Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
J Appl Microbiol ; 135(7)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38955370

ABSTRACT

AIMS: This study aims to evaluate the storage stability of the freeze-dried recombinant Lactococcus lactis NZ3900-fermented milk powder expressing K-ras (Kristen rat sarcoma viral oncogene homolog) mimotopes targeting colorectal cancer in vacuum packaging. METHODS AND RESULTS: The freeze-dried L. lactis-fermented milk powder stored in 4-ply retortable polypropylene (RCPP)-polyamide (PA)-aluminium (AL)-polyethylene terephthalate (PET) and aluminium polyethylene (ALPE) was evaluated throughout 49 days of accelerated storage (38°C and 90% relative humidity). The fermented milk powder stored in 4-ply packaging remained above 6 log10 CFU g-1 viability, displayed lower moisture content (6.1%), higher flowability (43° angle of repose), water solubility (62%), and survivability of L. lactis after simulated gastric and intestinal digestion (>82%) than ALPE packaging after 42 days of accelerated storage. K-ras mimotope expression was detected intracellularly and extracellularly in the freeze-dried L. lactis-fermented milk powder upon storage. CONCLUSIONS: This suggests that fermented milk powder is a suitable food carrier for this live oral vaccine.


Subject(s)
Food Packaging , Freeze Drying , Lactococcus lactis , Lactococcus lactis/metabolism , Lactococcus lactis/genetics , Food Packaging/methods , Animals , Vacuum , Powders , Cultured Milk Products/microbiology , Fermentation , Milk/chemistry , Genes, ras/genetics , Food Storage
2.
ACS Appl Bio Mater ; 7(6): 4007-4016, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38739554

ABSTRACT

Nanoparticles have been widely used as platforms for biomolecular sensing because of their high specific surface area and attractive properties depending on their constituents and structures. Nevertheless, it remains challenging to develop nanoparticulate sensing platforms that are easily storable without aggregation and conjugatable with various ligands in a simple manner. Herein, we demonstrate that nanoparticulate assemblies of cello-oligosaccharides with terminal azido groups are promising candidates. Azidated cello-oligosaccharides can be readily synthesized via the enzyme-catalyzed oligomerization reaction. This study characterized the assembled structures of azidated cello-oligosaccharides produced during the enzymatic synthesis and revealed that the terminal azidated cello-oligosaccharides formed rectangular nanosheet-shaped lamellar crystals. The azido groups located on the nanosheet surfaces were successfully exploited for antigen conjugation via the click chemistry. The resultant antigen-conjugated nanosheets allowed for the quantitative and specific detection of a corresponding antibody, even in 10% serum, owing to the antifouling properties of cello-oligosaccharide assemblies against proteins. It was found that the functionalized nanosheets were redispersible in water after freeze-drying. This remarkable characteristic is attributed to the well-hydrated saccharide residues on the nanosheet surfaces. Moreover, the antibody detection capability did not decline after the thermal treatment of the functionalized nanosheets in a freeze-dried state. Our findings contribute to developing convenient nanoparticulate biomolecular sensing platforms.


Subject(s)
Click Chemistry , Materials Testing , Nanoparticles , Oligosaccharides , Particle Size , Nanoparticles/chemistry , Oligosaccharides/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/chemical synthesis , Freeze Drying , Molecular Structure , Biosensing Techniques
3.
Article in English | MEDLINE | ID: mdl-38623949

ABSTRACT

Cost-effective and environmentally friendly Fe-based active materials offer exceptionally high energy capacity in lithium-ion batteries (LIBs) due to their multiple electron redox reactions. However, challenges, such as morphology degradation during cycling, cell pulverization, and electrochemical stability, have hindered their widespread use. Herein, we demonstrated a simple salt-assisted freeze-drying method to design a double-shelled Fe/Fe3C core tightly anchored on a porous carbon framework (FEC). The shell consists of a thin Fe3O4 layer (≈2 nm) and a carbon layer (≈10 nm) on the outermost part. Benefiting from the complex nanostructuring (porous carbon support, core-shell nanoparticles, and Fe3C incorporation), the FEC anode delivered a high discharge capacity of 947 mAh g-1 at 50 mA g-1 and a fast-rate capability of 305 mAh g-1 at 10 A g-1. Notably, the FEC cell still showed 86% reversible capacity retention (794 mAh g-1 at 50 mA g-1) at a high cycling temperature of 80 °C, indicating superior structural integrity during cycling at extreme temperatures. Furthermore, we conducted a simple solid-state fluorination technique using the as-prepared FEC sample and excess NH4F to prepare iron fluoride-carbon composites (FeF2/C) as the positive electrode. The full cell configuration, consisting of the FEC anode and FeF2/C cathode, reached a remarkable capacity of 200 mAh g-1 at a 20 mA g-1 rate or an energy density of approximately 530 Wh kg-1. Thus, the straightforward and simple experimental design holds great potential as a revolutionary Fe-based cathodic-anodic pair candidate for high-energy LIBs.

4.
Int J Pharm ; 645: 123433, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37739098

ABSTRACT

Long-term stability during storage is an important requirement for pharmaceutical preparations. The methemoglobin (metHb)-albumin cluster, in which bovine metHb is covalently enveloped with an average of three human albumin molecules, is a promising antidote for hydrogen sulfide (H2S) poisoning. In this study, we investigated the pharmaceutical stability of metHb-albumin cluster after storage for one year in solution and as freeze-dried powder. The lyophilized powder of metHb-albumin cluster stored for one year was readily reconstituted in sterile water for injection, yielding a homogeneous brown solution. Physicochemical measurements revealed that the overall structure of the metHb-albumin cluster was still maintained after preservation. Results of the pharmacological study showed that 100 % of the H2S-poisoned mice survived after treatment with the reconstituted solution of metHb-albumin cluster powder. Furthermore, the solution did not cause any toxic reactions. The antidotal efficacy of metHb-albumin cluster for H2S poisoning was preserved in freeze-dried powder form for at least one year.


Subject(s)
Hydrogen Sulfide , Methemoglobin , Animals , Cattle , Mice , Humans , Methemoglobin/chemistry , Antidotes , Powders , Albumins
5.
J Agric Food Chem ; 71(4): 1873-1885, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36652329

ABSTRACT

Despite current knowledge showing that fruits like tomato and grape berries accumulate different components of the light reactions and Calvin cycle, the role of green tissues in fruits is not yet fully understood. In mature tomato fruits, chlorophylls are degraded and replaced by carotenoids through the conversion of chloroplasts in chromoplasts, while in red grape berries, chloroplasts persist at maturity and chlorophylls are masked by anthocyanins. To study isoprenoid and lipid metabolism in grape skin chloroplasts, metabolites of enriched organelle fractions were analyzed by high-performance liquid chromatography-high-resolution mass spectrometry (HPLC-HRMS) and the expression of key genes was evaluated by real-time polymerase chain reaction (PCR) in berry skins and leaves. Overall, the results indicated that chloroplasts of the grape berry skins, as with leaf chloroplasts, share conserved mechanisms of synthesis (and degradation) of important components of the photosynthetic machinery. Some of these components, such as chlorophylls and their precursors, and catabolites, carotenoids, quinones, and lipids have important roles in grape and wine sensory characteristics.


Subject(s)
Terpenes , Vitis , Terpenes/metabolism , Fruit/chemistry , Vitis/chemistry , Chlorophyll/metabolism , Anthocyanins/metabolism , Plastids/genetics , Carotenoids/metabolism
6.
Biotechnol Appl Biochem ; 70(3): 1206-1216, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36577135

ABSTRACT

A single biomaterial is disadvantageous for constructing skin in vitro, so a mixed biomaterial is more conducive to skin research. In this study, agarose-chitosan scaffolds with a final concentration of 4% were constructed by freeze-drying, in which the concentration ratios of agarose to chitosan were 1:3, 2:2, and 3:1. The scaffolds were coated with a 3 mg/ml collagen solution, and the mechanical properties were evaluated by studying density, porosity, swelling rate, and degradation rate. The results demonstrated that the agarose-chitosan scaffolds were porous, with porosity reaching 93%. Their densities ranged from 0.1 to 0.16 g/cm3 . Analysis of Young's modulus showed that the mechanical properties of the agarose-chitosan scaffolds were significantly enhanced when the agarose content in the agarose-chitosan scaffolds was increased. Moreover, the density and Young's modulus of the agarose-chitosan scaffolds of different concentration ratios were significantly different (p < 0.01). These scaffolds can withstand a certain amount of external pressure, such as that of human skin, making them more suitable for further skin replacement research. In addition, the results of thiazolyl blue tetrazolium bromide (MTT) cell assay and immunofluorescence staining showed that the collagen-coated agarose-chitosan scaffolds were conducive to keratinocyte proliferation and differentiation. The MTT results revealed significant differences between the agarose-chitosan scaffolds coated with collagen and the agarose-chitosan scaffolds without collagen (p < 0.05). This study provides the potential for in vitro skin research and applications.


Subject(s)
Chitosan , Skin, Artificial , Humans , Tissue Scaffolds , Sepharose , Tissue Engineering/methods , Biocompatible Materials , Collagen , Porosity
7.
J Sci Food Agric ; 103(3): 1237-1246, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36085589

ABSTRACT

BACKGROUND: Probiotic products are receiving increasing attention because of their tremendous beneficial health effects. However, it is still a great challenge to preserve probiotic viability during processing, storage and gastrointestinal digestion. Encapsulation is a widely known technology for enhancing bacterial viability and product stability. Hence highly hydrolyzed whey protein hydrolysate (HWPH) and moderately hydrolyzed whey protein hydrolysate (MWPH) used as a one-step culture medium and wall material for Lactobacillus rhamnosus were investigated. RESULTS: H/MWPH-substitutive medium for the growth of Lactobacillus rhamnosus presented double the biomass production compared to other media. The H/MWPH-substitutive medium in combination with freeze drying also led to the highest survival ratio (97.13 ± 9.16%) and cell viability (10.62 log CFU g-1 ). The highest survival rate of spray-dried cells was 85.56 ± 7.4%. In addition, the cell viability of spray-dried Lactobacillus rhamnosus with MWPH as culture and dry medium was 0.79 log CFU g-1 higher than that of HWPH. Images confirmed that spray-dried Lactobacillus rhamnosus in MWPH provided better protection and it showed greater sustained viability after gastrointestinal digestion. CONCLUSION: Overall, WPH just as carrier provides better thermal protection and MWPH is a preferable two-in-one medium for probiotics. © 2022 Society of Chemical Industry.


Subject(s)
Lacticaseibacillus rhamnosus , Probiotics , Prebiotics , Protein Hydrolysates/pharmacology , Whey , Freeze Drying/methods , Microbial Viability , Protective Agents , Digestion
8.
Methods Mol Biol ; 2525: 297-307, 2022.
Article in English | MEDLINE | ID: mdl-35836078

ABSTRACT

Adenosine-5'-triphosphate (ATP) is the primary energy carrier in all living organisms, and its detection in living cells represents a well-established approach. ATP-driven bioluminescence (BL) relying on the D-luciferin-luciferase reaction is a bioanalytical tool widely employed for monitoring hygiene and microbial contamination of foods.Here, we report a straightforward method for ATP BL detection using an ATP sensing paper fabricated with an alternative freeze-dry procedure. The assay can be easily implemented in laboratories equipped with (i) freeze-drying, wax printing, and 3D printing technologies and (ii) instrumentation for BL detection such as benchtop luminometers and portable light detectors including a smartphone camera without the need for additional equipment.


Subject(s)
Luminescent Measurements , Smartphone , Adenosine Triphosphate , Biological Assay , Luciferases , Luminescent Measurements/methods
9.
J Reprod Dev ; 68(4): 262-270, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35676029

ABSTRACT

Freeze-dried sperm (FD sperm) are of great value because they can be stored at room temperature for long periods of time, However, the birth rate of offspring derived from FD sperm is low and the step in the freeze-drying process particularly responsible for low offspring production remains unknown. In this study, we determined whether the drying process was responsible for the low success rate of offspring by producing vacuum-dried sperm (VD sperm), using mouse spermatozoa dried in a vacuum without being frozen. Transfer of embryos fertilized with VD sperm to recipients resulted in the production of several successful offspring. However, the success rate was slightly lower than that of FD sperm. The volume, temperature, and viscosity of the medium were optimized to improve the birth rate. The results obtained from a comet assay indicated that decreasing the drying rate reduced the extent of DNA damage in VD sperm. Furthermore, even though the rate of blastocyst formation increased upon fertilization with VD sperm, full-term development was not improved. Analysis of chromosomal damage at the two-cell stage through an abnormal chromosome segregation (ACS) assay revealed that reduction in the drying rate failed to prevent chromosomal damage. These results indicate that the lower birth rate of offspring from FD sperm may result from the drying process rather than the freezing process.


Subject(s)
Semen Preservation , Sperm Injections, Intracytoplasmic , Animals , DNA , Embryonic Development , Freeze Drying/methods , Male , Mice , Oocytes , Semen , Semen Preservation/methods , Spermatozoa , Vacuum
10.
Pharm Res ; 39(4): 795-803, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35314998

ABSTRACT

PURPOSES: This article describes an interesting phenomenon in which optimized freeze-dried (FD) biopharmaceutical formulations are generally more prone to degradation than their liquid counterparts during dropping and proposes an underlying cause for this surprising phenomenon. METHODS: Two monoclonal antibodies (mAbs) and a fusion protein (FP) were used as model biopharmaceuticals. The stability after dropping stress was determined by ultraviolet-visible (UV-Vis), size exclusion high-performance liquid chromatography (SE-HPLC), micro-flow imaging (MFI), and dynamic light scattering (DLS). RESULTS: Contrary to what we would normally assume, the FD formulations of the three biopharmaceuticals studied here generally showed much higher amounts of protein sub-visible particles (SbVPs) than liquid formulations after applying the same dropping stress as determined by MFI and DLS. Traditional techniques, such as UV-Vis and SE-HPLC, could hardly detect such degradation. CONCLUSIONS: We propose that the higher temperature caused by dropping for the FD powders than the liquid formulations was probably one of the root causes for the higher amount of particles formed for the FD powders. We also recommend that dropping stress should be included for early-stage screening and choosing liquid versus FD biopharmaceutical formulations.


Subject(s)
Biological Products , Antibodies, Monoclonal/chemistry , Drug Stability , Freeze Drying , Powders
11.
J Pharm Sci ; 111(7): 2134-2138, 2022 07.
Article in English | MEDLINE | ID: mdl-35257695

ABSTRACT

Liquid biopharmaceuticals including monoclonal antibodies (mAbs) have been widely acknowledged to undergo various stresses during shipping/handling and long-term storage. Several mechanical stresses including shaking during shipping has been widely known to cause protein aggregation and sub-visible particle (SbVP) formation in liquid biopharmaceutical formulations. However, shaking-induced degradation of freeze-dried (FD) biopharmaceuticals has seldomly been reported in the literature and therefore this type of stress is widely overlooked in industry due to their presumed high stability, especially when the formulations and freeze-drying processes are fully optimized. In this Lessons Learned article, we report an interesting phenomenon in which the optimized FD biopharmaceutical formulations of three typical mAbs showed much degradation and SbVP formation under shaking stress compared with their liquid counterparts. This is a striking deviation to the notion that mAbs are generally more stable in the FD formulations than in the liquid ones. Therefore, shaking stress experiment should be considered a critical stress condition for early-stage selection of liquid versus FD mAb formulations.


Subject(s)
Antibodies, Monoclonal , Biological Products , Chemistry, Pharmaceutical , Drug Compounding , Drug Stability , Freeze Drying
12.
Antioxidants (Basel) ; 11(2)2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35204281

ABSTRACT

During the generation of functional food ingredients by enzymatic hydrolysis, parameters such as choice of enzyme, reaction pH and the drying process employed may contribute to the physicochemical and bio-functional properties of the resultant protein hydrolysate ingredients. This study characterised the properties of spray- (SD) and freeze-dried (FD) whey protein hydrolysates (WPHs) generated using Alcalase® and Prolyve® under pH-stat and free-fall pH conditions. The enzyme preparation used affected the physicochemical and antioxidative properties but had no impact on powder composition, morphology or colour. SD resulted in spherical particles with higher moisture content (~6%) compared to the FD powders (~1%), which had a glass shard-like structure. The SD-WPHs exhibited higher antioxidative properties compared to the FD-WPHs, which may be linked to a higher proportion of peptides <1 kDa in the SD-WPHs. Furthermore, the SD- and FD-WPHs had similar peptide profiles, and no evidence of Maillard reaction product formation during the SD processing was evident. The most potent in vitro antioxidative WPH was generated using Alcalase® under free-fall pH conditions, followed by SD, which had oxygen radical absorbance capacity and Trolox equivalent (TE) antioxidant capacity values of 1132 and 686 µmol TE/g, respectively. These results demonstrate that both the hydrolysis and the drying process impact the biofunctional (antioxidant) activity of WPHs.

13.
Methods Mol Biol ; 2454: 273-283, 2022.
Article in English | MEDLINE | ID: mdl-33755908

ABSTRACT

Tissue engineering solutions have been widely explored for enhanced healing of skin wounds. Diabetic foot ulcers (DFU) are particularly challenging wounds to heal for a variety of reasons, including aberrant ECM, dysregulation of vascularization, and persistent inflammation. Tissue engineering approaches, such as porous collagen-based scaffolds, have shown promise in replacing the current treatments of surgical debridement and topical treatments. Collagen-glycosaminoglycan scaffolds, which are FDA approved for diabetic foot ulcers, can benefit from further functionalization by incorporation of additional signaling factors or extracellular matrix molecules. One option for this is to incorporate matrix from a rejuvenated cell source, as wounds in younger patients heal more quickly. Induced pluripotent stem cells (iPS) are generated from somatic cells and share many functional similarities with embryonic stem cells (ES), while avoiding the ethical concerns. Fibroblasts differentiated from iPS cells have been shown to enrich their ECM with glycosaminoglycan (GAGs), collagen Type III and fibronectin, to have an increased ECM production, and to be pro-angiogenic. Here we describe a technique to grow matrix from post-iPS fibroblasts, and to develop a scaffold from this matrix, in combination with collagen, with the goal of enhancing wound healing. By activating scaffolds with extracellular matrix (ECM) from fibroblasts derived from an iPS source (post-iPSF), the scaffolds are enriched with beneficial elements like GAGs, collagen type III, fibronectin, and VEGF. We believe these scaffolds can enhance skin regeneration and that the techniques can be modified for other tissue engineering applications.


Subject(s)
Diabetic Foot , Induced Pluripotent Stem Cells , Collagen/metabolism , Collagen Type III/metabolism , Extracellular Matrix/metabolism , Fibroblasts/metabolism , Fibronectins/metabolism , Glycosaminoglycans/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Tissue Engineering/methods , Tissue Scaffolds
14.
Microbiol Spectr ; 9(3): e0138421, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34908438

ABSTRACT

To investigate the mechanism of adaptation of Cronobacter sakazakii to desiccation stress, the present study focused on the glass transition phenomenon of dried bacterial cells, using a thermomechanical technique. The mechanical glass transition temperature (Tg) of dried C. sakazakii cells per se, prepared by different drying methods (air drying and freeze-drying) and with different water activity (aw) levels (0.43, 0.57, 0.75, and 0.87), were determined. In addition, we investigated the survival of two strains of C. sakazakii (JCM 1233 and JCM 2127) prepared by different drying methods under different storage temperatures (4, 25, and 42°C) and aw conditions (0.43 and 0.87). While the Tg of the air-dried C. sakazakii cells increased as the aw decreased, the freeze-dried C. sakazakii cells showed an unclear aw dependency of the Tg. Air-dried C. sakazakii cells showed a higher Tg than freeze-dried C. sakazakii cells at an aw of <0.57. Freeze-dried C. sakazakii cells were more rapidly inactivated than air-dried cells regardless of the difference in aw and temperature. The difference between the Tg and storage temperature was used as an index that took into consideration the differences in the drying methods and aw levels. As the difference between the Tg and storage temperature increased to >20°C, the dried C. sakazakii cells survived stably regardless of the drying method. In contrast, when the difference between the Tg and storage temperature was reduced to <10°C, the viable cell numbers in dried C. sakazakii cells were quickly decreased. Thus, the Tg is a key factor affecting the desiccation tolerance of C. sakazakii. IMPORTANCE The mechanical glass transition temperature (Tg) of dried Cronobacter sakazakii cells varied depending on differences in drying methods and water activity (aw) levels. Because the Tg of the dried bacterial cells varied depending on the drying method and aw, the Tg will play an important role as an operational factor in the optimization of dry food processing for controlling microbial contamination in the future. Furthermore, the differences between the Tg and storage temperature were introduced as an integrated index for survival of bacterial cells under a desiccation environment that took into consideration the differences in the drying methods and aw levels. As the difference between the Tg and storage temperature decreased to <10°C, the dried C. sakazakii cells were inactivated quickly, regardless of the drying methods. The relationship between Tg and storage temperature will contribute to understanding the desiccation tolerance of bacterial cells.


Subject(s)
Cronobacter sakazakii/physiology , Desiccation , Food Handling , Stress, Mechanical , Vitrification , Food Microbiology , Foodborne Diseases/microbiology , Foodborne Diseases/prevention & control , Humans , Infant , Infant Formula/microbiology , Temperature
15.
Spine Surg Relat Res ; 5(3): 196-204, 2021.
Article in English | MEDLINE | ID: mdl-34179558

ABSTRACT

INTRODUCTION: Platelet-rich plasma (PRP) is drawing attention as a substance that can promote bone formation. The growth factors present in PRP are stable for a long time after freeze-drying. However, the effects of PRP are inconsistent, and its effects on bone union in spinal surgery remain controversial. The immortalized megakaryocyte cell lines (imMKCLs) derived from human-induced pluripotent stem cells (hiPSCs) have been developed to produce numerous stable and clinically functional platelets. In this study, growth factors present in freeze-dried hiPSC-derived imMKCLs and platelets (iPS-MK/Plts) were evaluated, and their ability to promote bone formation was examined using a rat lumbar artificial bone grafting model. METHODS: We prepared freeze-dried iPS-MK/Plts and quantified their growth factors by enzyme-linked immunosorbent assays. Surgical grafting of artificial bone to the lumbar transverse processes was performed in 8-week-old female rats, which were divided into two groups: artificial bone graft (control) and artificial bone graft plus freeze-dried iPS-MK/Plts (iPS group). Transplantation was performed only on the left side. Eight weeks after the surgery, we captured computed tomography images and compared bilateral differences in the bone volume of the graft site in each rat. We also compared the left side/right side bone volume ratio between the two groups. RESULTS: The freeze-dried iPS-MK/Plts contained numerous growth factors. While there was no significant increase in bone volume on the transplanted side than that on the non-grafted side in the control group, bone volume significantly increased on the transplanted side in the iPS group, as evidenced by augmented mean left/right bone volume ratio of the iPS group compared with that of the control group. But the new bone observed in the iPS group was histologically normal. CONCLUSIONS: Freeze-dried hiPSC-derived MKCLs and platelets contain several stable growth factors and have the potential for promoting new bone formation.

16.
Materials (Basel) ; 13(21)2020 Oct 22.
Article in English | MEDLINE | ID: mdl-33105615

ABSTRACT

Freeze-drying, also known as lyophilization, is widely used in the preparation of porous biomaterials. Nevertheless, limited information is known regarding the effect of gas permeability on molds to obtain porous materials. We demonstrated that the different levels of gas permeability of molds remarkably altered the pore distribution of prepared gelatin sponges and distinct bone formation at critical-sized bone defects of the rat calvaria. Three types of molds were prepared: silicon tube (ST), which has high gas permeability; ST covered with polyvinylidene chloride (PVDC) film, which has low gas permeability, at the lateral side (STPL); and ST covered with PVDC at both the lateral and bottom sides (STPLB). The cross sections or curved surfaces of the sponges were evaluated using scanning electron microscopy and quantitative image analysis. The gelatin sponge prepared using ST mold demonstrated wider pore size and spatial distribution and larger average pore diameter (149.2 µm) compared with that prepared using STPL and STPLB. The sponges using ST demonstrated significantly poor bone formation and bone mineral density after 3 weeks. The results suggest that the gas permeability of molds critically alters the pore size and spatial pore distribution of prepared sponges during the freeze-drying process, which probably causes distinct bone formation.

17.
Adv Drug Deliv Rev ; 154-155: 27-36, 2020.
Article in English | MEDLINE | ID: mdl-32781056

ABSTRACT

RNA interference (RNAi), a potent post-transcriptional gene-silencing action, has received considerable attentions as a novel therapeutic tool to treat intractable cancers. In recent days, we have developed a novel RNAi-based therapeutic formulation, DFP-10825, for the treatment of intractable advanced cancers developed in coelomic cavities. DFP-10825 was composed of chemically synthesized short hairpin RNA (shRNA) against thymidylate synthase (TS), a key enzyme for cancer proliferation, and cationic liposomes, and achieved high therapeutic effect on the mouse models of peritoneally disseminated gastric and ovarian cancers and malignant pleural mesothelioma without severe side effects by intracoelomic direct treatment. We further designed a freeze-dried DFP-10825 formulation for mass industrial production. DFP-10825 is undergoing in pre-clinical phase and goes to clinical trials. This review introduces a DFP-10825 formulation, a potent novel RNAi-based therapeutic maximizing the benefit of RNAi molecule (shRNA).


Subject(s)
Antineoplastic Agents/administration & dosage , Liposomes/administration & dosage , Peritoneal Neoplasms/drug therapy , Pleural Neoplasms/drug therapy , RNA Interference , RNA, Small Interfering/administration & dosage , Animals , Drug Administration Routes , Humans
18.
Theriogenology ; 147: 71-76, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32126383

ABSTRACT

Freeze drying has been developed as a new sperm preservation method that eliminates the necessity of using liquid nitrogen. An advantage of freeze-dried sperm is that it can be stored at 4 °C and transported at room temperature. To develop assisted reproductive techniques (ARTs) for domestic cats, we evaluated the effect of the freeze-dry procedure on cat sperm DNA by analyzing DNA integrity (experiment 1) and by generating cat embryos using freeze-dried sperm that had been preserved for several months (experiment 2). In experiment 1, the rate of DNA damage to freeze-dried sperm was not significantly different than that of sperm cryopreserved with liquid nitrogen (P > 0.05). In experiment 2, the proportions of cleaved embryos, morulae, and blastocysts and the cell number of blastocysts did not differ between experimental groups in which fresh sperm and freeze-dried sperm were used (P > 0.05). In addition, we generated feline blastocysts using freeze-dried sperm stored for 1-5 months. These results support an expansion of the repertoire of ARTs that are potentially applicable to both domestic and endangered species of cats.


Subject(s)
Cats/embryology , Embryo, Mammalian , Embryonic Development/physiology , Semen Preservation , Spermatozoa , Animals , Embryo Culture Techniques , Fertilization in Vitro , Freeze Drying , Male
19.
Micromachines (Basel) ; 12(1)2020 Dec 29.
Article in English | MEDLINE | ID: mdl-33383890

ABSTRACT

Microfluidic devices enable the precise operation of liquid samples in small volumes. This motivates why microfluidic devices have been applied to point-of-care (PoC) liquid biopsy. Among PoC liquid biopsy studies, some report diagnostic reagents being freeze-dried in such microfluidic devices. This type of PoC microfluidic device has distinct advantages, such as simplicity of the procedures, compared with other PoC devices using liquid-type diagnostic reagents. Despite the attractive characteristic, only diagnostic reagents based on the cloned enzyme donor immunoassay (CEDIA) have been freeze-dried in the microfluidic device. However, development of the PoC device based on the CEDIA method is time-consuming and labor-intensive. Here, we employed a molecule-responsive protein synthesis system as the diagnostic reagent to be freeze-dried in the microfluidic device. Such molecule-responsive protein synthesis has been well investigated in the field of molecular biology. Therefore, using the accumulated information, PoC devices can be efficiently developed. Thus, we developed a microfluidic device with an integrated freeze-dried molecule-responsive protein synthesis system. Using the developed device, we detected two types of bio-functional molecules (i.e., bacterial quorum sensing molecules and mercury ions) by injecting 1 µL of sample solution containing these molecules. We showed that the developed device is applicable for small-volume biosensing.

20.
J Liposome Res ; 30(3): 235-245, 2020 Sep.
Article in English | MEDLINE | ID: mdl-31185779

ABSTRACT

RNA interference is a promising technology to inhibit the production of target proteins, and screening with synthetic small interfering RNA (siRNA) libraries has become a crucial research tool used to study gene function in cells. Reverse (Rev) transfection with freeze-dried siRNA/cationic liposome complexes (siRNA lipoplexes) can simplify and speed up siRNA transfection without the preparation of siRNA lipoplexes just before transfection. In this study, we examined the effects of cationic lipids in cationic liposomes and disaccharides in freeze-drying of siRNA lipoplexes on gene silencing in cells by Rev-transfection. We used three types of cationic cholesterol derivatives and three types of dialkyl or trialkyl cationic lipids for the preparation of cationic liposomes, and we prepared six types of freeze-dried siRNA lipoplexes in the presence of trehalose or sucrose solution in multi-well plates. Increasing concentrations of trehalose or sucrose included during freeze-drying of siRNA lipoplexes resulted in increased gene silencing activity upon Rev-transfection. Strong gene silencing activity was observed regardless of the type of cationic lipid in cationic liposomes when siRNA lipoplexes were freeze-dried with the disaccharides at concentrations of more than 25 mM or 100 mM. In addition, siRNA lipoplexes freeze-dried with 100 mM trehalose or sucrose showed long-term (1 month) stability without apparent loss of gene silencing activity. These findings suggested that Rev-transfection with freeze-dried siRNA lipoplexes may have potential applications in the screening of gene function using siRNA libraries.


Subject(s)
Disaccharides/chemistry , Freeze Drying , Gene Silencing , Lipids/chemistry , RNA, Small Interfering/chemistry , RNA, Small Interfering/genetics , Transfection/methods , Cations/chemistry , Humans , Liposomes , Molecular Structure , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL