Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 749
Filter
1.
Front Cell Dev Biol ; 12: 1435546, 2024.
Article in English | MEDLINE | ID: mdl-39105169

ABSTRACT

Transcription factors belonging to the basic helix-loop-helix (bHLH) family are key regulators of cell fate specification and differentiation during development. Their dysregulation is implicated not only in developmental abnormalities but also in various adult diseases and cancers. Recently, the abilities of bHLH factors have been exploited in reprogramming strategies for cell replacement therapy. One such factor is NEUROD1, which has been associated with the reprogramming of the epigenetic landscape and potentially possessing pioneer factor abilities, initiating neuronal developmental programs, and enforcing pancreatic endocrine differentiation. The review aims to consolidate current knowledge on NEUROD1's multifaceted roles and mechanistic pathways in human and mouse cell differentiation and reprogramming, exploring NEUROD1 roles in guiding the development and reprogramming of neuroendocrine cell lineages. The review focuses on NEUROD1's molecular mechanisms, its interactions with other transcription factors, its role as a pioneer factor in chromatin remodeling, and its potential in cell reprogramming. We also show a differential potential of NEUROD1 in differentiation of neurons and pancreatic endocrine cells, highlighting its therapeutic potential and the necessity for further research to fully understand and utilize its capabilities.

2.
J Exp Bot ; 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39115876

ABSTRACT

In the dynamic environment of plants, the interplay between light-dependent growth and iron nutrition is a recurring challenge. Plants respond to low iron levels by adjusting growth and physiology through enhanced iron acquisition from the rhizosphere and internal iron pool reallocation. Iron deficiency response assays and gene co-expression networks aid in documenting physiological reactions and unraveling gene regulatory cascades, offering insight into the interplay between hormonal and external signaling pathways. However, research directly exploring the significance of light in iron nutrition remains limited. This review provides an overview on iron deficiency regulation and its cross-connection with distinct light signals, focusing on transcription factor cascades and long-distance signaling. The circadian clock and retrograde signaling influence iron uptake and allocation. The light-activated shoot-to-root mobile transcription factor ELONGATED HYPOCOTYL5 (HY5) affects iron homeostasis responses in roots. Blue light triggers the formation of biomolecular condensates containing iron deficiency-induced protein complexes. The potential of exploiting the connection between light and iron signaling remains underutilized. With climate change and soil alkalinity on the rise, there is a need to develop crops with improved nutrient use efficiency and modified light dependencies. More research is needed to understand and leverage the interplay between light signaling and iron nutrition.

3.
Plant J ; 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39152711

ABSTRACT

Seed colors and color patterns are critical for the survival of wild plants and the consumer appeal of crops. In common bean, a major global staple, these patterns are also essential in determining market classes, yet the genetic and environmental control of many pigmentation patterns remains unresolved. In this study, we genetically mapped variation for several important seed pattern loci, including T, Bip, phbw, and Z, which co-segregated with candidate genes PvTTG1, PvMYC1, PvTT8, and PvTT2, respectively. Proteins encoded by these genes are predicted to work together in MYB-bHLH-WD40 (MBW) complexes, propagating flavonoid biosynthesis across the seed coat as observed in Arabidopsis. Whole-genome sequencing of 37 accessions identified mutations, including seven unique parallel mutations in T (PvTTG1) and non-synonymous SNPs in highly conserved residues in bipana (PvMYC1) and z (PvTT2). A 612 bp intron deletion in phbw (PvTT8) eliminated motifs conserved since the Papilionoideae origin and corresponded to a 20-fold reduction in transcript abundance. In multi-location field trials of seven varieties with partial seed coat pigmentation patterning, the pigmented seed coat area correlated positively with ambient temperature, with up to 11-fold increases in the pigmented area from the coolest to the warmest environments. In controlled growth chamber conditions, an increase of 4°C was sufficient to cause pigmentation on an average additional 21% of the seed coat area. Our results shed light on key steps of flavonoid biosynthesis in common bean. They will inform breeding efforts for seed coat color/patterning to improve consumer appeal in this nutritious staple crop.

4.
Planta ; 260(4): 76, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39162869

ABSTRACT

MAIN CONCLUSION: After the most comprehensive analysis of the phenolic composition in Cannabis reported to date, a total of 211 compounds were identified, phenolic profiles were able to discriminate cannabis varieties and a complex regulatory network for phenolics accumulation in Cannabis chemovars was highlighted. Female inflorescences of Cannabis sativa L. are plenty of secondary metabolites, of which flavonoids and phenolic acids have been investigated by far less than phytocannabinoids and terpenoids. Understanding the biochemical composition in phenylpropanoids of Cannabis inflorescences, the molecular basis of flavonoid synthesis and how their content can be modulated by specific transcription factors will shed light on the variability of this trait in the germplasm, allowing the identification of biologically active metabolites that can be of interest to diverse industries. In this work, an untargeted metabolomic approach via UHPLC-HRMS was adopted to investigate the composition and variability of phenylpropanoids in thirteen Cannabis genotypes differentiated for their profile in phytocannabinoids, highlighting that phenolic profiles can discriminate varieties, with characteristic, unique genotype-related patterns. Moreover, the transcription profile of candidate phenolics regulatory MYB and bHLH transcription factors, analyzed by RT-qPCR, appeared strongly genotype-related, and specific patterns were found to be correlated between biochemical and transcriptional levels. Results highlight a complex regulatory network for phenolic accumulation in Cannabis chemovars that will need further insights from the functional side.


Subject(s)
Cannabis , Phenotype , Polyphenols , Cannabis/genetics , Cannabis/metabolism , Cannabis/chemistry , Polyphenols/metabolism , Polyphenols/analysis , Inflorescence/genetics , Inflorescence/metabolism , Gene Expression Regulation, Plant , Genotype , Gene Expression Profiling , Flavonoids/metabolism , Metabolomics/methods , Transcription Factors/genetics , Transcription Factors/metabolism , Chromatography, High Pressure Liquid
5.
Plants (Basel) ; 13(16)2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39204751

ABSTRACT

Environmental stresses, including abiotic and biotic stresses, have complex and diverse effects on the growth and development of woody plants, which have become a matter of contention due to concerns about the outcomes of climate change on plant resources, genetic diversity, and world food safety. Plant basic helix-loop-helix (bHLH) transcription factors (TFs) are involved in a variety of physiological processes and play an important role in biotic and abiotic stress responses of woody plants. In recent years, an increasing body of studies have been conducted on the bHLH TFs in woody plants, and the roles of bHLH TFs in response to various stresses are increasingly clear and precise. Therefore, it is necessary to conduct a systematic and comprehensive review of the progress of the research of woody plants. In this review, the structural characteristics, research history and roles in the plant growth process of bHLH TFs are summarized, the gene families of bHLH TFs in woody plants are summarized, and the roles of bHLH TFs in biotic and abiotic stresses in woody plants are highlighted. Numerous studies mentioned in this review have shown that bHLH transcription factors play a crucial role in the response of woody plants to biotic and abiotic stresses. This review serves as a reference for further studies about enhancing the stress resistance and breeding of woody plants. Also, the future possible research directions of bHLH TFs in response to various stresses in woody plants will be discussed.

6.
G3 (Bethesda) ; 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39167608

ABSTRACT

Flavonoids are secondary metabolites associated with plant seed coat and flower color. These compounds provide health benefits to humans as anti-inflammatory and antioxidant compounds. The expression of the late biosynthetic genes in the flavonoid pathway is controlled by a ternary MBW protein complex consisting of interfacing MYB, beta-helix-loop-helix (bHLH), and WD40 Repeat (WDR) proteins. P, the master regulator gene of the flavonoid expression in common bean (Phaseolus vulgaris L.), was recently determined to encode a bHLH protein. The T and Z genes control the distribution of color in bean seeds and flowers and have historically been considered regulators of the flavonoid gene expression. T and Z candidates were identified using reverse genetics based on genetic mapping, phylogenetic analysis, and mutant analysis. Domain and AlphaFold2 structure analyses determined that T encodes a seven-bladed ß-propeller WDR protein, while Z encodes a R2R3 MYB protein. Deletions and SNPs in T and Z mutants, respectively, altered the 3D structure of these proteins. Modeling of the Z MYB/P bHLH/T WDR MBW complex identified interfacing sequence domains and motifs in all three genes that are conserved in dicots. One Z MYB motif is a possible beta-molecular recognition feature (ß-MoRF) that only appears in a structured state when Z MYB is modeled as a component of a MBW complex. Complexes containing mutant T and Z proteins changed the interaction of members of the complex in ways that would alter their role in regulating the expression of genes in the flavonoid pathway.

7.
Plants (Basel) ; 13(13)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38999675

ABSTRACT

The bHLH transcription factor family plays crucial roles in plant growth and development and their responses to adversity. In this study, a highly salt-induced bHLH gene, PagbHLH35 (Potri.018G141600), was identified from Populus alba × P. glandullosa (84K poplar). PagbHLH35 contains a highly conserved bHLH domain within the region of 52-114 amino acids. A subcellular localization result confirmed its nuclear localization. A yeast two-hybrid assay indicated PagbHLH35 lacks transcriptional activation activity, while a yeast one-hybrid assay indicated it could specifically bind to G-box and E-box elements. The expression of PagbHLH35 reached its peak at 12 h and 36 h time points under salt stress in the leaves and roots, respectively. A total of three positive transgenic poplar lines overexpressing PagbHLH35 were generated via Agrobacterium-mediated leaf disk transformation. Under NaCl stress, the transgenic poplars exhibited significantly enhanced morphological and physiological advantages such as higher POD activity, SOD activity, chlorophyll content, and proline content, and lower dehydration rate, MDA content and hydrogen peroxide (H2O2) content, compared to wild-type (WT) plants. In addition, histological staining showed that there was lower ROS accumulation in the transgenic poplars under salt stress. Moreover, the relative expression levels of several antioxidant genes in the transgenic poplars were significantly higher than those in the WT. All the results indicate that PagbHLH35 can improve salt tolerance by enhancing ROS scavenging in transgenic poplars.

8.
J Biol Chem ; 300(9): 107606, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39059491

ABSTRACT

Transcription factors are challenging to target with small-molecule inhibitors due to their structural plasticity and lack of catalytic sites. Notable exceptions include naturally ligand-regulated transcription factors, including our prior work with the hypoxia-inducible factor (HIF)-2 transcription factor, showing that small-molecule binding within an internal pocket of the HIF-2α Per-Aryl hydrocarbon Receptor Nuclear Translocator (ARNT)-Sim (PAS)-B domain can disrupt its interactions with its dimerization partner, ARNT. Here, we explore the feasibility of targeting small molecules to the analogous ARNT PAS-B domain itself, potentially opening a promising route to modulate several ARNT-mediated signaling pathways. Using solution NMR fragment screening, we previously identified several compounds that bind ARNT PAS-B and, in certain cases, antagonize ARNT association with the transforming acidic coiled-coil containing protein 3 transcriptional coactivator. However, these ligands have only modest binding affinities, complicating characterization of their binding sites. We address this challenge by combining NMR, molecular dynamics simulations, and ensemble docking to identify ligand-binding "hotspots" on and within the ARNT PAS-B domain. Our data indicate that the two ARNT/transforming acidic coiled-coil containing protein 3 inhibitors, KG-548 and KG-655, bind to a ß-sheet surface implicated in both HIF-2 dimerization and coactivator recruitment. Furthermore, while KG-548 binds exclusively to the ß-sheet surface, KG-655 can additionally bind within a water-accessible internal cavity in ARNT PAS-B. Finally, KG-279, while not a coactivator inhibitor, exemplifies ligands that preferentially bind only to the internal cavity. All three ligands promoted ARNT PAS-B homodimerization, albeit to varying degrees. Taken together, our findings provide a comprehensive overview of ARNT PAS-B ligand-binding sites and may guide the development of more potent coactivator inhibitors for cellular and functional studies.

9.
Mol Cell Biol ; 44(8): 316-333, 2024.
Article in English | MEDLINE | ID: mdl-39014976

ABSTRACT

Pregnancy involving intricate tissue transformations governed by the progesterone hormone (P4). P4 signaling via P4 receptors (PRs) is vital for endometrial receptivity, decidualization, myometrial quiescence, and labor initiation. This study explored the role of TCF23 as a downstream target of PR during pregnancy. TCF23 was found to be expressed in female reproductive organs, predominantly in uterine stromal and smooth muscle cells. Tcf23 expression was high during midgestation and was specifically regulated by P4, but not estrogen. The Tcf23 knockout (KO) mouse was generated and analyzed. Female KO mice aged 4-6 months exhibited subfertility, reduced litter size, and defective parturition. Uterine histology revealed disrupted myometrial structure, altered collagen organization, and disarrayed smooth muscle sheets at the conceptus sites of KO mice. RNA-Seq analysis of KO myometrium revealed dysregulation of genes associated with cell adhesion and extracellular matrix organization. TCF23 potentially modulates TCF12 activity to mediate cell-cell adhesion and matrix modulation in smooth muscle cells. Overall, TCF23 deficiency leads to impaired myometrial remodeling, causing parturition delay and fetal demise. This study sheds light on the critical role of TCF23 as a dowstream mediator of PR in uterine remodeling, reflecting the importance of cell-cell communication and matrix dynamics in myometrial activation and parturition.


Subject(s)
Myometrium , Parturition , Animals , Female , Mice , Pregnancy , Litter Size , Mice, Inbred C57BL , Mice, Knockout , Myocytes, Smooth Muscle/metabolism , Myometrium/metabolism , Parturition/metabolism , Parturition/genetics , Parturition/physiology , Progesterone/metabolism , Receptors, Progesterone/metabolism , Receptors, Progesterone/genetics , Uterus/metabolism
10.
Int J Biol Macromol ; 277(Pt 3): 134189, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39069047

ABSTRACT

Floral bud induction is of great importance for fruit crops, which may substantially affect fruit yield. Previously, a FLOWERING BHLH (FBH) transcription factor gene HpbHLH70 was identified in pitaya (Hylocereus polyrhizus) as subjected to drought stress. In present work, HpbHLH70 was found predominantly activated in pitaya anthers. GUS fusing reporter assay showed its selective activation in anthers and vasculatures of transgenic Arabidopsis. Moreover, HpbHLH70 is drought inducible, which was further supported by the deepened GUS staining under drought condition, indicating a HpbHLH70-mediated crosstalk between drought response and floral bud induction, which partially explained the advanced floral bud induction in pitaya by drought stress. Overexpression of HpbHLH70 in pitaya improved the drought tolerance by enhancing the water-holding capacity and the ROS-scavenging activity. Meanwhile, overexpression of HpbHLH70 in Arabidopsis improved their behaviors under drought stress. Intriguingly, the transgenic Arabidopsis flowered earlier than the wild-type. In addition, HpbHLH70 was verified to heterodimerize with HpbHLH59 and transactivate the floral-bud-induction regulator HpSOC1 via direct binding to the promoter. Overexpression of HpbHLH70 up-regulated the expression of HpSOC1 in pitaya. Collectively, our data uncover that drought-induced HpbHLH70 enhances drought tolerance and may accelerate floral bud induction in pitaya via heterodimerization with HpbHLH59 and transactivation of HpSOC1.


Subject(s)
Arabidopsis , Cactaceae , Droughts , Flowers , Gene Expression Regulation, Plant , Plant Proteins , Plants, Genetically Modified , Flowers/genetics , Flowers/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/growth & development , Cactaceae/genetics , Cactaceae/growth & development , Stress, Physiological/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Adaptation, Physiological/genetics , Reactive Oxygen Species/metabolism , Drought Resistance
11.
Tree Physiol ; 44(8)2024 Aug 03.
Article in English | MEDLINE | ID: mdl-38965676

ABSTRACT

Olive (Olea europaea L.), an economically important oil-producing crop, is sensitive to low temperature, which severely limits its productivity and geographical distribution. However, the underlying mechanism of cold tolerance in olive remains elusive. In this study, a chilling experiment (4 °C) on the living saplings of two olive cultivars revealed that O. europaea cv. Arbequina showed stronger cold tolerance with greater photosynthetic activity compared with O. europaea cv. Leccino. Transcriptome analyses revealed that early light-inducible protein 1 (ELIP1), the main regulator for chlorophyll synthesis, is dramatically induced to protect the photosynthesis at low temperatures. Furthermore, weighted gene co-expression network analysis, yeast one-hybrid and luciferase assays demonstrated that transcription factor bHLH66 serves as an important regulator of ELIP1 transcription by binding to the G-box motif in the promoter. Taken together, our research revealed a novel transcriptional module consisting of bHLH66-ELIP1 in the adaptation of olive trees to cold stress.


Subject(s)
Cold Temperature , Gene Expression Regulation, Plant , Olea , Plant Proteins , Transcriptome , Olea/genetics , Olea/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics
12.
Front Plant Sci ; 15: 1397289, 2024.
Article in English | MEDLINE | ID: mdl-38938636

ABSTRACT

Cadmium (Cd) is a heavy metal highly toxic to living organisms. Cd pollution of soils has become a serious problem worldwide, posing a severe threat to crop production and human health. When plants are poisoned by Cd, their growth and development are inhibited, chloroplasts are severely damaged, and respiration and photosynthesis are negatively affected. Therefore, elucidating the molecular mechanisms that underlie Cd tolerance in plants is important. Transcription factors can bind to specific plant cis-acting genes. Transcription factors are frequently reported to be involved in various signaling pathways involved in plant growth and development. Their role in the resistance to environmental stress factors, particularly Cd, should not be underestimated. The roles of several transcription factor families in the regulation of plant resistance to Cd stress have been widely demonstrated. In this review, we summarize the mechanisms of five major transcription factor families-WRKY, ERF, MYB, bHLH, and bZIP-in plant resistance to Cd stress to provide useful information for using molecular techniques to solve Cd pollution problems in the future.

13.
Plant Cell Rep ; 43(7): 179, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38913159

ABSTRACT

KEY MESSAGE: DzMYB2 functions as an MYB activator, while DzMYB3 acts as an MYB repressor. They bind to promoters, interact with DzbHLH1, and influence phenolic contents, revealing their roles in phenylpropanoid regulation in durian pulps. Durian fruit has a high nutritional value attributed to its enriched bioactive compounds, including phenolics, carotenoids, and vitamins. While various transcription factors (TFs) regulate phenylpropanoid biosynthesis, MYB (v-myb avian myeloblastosis viral oncogene homolog) TFs have emerged as pivotal players in regulating key genes within this pathway. This study aimed to identify additional candidate MYB TFs from the transcriptome database of the Monthong cultivar at five developmental/postharvest ripening stages. Candidate transcriptional activators were discerned among MYBs upregulated during the ripe stage based on the positive correlation observed between flavonoid biosynthetic genes and flavonoid contents in ripe durian pulps. Conversely, MYBs downregulated during the ripe stage were considered candidate repressors. This study focused on a candidate MYB activator (DzMYB2) and a candidate MYB repressor (DzMYB3) for functional characterization. LC-MS/MS analysis using Nicotiana benthamiana leaves transiently expressing DzMYB2 revealed increased phenolic compound contents compared with those in leaves expressing green fluorescence protein controls, while those transiently expressing DzMYB3 showed decreased phenolic compound contents. Furthermore, it was demonstrated that DzMYB2 controls phenylpropanoid biosynthesis in durian by regulating the promoters of various biosynthetic genes, including phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), chalcone isomerase (CHI), and dihydroflavonol reductase (DFR). Meanwhile, DzMYB3 regulates the promoters of PAL, 4-coumaroyl-CoA ligase (4CL), CHS, and CHI, resulting in the activation and repression of gene expression. Moreover, it was discovered that DzMYB2 and DzMYB3 could bind to another TF, DzbHLH1, in the regulation of flavonoid biosynthesis. These findings enhance our understanding of the pivotal role of MYB proteins in regulating the phenylpropanoid pathway in durian pulps.


Subject(s)
Flavonoids , Fruit , Gene Expression Regulation, Plant , Plant Proteins , Transcription Factors , Plant Proteins/genetics , Plant Proteins/metabolism , Fruit/genetics , Fruit/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Flavonoids/metabolism , Flavonoids/biosynthesis , Acyltransferases/genetics , Acyltransferases/metabolism , Propanols/metabolism , Coenzyme A Ligases/metabolism , Coenzyme A Ligases/genetics , Phenols/metabolism , Phenylalanine Ammonia-Lyase/metabolism , Phenylalanine Ammonia-Lyase/genetics , Repressor Proteins/metabolism , Repressor Proteins/genetics , Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/metabolism , Intramolecular Lyases/genetics , Intramolecular Lyases/metabolism
14.
J Exp Bot ; 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38877836

ABSTRACT

Light serves as a pivotal environmental cue regulating various aspects of plant growth and development, including seed germination, seedling de-etiolation, and shade avoidance. Within this regulatory framework, the basic helix-loop-helix transcription factors known as PHYTOCHROME INTERACTING FACTORS (PIFs) play an essential role in orchestrating responses to light stimuli. Phytochromes, acting as red/far-red light receptors, initiate a cascade leading to the degradation of PIFs (except PIF7), thereby triggering transcriptional reprogramming to facilitate photomorphogenesis. Recent research has unveiled multiple post-translational modifications that regulate the abundance and/or activity of PIFs, including phosphorylation, dephosphorylation, ubiquitination, deubiquitination and SUMOylation. Moreover, intriguing findings indicate that PIFs can influence chromatin modifications. These include modulation of Histone 3 Lysine-9 acetylation (H3K9ac), as well as occupancy of histone variants such as H2A.Z (associated with gene repression) and H3.3 (associated with gene activation), thereby intricately regulating downstream gene expression in response to environmental cues. This review summarizes recent advances in understanding PIFs' role in regulating various signaling pathways with a major focus on photomorphogenesis.

15.
Plant J ; 119(2): 746-761, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38733631

ABSTRACT

The jasmonic acid (JA) signaling pathway plays an important role in promoting the biosynthesis of tanshinones. While individual transcription factors have been extensively studied in the context of tanshinones biosynthesis regulation, the influence of methyl jasmonate (MeJA)-induced transcriptional complexes remains unexplored. This study elucidates the positive regulatory role of the basic helix-loop-helix protein SmMYC2 in tanshinones biosynthesis in Salvia miltiorrhiza. SmMYC2 not only binds to SmGGPPS1 promoters, activating their transcription, but also interacts with SmMYB36. This interaction enhances the transcriptional activity of SmMYC2 on SmGGPPS1, thereby promoting tanshinones biosynthesis. Furthermore, we identified three JA signaling repressors, SmJAZ3, SmJAZ4, and SmJAZ8, which interact with SmMYC2. These repressors hindered the transcriptional activity of SmMYC2 on SmGGPPS1 and disrupted the interaction between SmMYC2 and SmMYB36. MeJA treatment triggered the degradation of SmJAZ3 and SmJAZ4, allowing the SmMYC2-SmMYB36 complex to subsequently activate the expression of SmGGPPS1, whereas SmJAZ8 inhibited MeJA-mediated degradation due to the absence of the LPIARR motif. These results demonstrate that the SmJAZ-SmMYC2-SmMYB36 module dynamically regulates the JA-mediated accumulation of tanshinones. Our results reveal a new regulatory network for the biosynthesis of tanshinones. This study provides valuable insight for future research on MeJA-mediated modulation of tanshinones biosynthesis.


Subject(s)
Abietanes , Acetates , Cyclopentanes , Gene Expression Regulation, Plant , Oxylipins , Plant Proteins , Salvia miltiorrhiza , Cyclopentanes/metabolism , Cyclopentanes/pharmacology , Oxylipins/metabolism , Oxylipins/pharmacology , Salvia miltiorrhiza/genetics , Salvia miltiorrhiza/metabolism , Salvia miltiorrhiza/drug effects , Acetates/pharmacology , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Growth Regulators/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Signal Transduction , Promoter Regions, Genetic/genetics
16.
PNAS Nexus ; 3(5): pgae174, 2024 May.
Article in English | MEDLINE | ID: mdl-38711810

ABSTRACT

Although evidence indicates that the adult brain retains a considerable capacity for circuit formation, adult wiring has not been broadly considered and remains poorly understood. In this study, we investigate wiring activation in adult neurons. We show that the basic-helix-loop-helix transcription factor Ascl4 can induce wiring in different types of hippocampal neurons of adult mice. The new axons are mainly feedforward and reconfigure synaptic weights in the circuit. Mice with the Ascl4-induced circuits do not display signs of pathology and solve spatial problems equally well as controls. Our results demonstrate reprogrammed connectivity by a single transcriptional factor and provide insights into the regulation of brain wiring in adults.

17.
PeerJ ; 12: e17410, 2024.
Article in English | MEDLINE | ID: mdl-38818458

ABSTRACT

The basic helix-loop-helix (bHLH) gene family is integral to various aspects of plant development and the orchestration of stress response. This study focuses on the bHLH genes within Populus × canescens, a poplar species noted for its significant tolerance to cadmium (Cd) stress. Through our comprehensive genomic analysis, we have identified and characterized 170 bHLH genes within the P. canescens genome. These genes have been systematically classified into 22 distant subfamilies based on their evolutionary relationships. A notable conservation in gene structure and motif compositions were conserved across these subfamilies. Further analysis of the promoter regions of these genes revealed an abundance of essential cis-acting element, which are associated with plant hormonal regulation, development processes, and stress response pathway. Utilizing quantitative PCR (qPCR), we have documented the differential regulation of PcbHLHs in response to elevated Cd concentrations, with distinct expression patterns observed across various tissues. This study is poised to unravel the molecular mechanism underpinning Cd tolerance in P. canescens, offering valuable insights for the development of new cultivars with enhanced Cd accumulation capacity and tolerance. Such advancements are crucial for implementing effective phytoremediation strategies to mitigate soil pollution caused by Cd.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Cadmium , Gene Expression Regulation, Plant , Populus , Stress, Physiological , Populus/genetics , Populus/metabolism , Populus/drug effects , Cadmium/toxicity , Cadmium/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Gene Expression Regulation, Plant/drug effects , Stress, Physiological/genetics , Stress, Physiological/drug effects , Plant Proteins/genetics , Plant Proteins/metabolism , Multigene Family , Genome, Plant , Promoter Regions, Genetic/genetics
18.
Plant Physiol Biochem ; 211: 108665, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38735155

ABSTRACT

Budding mutations are known to cause metabolic changes in new jujube varieties; however, the mechanisms underlying these changes are still unclear. Here, we performed muti-omics analysis to decipher the detailed metabolic landscape of "Saimisu 1" (S1) and its budding mutation line "Saimisu 2" (S2) at all fruit stages. We found that the genes involved in the biosyntheses of flavonoids, phenylpropanoids, and amino acids were upregulated in S2 fruits at all stages, especially PAL and DFR, resulting in increased accumulation of related compounds in S2 mature fruits. Further co-expression regulatory network analysis showed that the transcription factors MYB41 and bHLH93 potentially regulated the expression of PAL and DFR, respectively, by directly binding to their promoters. Moreover, the overexpression of MYB41 or bHLH93 induced their expression levels to redirect the flux of the flavonoid biosynthetic pathway, eventually leading to high levels of related compounds in S2 fruits. Overall, this study revealed the metabolic variations between S1 and S2 and contributed to the understanding of the mechanisms underlying budding mutation-mediated metabolic variations in plants, eventually providing the basis for breeding excellent jujube varieties using budding mutation lines.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Flavonoids , Gene Expression Regulation, Plant , Mutation , Plant Proteins , Ziziphus , Flavonoids/metabolism , Flavonoids/biosynthesis , Flavonoids/genetics , Ziziphus/genetics , Ziziphus/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Fruit/genetics , Fruit/metabolism
19.
J Agric Food Chem ; 72(19): 10692-10709, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38712500

ABSTRACT

Abiotic stresses including cold, drought, salt, and iron deficiency severely impair plant development, crop productivity, and geographic distribution. Several bodies of research have shed light on the pleiotropic functions of BASIC HELIX-LOOP-HELIX (bHLH) proteins in plant responses to these abiotic stresses. In this review, we mention the regulatory roles of bHLH TFs in response to stresses such as cold, drought, salt resistance, and iron deficiency, as well as in enhancing grain yield in plants, especially crops. The bHLH proteins bind to E/G-box motifs in the target promoter and interact with various other factors to form a complex regulatory network. Through this network, they cooperatively activate or repress the transcription of downstream genes, thereby regulating various stress responses. Finally, we present some perspectives for future research focusing on the molecular mechanisms that integrate and coordinate these abiotic stresses. Understanding these molecular mechanisms is crucial for the development of stress-tolerant crops.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Droughts , Gene Expression Regulation, Plant , Plant Diseases , Plant Proteins , Stress, Physiological , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Cold Temperature , Crops, Agricultural/metabolism , Crops, Agricultural/genetics , Crops, Agricultural/chemistry , Crops, Agricultural/growth & development , Plant Proteins/metabolism , Plant Proteins/genetics , Iron/metabolism
20.
Int J Biol Macromol ; 267(Pt 2): 131442, 2024 May.
Article in English | MEDLINE | ID: mdl-38621573

ABSTRACT

Citrus bacterial canker (CBC) is a harmful bacterial disease caused by Xanthomonas citri subsp. citri (Xcc), negatively impacting citrus production worldwide. The basic helix-loop-helix (bHLH) transcription factor family plays crucial roles in plant development and stress responses. This study aimed to identify and annotate bHLH proteins encoded in the Citrus sinensis genome and explore their involvement and functional importance in regulating CBC resistance. A total of 135 putative CsbHLHs TFs were identified and categorized into 16 subfamilies. Their chromosomal locations, collinearity, and phylogenetic relationships were comprehensively analyzed. Upon Xcc strain YN1 infection, certain CsbHLHs were differentially regulated in CBC-resistant and CBC-sensitive citrus varieties. Among these, CsbHLH085 was selected for further functional characterization. CsbHLH085 was upregulated in the CBC-resistant citrus variety, was localized in the nucleus, and had a transcriptional activation activity. CsbHLH085 overexpression in Citrus significantly enhanced CBC resistance, accompanied by increased levels of salicylic acid (SA), jasmonic acid (JA), reactive oxygen species (ROS), and decreased levels of abscisic acid (ABA) and antioxidant enzymes. Conversely, CsbHLH085 virus-induced gene silencing resulted in opposite phenotypic and biochemical responses. CsbHLH085 silencing also affected the expression of phytohormone biosynthesis and signaling genes involved in SA, JA, and ABA signaling. These findings highlight the crucial role of CsbHLH085 in regulating CBC resistance, suggesting its potential as a target for biotechnological-assisted breeding citrus varieties with improved resistance against phytopathogens.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Citrus sinensis , Disease Resistance , Gene Expression Regulation, Plant , Plant Diseases , Plant Proteins , Xanthomonas , Citrus sinensis/microbiology , Citrus sinensis/genetics , Plant Diseases/microbiology , Plant Diseases/genetics , Disease Resistance/genetics , Xanthomonas/pathogenicity , Plant Proteins/genetics , Plant Proteins/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Phylogeny , Oxylipins/metabolism , Genome, Plant , Cyclopentanes/metabolism , Salicylic Acid/metabolism , Multigene Family
SELECTION OF CITATIONS
SEARCH DETAIL