Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Ultrasonics ; 142: 107380, 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38897038

ABSTRACT

Features of an application of a High-overtone Bulk Acoustic Resonator (HBAR) as a high-pressure sensor have been considered. In this way, the second version of an integrated measurement system combining a Diamond Anvil Cell (DAC) and an HBAR operating in the microwave frequency band from 1.3 to 3.7 GHz was developed. A specific configuration of HBAR based on a piezoelectric layered structure as "Al/ASN/Mo/(100) diamond" was proposed. Two independent methods of pressure control were used to calibrate the embedded HBAR as a pressure sensor: a stress-induced shift of the diamond Raman line and the shift of the R1 luminescence line of Cr3+ in the ruby matrix. A stable correlation between the frequency shifts of the acoustic overtones in the HBAR, the shift of the diamond Raman line and the shift of the R1 line with a change in pressure applied to the W-gasket with embedded ruby particles was established in the range of 0 … 30 GPa. The sensitivity of an investigated sensor to the pressure variation was found to be equal 1ΔPΔff=4.8∙10-4GPa-1. The maximal value of 30 GPa obtained in a given work can be easily increased after a minor reconfiguration of the DAC. Considering the range of 0 - 5 GPa a proposed built-in DAC acoustoelectronic sensor has the better performance and sensitivity compared with known methods of a pressure measurement.

2.
ACS Nano ; 18(24): 15925-15934, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38830113

ABSTRACT

The growth in data generation necessitates efficient data processing technologies to address the von Neumann bottleneck in conventional computer architecture. Memory-driven computing, which integrates nonvolatile memory (NVM) devices in a 3D stack, is gaining attention, with CMOS back-end-of-line (BEOL)-compatible ferroelectric (FE) diodes being ideal due to their two-terminal design and inherently selector-free nature, facilitating high-density crossbar arrays. Here, we demonstrate BEOL-compatible, high-performance FE diodes scaled to 5, 10, and 20 nm FE Al0.72Sc0.28N/Al0.64Sc0.36N films. Through interlayer (IL) engineering, we show substantial improvements in the on/off ratios (>166 times) and rectification ratios (>176 times) in these scaled devices. These characteristics also enable 5-bit multistate operation with a stable retention. We also experimentally and theoretically demonstrate the counterintuitive result that the inclusion of an IL can lead to a decrease in the ferroelectric switching voltage of the device. An in-depth analysis into the device transport mechanisms is performed, and our compact model aligns seamlessly with the experimental results. Our results suggest the possibility of using scaled AlxSc1-xN FE diodes for high-performance, low-power, embedded NVM.

3.
Adv Sci (Weinh) ; 11(16): e2308797, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38355302

ABSTRACT

Ferroelectric wurtzite-type aluminum scandium nitride (Al1-xScxN) presents unique properties that can enhance the performance of non-volatile memory technologies. The realization of the full potential of Al1-xScxN requires a comprehensive understanding of the mechanism of polarization reversal and domain structure dynamics involved in the ferroelectric switching process. In this work, transient current integration measurements performed by a pulse switching method are combined with domain imaging by piezoresponse force microscopy (PFM) to investigate the kinetics of domain nucleation and wall motion during polarization reversal in Al0.85Sc0.15N capacitors. In the studied electric field range (from 4.4 to 5.6 MV cm-1), ferroelectric switching proceeds via domain nucleation and wall movement. The currently available phenomenological models are shown to not fully capture all the details of the complex dynamics of polarization reversal in Al0.85Sc0.15N. PFM reveals a non-linear increase of both domain nucleation rate and lateral wall velocity during the switching process, as well as the dependency of the domain pattern on the polarization reversal direction. A continuously faster N- to M-polar switching upon cycling is reported and ascribed to an increasing number of M-polar nucleation sites and density of domain walls.

4.
Nanomaterials (Basel) ; 13(20)2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37887888

ABSTRACT

Despite the dominance of bulk acoustic wave (BAW) filters in the high-frequency market due to their superior performance and compatible integration process, the advent of the 5G era brings up new challenges to meet the ever-growing demands on high-frequency and large bandwidth. Al1-xScxN piezoelectric films with high Sc concentration are particularly desirable to achieve an increased electromechanical coupling (Kt2) for BAW resonators and also a larger bandwidth for filters. In this paper, we designed and fabricated the Al1-xScxN-based BAW resonators with Sc concentrations as high as 30%. The symmetry of the resonance region, border frame structure and thickness ratio of the piezoelectric stack are thoroughly examined for lateral modes suppression and resonant performance optimization. Benefiting from the 30% Sc doping, the fabricated BAW resonators demonstrate a large effective electromechanical coupling (Keff2) of 17.8% at 4.75 GHz parallel resonant frequency. Moreover, the temperature coefficient of frequency (TCF) of the device is obtained as -22.9 ppm/°C, indicating reasonable temperature stability. Our results show that BAW resonators based on highly doped Al1-xScxN piezoelectric film have great potential for high-frequency and large bandwidth applications.

5.
Micromachines (Basel) ; 14(9)2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37763952

ABSTRACT

In this paper, the newly developed 3D-constructed AlScN piezoelectric MEMS mirror is presented. This paper describes the structure and driving mechanism of the proposed mirror device, covering its driving characteristics in both quasi-static and resonant scan modes. Particularly, this paper deals with various achievable scan patterns including 1D line scan and 2D area scan capabilities and driving methods to realize each scanning strategy. Bidirectional quasi-static actuation along horizontal, vertical, and diagonal scanning directions was experimentally characterized and even under a low voltage level of ±20 V, a total optical scan angle of 10.4° was achieved. In addition, 1D line scanning methods using both resonant and non-resonant frequencies were included and a total optical scan angle of 14° was obtained with 100 mVpp under out-of-phase actuation condition. Furthermore, 2D scan patterns including Lissajous, circular and spiral, and raster scans were realized. Diverse scan patterns were realized with the presented AlScN-based MEMS mirror device even under a low level of applied voltage. Further experiments using high voltage up to ±120 V to achieve an enhanced quasi-static scan angle of more than 20° are ongoing to ensure repeatability. This multi-functional MEMS mirror possesses the potential to implement multiple scanning strategies suitable for various application purposes.

6.
Nano Lett ; 23(15): 7213-7220, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37523481

ABSTRACT

Aluminum scandium nitride (Al1-xScxN), with its large remanent polarization, is an attractive material for high-density ferroelectric random-access memories. However, the cycling endurance of Al1-xScxN ferroelectric capacitors is far below what can be achieved in other ferroelectric materials. Understanding the nature and dynamics of the breakdown mechanism is of the utmost importance for improving memory reliability. The breakdown phenomenon in ferroelectric Al1-xScxN is proposed to be an impulse thermal filamentary-driven process along preferential defective pathways. For the first time, stable and robust bipolar filamentary resistive switching in ferroelectric Al1-xScxN is reported. A hot atom damage defect generation model illustrates how filament formation and ferroelectric switching are connected. The model reveals the tendency of the ferroelectric wurtzite-type Al1-xScxN system to reach internal symmetry with bipolar electric field cycling. Defects generated from bipolar electric field cycling influence both the energy barrier between the polarization states and that required for the filament formation.

7.
Sensors (Basel) ; 23(9)2023 May 05.
Article in English | MEDLINE | ID: mdl-37177705

ABSTRACT

The application of microwave diamond-based HBAR as a sensor of microwave acoustic attenuation α was considered, using the Mo film as an object of research. A multilayered piezoelectric structure, as the Al/Al0.73Sc0.27N/Mo/(100) diamond/Mo, was produced using aluminum-scandium nitride composition, and was studied in detail for a number of the Mo films with different thicknesses obtained by magnetron deposition. The operational frequency band of 3.3 … 18 GHz was used. It was found that the dependence of the resonant frequency shift vs. the h(Mo) thickness for all the overtones to be investigated was linear. For a given sensor, it was found that the mass sensitivity per unit area rm was equal to -26 × 10-12 and -8.7 × 10-12 g/(cm2∙Hz) at 6.0 GHz and 18.3 GHz, respectively. The frequency dependencies of quality factor Q, which changed as a result of Mo film deposition, were considered as the basic experimental data. A method for extracting the α(Mo) values was proposed. The Q-factor under the complete deposition of Mo film was 936 nm, and dropped moderately to ~25%. Such values were enough for an aim of the given experiment. The α(f) in molybdenum was obtained, and demonstrated a dependence that was close to quadratic, corresponding to the Akhiezer attenuation law.

8.
Materials (Basel) ; 16(5)2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36902897

ABSTRACT

Aluminum scandium nitride (Al1-xScxN) film has drawn considerable attention owing to its enhanced piezoelectric response for micro-electromechanical system (MEMS) applications. Understanding the fundamentals of piezoelectricity would require a precise characterization of the piezoelectric coefficient, which is also crucial for MEMS device design. In this study, we proposed an in situ method based on a synchrotron X-ray diffraction (XRD) system to characterize the longitudinal piezoelectric constant d33 of Al1-xScxN film. The measurement results quantitatively demonstrated the piezoelectric effect of Al1-xScxN films by lattice spacing variation upon applied external voltage. The as-extracted d33 had a reasonable accuracy compared with the conventional high over-tone bulk acoustic resonators (HBAR) devices and Berlincourt methods. It was also found that the substrate clamping effect, leading to underestimation of d33 from in situ synchrotron XRD measurement while overestimation using Berlincourt method, should be thoroughly corrected in the data extraction process. The d33 of AlN and Al0.9Sc0.1N obtained by synchronous XRD method were 4.76 pC/N and 7.79 pC/N, respectively, matching well with traditional HBAR and Berlincourt methods. Our findings prove the in situ synchrotron XRD measurement as an effective method for precise piezoelectric coefficient d33 characterization.

9.
ACS Appl Mater Interfaces ; 15(5): 7030-7043, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36715613

ABSTRACT

The discovery of ferroelectricity in aluminum scandium nitride (Al1-xScxN) opens technological perspectives for harsh environments and space-related memory applications, considering the high-temperature stability of piezoelectricity in aluminum nitride. The ferroelectric and material properties of 100 nm-thick Al0.72Sc0.28N are studied up to 873 K, combining both electrical and in situ X-ray diffraction measurements as well as transmission electron microscopy and energy-dispersive X-ray spectroscopy. The present work demonstrates that Al0.72Sc0.28N can achieve high switching polarization and tunable coercive fields in a 375 K temperature range from room temperature up to 673 K. The degradation of the ferroelectric properties in the capacitors is observed above this temperature. Reduction of the effective top electrode area and consequent oxidation of the Al0.72Sc0.28N film are mainly responsible for this degradation. A slight variation of the Sc concentration is quantified across grain boundaries, even though its impact on the ferroelectric properties cannot be isolated from those brought by the top electrode deterioration and Al0.72Sc0.28N oxidation. The Curie temperature of Al0.72Sc0.28N is confirmed to be above 873 K, thus corroborating the promising thermal stability of this ferroelectric material. The present results further support the future adoption of Al1-xScxN in memory technologies for harsh environments like applications in space missions.

10.
Micromachines (Basel) ; 13(12)2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36557343

ABSTRACT

Film bulk acoustic resonators (FBARs) with a desired effective electromechanical coupling coefficient (Keff2) are essential for designing filter devices. Using AlN/AlScN composite film with the adjustable thickness ratio can be a feasible approach to obtain the required Keff2. In this work, we research the resonant characteristics of FBARs based on AlN/AlScN composite films with different thickness ratios by finite element method and fabricate FBAR devices in a micro-electromechanical systems process. Benefiting from the large piezoelectric constants, with a 1 µm-thick Al0.8Sc0.2N film, Keff2 can be twice compared with that of FBAR based on pure AlN films. For the composite films with different thickness ratios, Keff2 can be adjusted in a relatively wide range. In this case, a filter with the specific N77 sub-band is demonstrated using AlN/Al0.8Sc0.2N composite film, which verifies the enormous potential for AlN/AlScN composite film in design filters.

11.
Micromachines (Basel) ; 13(10)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36295914

ABSTRACT

This paper reports on the deposition and characterization of piezoelectric AlXSc1-XN (further: AlScN) films on Si substrates using AlSc alloy targets with 30 at.% Sc. Films were deposited on a Ø200 mm area with deposition rates of 200 nm/min using a reactive magnetron sputtering process with a unipolar-bipolar hybrid pulse mode of FEP. The homogeneity of film composition, structural properties and piezoelectric properties were investigated depending on process parameters, especially the pulse mode of powering in unipolar-bipolar hybrid pulse mode operation. Characterization methods include energy-dispersive spectrometry of X-ray (EDS), X-ray diffraction (XRD), piezoresponse force microscopy (PFM) and double-beam laser interferometry (DBLI). The film composition was Al0.695Sc0.295N. The films showed good homogeneity of film structure with full width at half maximum (FWHM) of AlScN(002) rocking curves at 2.2 ± 0.1° over the whole coating area when deposited with higher share of unipolar pulse mode during film growth. For a higher share of bipolar pulse mode, the films showed a much larger c-lattice parameter in the center of the coating area, indicating high in-plane compressive stress in the films. Rocking curve FWHM also showed similar values of 1.5° at the center to 3° at outer edge. The piezoelectric characterization method revealed homogenous d33,f of 11-12 pm/V for films deposited at a high share of unipolar pulse mode and distribution of 7-10 pm/V for a lower share of unipolar pulse mode. The films exhibited ferroelectric switching behavior with coercive fields of around 3-3.5 MV/cm and polarization of 80-120 µC/cm².

12.
Sensors (Basel) ; 22(18)2022 Sep 17.
Article in English | MEDLINE | ID: mdl-36146391

ABSTRACT

A protocol for successfully depositing [001] textured, 2−3 µm thick films of Al0.75Sc0.25N, is proposed. The procedure relies on the fact that sputtered Ti is [001]-textured α-phase (hcp). Diffusion of nitrogen ions into the α-Ti film during reactive sputtering of Al0.75,Sc0.25N likely forms a [111]-oriented TiN intermediate layer. The lattice mismatch of this very thin film with Al0.75Sc0.25N is ~3.7%, providing excellent conditions for epitaxial growth. In contrast to earlier reports, the Al0.75Sc0.25N films prepared in the current study are Al-terminated. Low growth stress (<100 MPa) allows films up to 3 µm thick to be deposited without loss of orientation or decrease in piezoelectric coefficient. An advantage of the proposed technique is that it is compatible with a variety of substrates commonly used for actuators or MEMS, as demonstrated here for both Si wafers and D263 borosilicate glass. Additionally, thicker films can potentially lead to increased piezoelectric stress/strain by supporting application of higher voltage, but without increase in the magnitude of the electric field.

13.
Micromachines (Basel) ; 13(8)2022 Aug 08.
Article in English | MEDLINE | ID: mdl-36014204

ABSTRACT

Ferroelectric thin films of wurtzite-type aluminum scandium nitride (Al1−xScxN) are promising candidates for non-volatile memory applications and high-temperature sensors due to their outstanding functional and thermal stability exceeding most other ferroelectric thin film materials. In this work, the thermal expansion along with the temperature stability and its interrelated effects have been investigated for Al1−xScxN thin films on sapphire Al2O3(0001) with Sc concentrations x (x = 0, 0.09, 0.23, 0.32, 0.40) using in situ X-ray diffraction analyses up to 1100 °C. The selected Al1−xScxN thin films were grown with epitaxial and fiber textured microstructures of high crystal quality, dependent on the choice of growth template, e.g., epitaxial on Al2O3(0001) and fiber texture on Mo(110)/AlN(0001)/Si(100). The presented studies expose an anomalous regime of thermal expansion at high temperatures >~600 °C, which is described as an isotropic expansion of a and c lattice parameters during annealing. The collected high-temperature data suggest differentiation of the observed thermal expansion behavior into defect-coupled intrinsic and oxygen-impurity-coupled extrinsic contributions. In our hypothesis, intrinsic effects are denoted to the thermal activation, migration and curing of defect structures in the material, whereas extrinsic effects describe the interaction of available oxygen species with these activated defect structures. Their interaction is the dominant process at high temperatures >800 °C resulting in the stabilization of larger modifications of the unit cell parameters than under exclusion of oxygen. The described phenomena are relevant for manufacturing and operation of new Al1−xScxN-based devices, e.g., in the fields of high-temperature resistant memory or power electronic applications.

14.
Micromachines (Basel) ; 13(7)2022 Jul 02.
Article in English | MEDLINE | ID: mdl-35888883

ABSTRACT

Due to their favorable electromechanical properties, such as high sound velocity, low dielectric permittivity and high electromechanical coupling, Aluminum Nitride (AlN) and Aluminum Scandium Nitride (Al1-xScxN) thin films have achieved widespread application in radio frequency (RF) acoustic devices. The resistance to etching at high scandium alloying, however, has inhibited the realization of devices able to exploit the highest electromechanical coupling coefficients. In this work, we investigated the vertical and lateral etch rates of sputtered AlN and Al1-xScxN with Sc concentration x ranging from 0 to 0.42 in aqueous potassium hydroxide (KOH). Etch rates and the sidewall angles were reported at different temperatures and KOH concentrations. We found that the trends of the etch rate were unanimous: while the vertical etch rate decreases with increasing Sc alloying, the lateral etch rate exhibits a V-shaped transition with a minimum etch rate at x = 0.125. By performing an etch on an 800 nm thick Al0.875Sc0.125N film with 10 wt% KOH at 65 °C for 20 min, a vertical sidewall was formed by exploiting the ratio of the 1011¯ planes and 11¯00 planes etch rates. This method does not require preliminary processing and is potentially beneficial for the fabrication of lamb wave resonators (LWRs) or other microelectromechanical systems (MEMS) structures, laser mirrors and Ultraviolet Light-Emitting Diodes (UV-LEDs). It was demonstrated that the sidewall angle tracks the trajectory that follows the 1¯212¯ of the hexagonal crystal structure when different c/a ratios were considered for elevated Sc alloying levels, which may be used as a convenient tool for structure/composition analysis.

15.
Micromachines (Basel) ; 13(8)2022 Jul 24.
Article in English | MEDLINE | ID: mdl-35893167

ABSTRACT

Thin film through-thickness stress gradients produce out-of-plane bending in released microelectromechanical systems (MEMS) structures. We study the stress and stress gradient of Al0.68Sc0.32N thin films deposited directly on Si. We show that Al0.68Sc0.32N cantilever structures realized in films with low average film stress have significant out-of-plane bending when the Al1-xScxN material is deposited under constant sputtering conditions. We demonstrate a method where the total process gas flow is varied during the deposition to compensate for the native through-thickness stress gradient in sputtered Al1-xScxN thin films. This method is utilized to reduce the out-of-plane bending of 200 µm long, 500 nm thick Al0.68Sc0.32N MEMS cantilevers from greater than 128 µm to less than 3 µm.

16.
ACS Appl Mater Interfaces ; 14(25): 29014-29024, 2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35700345

ABSTRACT

Aluminum nitride (AlN) continues to kindle considerable interest in various microelectromechanical system (MEMS)-related fields because of its superior optical, mechanical, thermal, and piezoelectric properties. In this study, we use magnetron sputtering to tailor intrinsic stress in AlN thin films from highly compressive (-1200 MPa) to highly tensile (+700 MPa), with a differential stress of 1900 MPa. By monolithically combining the compressive and tensile ultrathin AlN bilayer membranes (20-60 nm) during deposition, perfectly curved three-dimensional (3D) architectures are spontaneously formed upon dry-releasing from the substrate via a 3D MEMS approach: the complementary metal-oxide-semiconductor (CMOS)-compatible strain-induced self-rolled-up membrane (S-RuM) method. The thermal stability of the AlN 3D architectures is examined, and the curvature of S-RuM microtubes and helical structures as a function of the cumulative membrane thickness and stress are characterized experimentally and simulated using a finite-element physiomechanic method. By combining AlN with various materials such as metal (Cu) and silicon nitride (SiNx), AlN-based hybrid S-RuM microtubes with diameters as small as ∼6 µm are demonstrated with a near-unity yield (∼99%). Compared with other stressed thin films for S-RuMs, including PECVD SiNx, magnetron-sputtered AlN-based S-RuMs show better structural controllability and versatility, probably due to the high Young's modulus and stress uniformity. This work establishes the sputtered AlN thin film as a superior stress-configurable S-RuM shell material for high-performance applications in miniaturizing and integrating electronic components beyond those based on other materials such as SiNx. In addition, for the first time, a single-crystal Al1-xScxN/AlN bilayer grown by molecular beam epitaxy is successfully rolled-up with the diameter varying from ∼9 to 14 µm, paving the way for 3D tubular Al1-xScxN piezoelectric devices.

17.
Micromachines (Basel) ; 13(4)2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35457927

ABSTRACT

Piezoelectric micromirrors with aluminum nitride (AlN) and aluminum scandium nitride (Al0.68Sc0.32N) are presented and compared regarding their static deflection. Two chip designs with 2 × 3 mm2 (Design 1) and 4 × 6 mm2 (Design 2) footprint with 600 nm AlN or 2000 nm Al0.68Sc0.32N as piezoelectric transducer material are investigated. The chip with Design 1 and Al0.68Sc0.32N has a resonance frequency of 1.8 kHz and a static scan angle of 38.4° at 400 V DC was measured. Design 2 has its resonance at 2.1 kHz. The maximum static scan angle is 55.6° at 220 V DC, which is the maximum deflection measurable with the experimental setup. The static deflection per electric field is increased by a factor of 10, due to the optimization of the design and the research and development of high-performance piezoelectric transducer materials with large piezoelectric coefficient and high electrical breakthrough voltage.

18.
Nano Lett ; 21(9): 3753-3761, 2021 May 12.
Article in English | MEDLINE | ID: mdl-33881884

ABSTRACT

Recent advances in oxide ferroelectric (FE) materials have rejuvenated the field of low-power, nonvolatile memories and made FE memories a commercial reality. Despite these advances, progress on commercial FE-RAM based on lead zirconium titanate has stalled due to process challenges. The recent discovery of ferroelectricity in scandium-doped aluminum nitride (AlScN) presents new opportunities for direct memory integration with logic transistors due to the low temperature of AlScN deposition (approximately 350 °C), making it compatible with back end of the line integration on silicon logic. Here, we present a FE-FET device composed of an FE-AlScN dielectric layer integrated with a two-dimensional MoS2 channel. Our devices show an ON/OFF ratio of ∼106, concurrent with a normalized memory window of 0.3 V/nm. The devices also demonstrate stable memory states up to 104 cycles and state retention up to 105 s. Our results suggest that the FE-AlScN/2D combination is ideal for embedded memory and memory-based computing architectures.

19.
ACS Appl Mater Interfaces ; 13(16): 19031-19041, 2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33851815

ABSTRACT

Radio frequency (RF) microelectromechanical systems (MEMS) based on Al1-xScxN are replacing AlN-based devices because of their higher achievable bandwidths, suitable for the fifth-generation (5G) mobile network. However, overheating of Al1-xScxN film bulk acoustic resonators (FBARs) used in RF MEMS filters limits power handling and thus the phone's ability to operate in an increasingly congested RF environment while maintaining its maximum data transmission rate. In this work, the ramifications of tailoring of the piezoelectric response and microstructure of Al1-xScxN films on the thermal transport have been studied. The thermal conductivity of Al1-xScxN films (3-8 W m-1 K-1) grown by reactive sputter deposition was found to be orders of magnitude lower than that for c-axis-textured AlN films due to alloying effects. The film thickness dependence of the thermal conductivity suggests that higher frequency FBAR structures may suffer from limited power handling due to exacerbated overheating concerns. The reduction of the abnormally oriented grain (AOG) density was found to have a modest effect on the measured thermal conductivity. However, the use of low AOG density films resulted in lower insertion loss and thus less power dissipated within the resonator, which will lead to an overall enhancement of the device thermal performance.

SELECTION OF CITATIONS
SEARCH DETAIL
...