Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Nanoscale Res Lett ; 16(1): 178, 2021 Dec 13.
Article in English | MEDLINE | ID: mdl-34902094

ABSTRACT

High-density Cs2AgBiBr6 films with uniform grains were prepared by a simple one-step and low-temperature sol-gel method on indium tin oxide (ITO) substrates. An explicit tristate bipolar resistance switching behavior was observed in the Pt/Cs2 AgBiBr6/ITO/glass devices under irradiation of 10 mW/cm2 (445 nm). This behavior was stable over 1200 s. The maximum ratio of the high and low resistance states was about 500. Based on the analysis of electric properties, valence variation and absorption spectra, the resistive switching characteristics were attributed to the trap-controlled space charge-limited current mechanism due to the bromine vacancies in the Cs2AgBiBr6 layer. On the other hand, it is suggested that the ordering of the Schottky-like barrier located at Pt/Cs2AgBiBr6 affects the three-state resistance switching behavior under light irradiation. The ability to adjust the photoelectrical properties of Cs2AgBiBr6-based resistive switching memory devices is a promising strategy to develop high-density memory.

2.
Nanomaterials (Basel) ; 11(6)2021 May 21.
Article in English | MEDLINE | ID: mdl-34064022

ABSTRACT

Light-modulated lead-free perovskites-based memristors, combining photoresponse and memory, are promising as multifunctional devices. In this work, lead-free double perovskite Cs2AgBiBr6 films with dense surfaces and uniform grains were prepared by the low-temperature sol-gel method on indium tin oxide (ITO) substrates. A memory device based on a lead-free double perovskite Cs2AgBiBr6 film, Pt/Cs2AgBiBr6/ITO/glass, presents obvious bipolar resistive switching behavior. The ROFF/RON ratio under 445 nm wavelength light illumination is ~100 times greater than that in darkness. A long retention capability (>2400 s) and cycle-to-cycle consistency (>500 times) were observed in this device under light illumination. The resistive switching behavior is primarily attributed to the trap-controlled space-charge-limited current mechanism caused by bromine vacancies in the Cs2AgBiBr6 medium layer. Light modulates resistive states by regulating the condition of photo-generated carriers and changing the Schottky-like barrier of the Pt/Cs2AgBiBr6 interface under bias voltage sweeping.

SELECTION OF CITATIONS
SEARCH DETAIL