged polar end group (-SO3-) and the glycerol-water binary solvent system. The conductive hydrogel is simultaneously endowed with tunable mechanical properties and conductive pathways by the modulation caused by varying material compositions. Due to the uniform interconnectivity of the network structure resulting from strong intermolecular interactions and the enhancement effect of charged polar end-groups, the resulting hydrogel exhibits 174 kPa tensile strength, 2105 % tensile strain, and excellent sensing ability (GF = 2.86, response time: 121 ms), and the sensor is well suited for repeatable and stable monitoring of human motion. Additionally, using the Full Convolutional Network (FCN) algorithm, the sensor can be used to recognize English letter handwriting with an accuracy of 96.4 %. This hydrogel strain sensor provides a simple method for creating multi-functional electronic devices, with significant potential in the fields of multifunctional electronics such as soft robotics, health monitoring, and human-computer interaction.

15.
Talanta ; 279: 126614, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39094532

ABSTRACT

Miniaturization and mass-production of potentiometric sensor systems is paving the way towards distributed environmental sensing, on-body measurements and industrial process monitoring. Inkjet printing is gaining popularity as a highly adaptable and scalable production technique. Presented here is a scalable and low-cost route for flexible solid-contact ammonium ion-selective electrode fabrication by inkjet printing. Utilization of inkjet-printed melamine-intercalated graphene nanosheets as the solid-contact material significantly improved charge transport, while evading the detrimental water-layer formation. External polarization was investigated as a means of improving the inter-electrode reproducibility: the standard deviations of E0 values were reduced after electrode polarization, the linear region of the response was extended to the range 10-1-10-6 M of NH4Cl and LODs reduced to 0.88 ± 0.17 µM. Finally, we have shown that the electrodes are adequate for measurements in a complex real sample: ammonium concentration was determined in landfill leachate water, with less than 4 % deviation from the reference method.

16.
Talanta ; 279: 126608, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39094530

ABSTRACT

The presence of fluoroquinolones (FQs) residues in food and the environment has prompted concerns regarding food safety and public health. Consequently, it is of great significance to analyze the types and levels of FQs present. However, the majority of studies have concentrated on the specific detection of individual FQs, with a notable absence of high-throughput and rapid analysis methods for the simultaneous detection of multiple FQs that may coexist in food and the environment. Hereon, a triple-channel sensor array was successfully constructed utilizing fluorescent carbon dots (TA-CDs), with the assistance of Cu2+ and Fe3+, for the qualitative discrimination and quantitative detection of eight types of FQs. The sensor array can distinguish between different concentrations of FQs and various mixtures of FQs, as well as 100 % accuracy in the discrimination of unknown samples. Impressively, the sensor platform can quantitatively detect FQs in animal-derived foods, such as honey, milk, eggs, and pork, as well as in water samples. This research has the potential to be extended to other analytes with similar chemical structures or properties.

17.
Sci Total Environ ; : 175190, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39094638

ABSTRACT

Lead ions are especially harmful to human health, causing significant developmental and behavioral abnormalities even at small concentrations. In real-life samples, lead ions are present in mixtures with other metal ions, creating a challenge to detect it selectively at low quantities. To address these challenges, we prepared an electrochemical sensor based on delaminated Ti3C2Tx MXene, which can selectively detect low concentrations of Pb2+ in a solution containing other common metal ions. Cyclic voltammetry was applied as an electrochemical detection method. The proposed reaction mechanism involves a reversible transition between Pb2+ ions and PbO at the MXene-based layer. The sensitivity of the sensor towards Pb2+ ions and a limit of detection were determined. The sensor, as prepared, had a linear response range within 0.15-1.0 µM, with a sensitivity of 26.7 µA/µM and LOD value of 48.7 nM, which meets the requirements set by the World Health Organization.

18.
Mov Ecol ; 12(1): 54, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090724

ABSTRACT

BACKGROUND: Small songbirds respond and adapt to various geographical barriers during their annual migration. Global flyways reveal the diverse migration strategies in response to different geographical barriers, among which are high-elevation plateaus. However, few studies have been focused on the largest and highest plateau in the world, the Qinghai-Tibet Plateau (QTP) which poses a significant barrier to migratory passerines. The present study explored the annual migration routes and strategies of a population of Siberian Rubythroats (Calliope calliope) that breed on the north-eastern edge of the QTP. METHODS: Over the period from 2021 to 2023, we applied light-level geolocators (13 deployed, seven recollected), archival GPS tags (45 deployed, 17 recollected), and CAnMove multi-sensor loggers (with barometer, accelerometer, thermometer, and light sensor, 20 deployed, six recollected) to adult males from the breeding population of Siberian Rubythroat on the QTP. Here we describe the migratory routes and phenology extracted or inferred from the GPS and multi-sensor logger data, and used a combination of accelerometric and barometric data to describe the elevational migration pattern, flight altitude, and flight duration. All light-level geolocators failed to collect suitable data. RESULTS: Both GPS locations and positions derived from pressure-based inference revealed that during autumn, the migration route detoured from the bee-line between breeding and wintering grounds, leading to a gradual elevational decrease. The spring route was more direct, with more flights over mountainous areas in western China. This different migration route during spring probably reflects a strategy for faster migration, which corresponds with more frequent long nocturnal migration flights and shorter stopovers during spring migration than in autumn. The average flight altitude (1856 ± 781 m above sea level) was correlated with ground elevation but did not differ between the seasons. CONCLUSIONS: Our finding indicates strong, season-dependent impact of the Qinghai-Tibet Plateau on shaping passerine migration strategies. We hereby call for more attention to the unexplored central-China flyway to extend our knowledge on the environment-migration interaction among small passerines.

19.
Opt Eng ; 63(3)2024 Mar.
Article in English | MEDLINE | ID: mdl-39091280

ABSTRACT

An acousto-optic (AO)-based electric field sensor is presented for time domain measurement under magnetic resonance imaging (MRI). A fully MR-compatible sensor is designed and fabricated using a phase-shifted fiber Bragg grating mechanically coupled to a piezoelectric transducer. Mechanical resonance of the piezoelectric transducer is matched to the operating frequencies of commonly used MRI systems to increase the sensitivity of the sensor. Sensitivity of the sensor is measured as 1.27 mV/V/m, with a minimum detectable electric field of 4.4 mV/m/√/Hz. Directivity of the sensor is measured with a 18 dB orthogonal component rejection. The dynamic range of the sensor is calculated as 117 dB/Hz, which allows the measurement of electric fields up to 3.2 kV/m. In MRI studies, the AO sensor was able detect local hot spots around a reference implant accurately with high signal-to-noise ratio. AO sensor exhibited similar or better performance when compared with commercially available MRI compatible electric field sensors. Furthermore, the small size of the sensor with the flexible fiber optic link could allow in situ measurements of electric fields during critical interventional procedures such as pacemaker lead or deep brain stimulator placement as an MRI dosimeter during diagnostic scans.

20.
Int J Biol Macromol ; 277(Pt 3): 134376, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39094891

ABSTRACT

Smart packaging material capable of real-time monitoring of food freshness is essential for ensuring food safe. At present, colorimetric ammonia-sensing smart film often possesses issues with complicated production, high cost, and inferior long-term colour stability. Herein, Zinc­copper bimetallic organic framework (ZnCu-BTC, BTC = 1,3,5-benzenetricarboxylate acid) nanorods with colorimetric ammonia-responsiveness were synthesized by adopting facile aqueous solution method, which were then explored as nano inclusions in potato starch/polyvinyl alcohol (PS/PVA) composite film towards developing high-performance smart packaging material. The results demonstrated that the introduction of ZnCu-BTC nanorods within PS/PVA brought about remarkable improvement in blend compatibility, accompanied by a boost in tensile strength to 47.2 MPa, as well as enhanced ultraviolet (UV) blocking efficacy (over 95.0 %). Additionally, the barrier properties of PS/PVA film against water vapor and oxygen were fortified due to the addition of ZnCu-BTC. More importantly, the developed PS/PVA/ZnCu-BTC nanocomposite film displayed satisfactory antibacterial activity (over 99 %) against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), favorable colorimetric ammonia-sensing ability, and long-term colour stability. The ZnCu-BTC incorporated PS/PVA nanocomposite film could grant real-time detection of prawn freshness decline via remarkable colour change, indicating vast promise for smart food packaging applications.

SELECTION OF CITATIONS
SEARCH DETAIL