Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.473
Filter
1.
Proc Natl Acad Sci U S A ; 121(24): e2319301121, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38838011

ABSTRACT

Alcohol dehydrogenase 1B (ADH1B) is a primate-specific enzyme which, uniquely among the ADH class 1 family, is highly expressed both in adipose tissue and liver. Its expression in adipose tissue is reduced in obesity and increased by insulin stimulation. Interference with ADH1B expression has also been reported to impair adipocyte function. To better understand the role of ADH1B in adipocytes, we used CRISPR/Cas9 to delete ADH1B in human adipose stem cells (ASC). Cells lacking ADH1B failed to differentiate into mature adipocytes manifested by minimal triglyceride accumulation and a marked reduction in expression of established adipocyte markers. As ADH1B is capable of converting retinol to retinoic acid (RA), we conducted rescue experiments. Incubation of ADH1B-deficient preadipocytes with 9-cis-RA, but not with all-transretinol, significantly rescued their ability to accumulate lipids and express markers of adipocyte differentiation. A homozygous missense variant in ADH1B (p.Arg313Cys) was found in a patient with congenital lipodystrophy of unknown cause. This variant significantly impaired the protein's dimerization, enzymatic activity, and its ability to rescue differentiation in ADH1B-deficient ASC. The allele frequency of this variant in the Middle Eastern population suggests that it is unlikely to be a fully penetrant cause of severe lipodystrophy. In conclusion, ADH1B appears to play an unexpected, crucial and cell-autonomous role in human adipocyte differentiation by serving as a necessary source of endogenous retinoic acid.


Subject(s)
Adipocytes , Adipogenesis , Alcohol Dehydrogenase , Humans , Alcohol Dehydrogenase/metabolism , Alcohol Dehydrogenase/genetics , Adipogenesis/genetics , Adipocytes/metabolism , Adipocytes/cytology , Tretinoin/metabolism , Cell Differentiation , CRISPR-Cas Systems , Mutation, Missense , Adipose Tissue/metabolism
2.
Adipocyte ; 13(1): 2365211, 2024 12.
Article in English | MEDLINE | ID: mdl-38858810

ABSTRACT

microRNAs (miRNAs), a subclass of noncoding short RNAs, direct cells fate decisions that are important for cell proliferation and cell lineage decisions. Adipogenic differentiation contributes greatly to the development of white adipose tissue, involving of highly organized regulation by miRNAs. In the present study, we screened and identified 78 differently expressed miRNAs of porcine BMSCs during adipogenic differentiation. Of which, the role of miR-29c in regulating the proliferation and adipogenic differentiation was proved and detailed. Specifically, over-expression miR-29c inhibits the proliferation and adipogenic differentiation of BMSCs, which were reversed upon miR-29c inhibitor. Interference of IGF1 inhibits the proliferation and adipogenic differentiation of BMSCs. Mechanistically, miR-29c regulates the proliferation and adipogenic differentiation of BMSCs by targeting IGF1 and further regulating the MAPK pathway and the PI3K-AKT-mTOR pathway, respectively. In conclusion, we highlight the important role of miR-29c in regulating proliferation and adipogenic differentiation of BMSCs.


Subject(s)
Adipogenesis , Cell Differentiation , Cell Proliferation , Mesenchymal Stem Cells , MicroRNAs , Animals , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , MicroRNAs/genetics , MicroRNAs/metabolism , Swine , Adipogenesis/genetics , Cells, Cultured , Signal Transduction , Adipocytes/cytology , Adipocytes/metabolism , Bone Marrow Cells/cytology , Bone Marrow Cells/metabolism
3.
Front Endocrinol (Lausanne) ; 15: 1395750, 2024.
Article in English | MEDLINE | ID: mdl-38859907

ABSTRACT

Background: The beneficial effect of thermogenic adipocytes in maintaining body weight and protecting against metabolic disorders has raised interest in understanding the regulatory mechanisms defining white and beige adipocyte identity. Although alternative splicing has been shown to propagate adipose browning signals in mice, this has yet to be thoroughly investigated in human adipocytes. Methods: We performed parallel white and beige adipogenic differentiation using primary adipose stem cells from 6 unrelated healthy subjects and assessed differential gene and isoform expression in mature adipocytes by RNA sequencing. Results: We find 777 exon junctions with robust differential usage between white and beige adipocytes in all 6 subjects, mapping to 562 genes. Importantly, only 10% of these differentially spliced genes are also differentially expressed, indicating that alternative splicing constitutes an additional layer of gene expression regulation during beige adipocyte differentiation. Functional classification of alternative isoforms points to a gain of function for key thermogenic transcription factors such as PPARG and CITED1, and enzymes such as PEMT, or LPIN1. We find that a large majority of the splice variants arise from differential TSS usage, with beige-specific TSSs being enriched for PPARγ and MED1 binding compared to white-specific TSSs. Finally, we validate beige specific isoform expression at the protein level for two thermogenic regulators, PPARγ and PEMT. Discussion: These results suggest that differential isoform expression through alternative TSS usage is an important regulatory mechanism for human adipocyte thermogenic specification.


Subject(s)
Adipocytes, Beige , Alternative Splicing , Protein Isoforms , Thermogenesis , Humans , Adipocytes, Beige/metabolism , Thermogenesis/genetics , Protein Isoforms/genetics , Protein Isoforms/metabolism , Cell Differentiation , Adipogenesis/genetics , Male , Female , Adult , Cells, Cultured , Gene Expression Regulation , PPAR gamma/genetics , PPAR gamma/metabolism
4.
Int J Biol Macromol ; 272(Pt 1): 132728, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38825295

ABSTRACT

Intramuscular fat (IMF) content is mainly determined by intramuscular preadipocyte adipogenesis. Epigenetic modifications are known to have a regulatory effect on IMF. As N6-methyladenosine (m6A) is the most abundant epigenetic modification in eukaryotic RNAs. In the present study, we used m6A methylation and RNA sequencing (seq) to identify the m6A-modified RNAs associated with the adipogenic differentiation of intramuscular preadipocytes. Among them, the expression and m6A level of phosphorylase kinase subunit G1 (PHKG1) were found to be significantly changed during adipogenesis. Further studies revealed that knockdown of the methylase METTL3 decreased the m6A methylation of PHKG1 and led to a reduction in PHKG1. Moreover, knockdown of PHKG1 promoted adipogenic differentiation by upregulating the expression of adipogenic genes. In addition, we found that the IMF content in the longissimus thoracis (LT) of Bamei (BM) pigs was greater than that in Large White (LW) pigs, whereas the m6A and PHKG1 expression levels were lower in BM pigs. These findings indicate that the m6A level and expression of PHKG1 were significantly correlated with IMF content and meat quality. In conclusion, this study sheds light on the mechanism by which m6A modification regulates IMF deposition.


Subject(s)
Adenosine , Adipocytes , Adipogenesis , Animals , Adipocytes/metabolism , Adipocytes/cytology , Methylation , Swine , Adipogenesis/genetics , Adenosine/analogs & derivatives , Adenosine/metabolism , Phosphorylase Kinase/genetics , Phosphorylase Kinase/metabolism , Lipid Metabolism/genetics , Muscle, Skeletal/metabolism , Cell Differentiation/genetics
5.
Genes (Basel) ; 15(6)2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38927694

ABSTRACT

The excessive deposition of abdominal adipocytes in chickens is detrimental to poultry production. However, the regulatory factors that affect abdominal adipogenesis in chickens are still poorly understood. SLC22A16 is differentially expressed in abdominal preadipocytes and 10-day differentiated adipocytes in chickens, but its role in regulating chicken adipogenesis has not been reported. In this study, the function of SLC22A16 in chicken abdominal preadipocytes was investigated. SLC22A16 is significantly upregulated during abdominal adipocyte differentiation. The overexpression of SLC2A16 upregulated the expression of adipogenic marker genes and proliferation-related genes, and promoted the proliferation of adipocytes and the accumulation of triglycerides. The knockdown of SLC22A16 downregulated the expression of adipogenic marker genes and proliferation-related genes, inhibited the proliferation of adipocytes, and impaired the accumulation of triglycerides in adipocytes. In addition, LNC6302 was differentially expressed in abdominal preadipocytes and mature adipocytes, and was significantly positively correlated with the expression of SLC22A16. Interference with LNC6302 inhibits the expression of adipogenic marker genes and proliferation-related genes. The data supported the notion that LNC6302 promotes the differentiation of chicken abdominal adipocytes by cis-regulating the expression of SLC22A16. This study identified the role of SLC22A16 in the differentiation and proliferation of chicken adipocytes, providing a potential target for improving abdominal adipogenesis in chickens.


Subject(s)
Adipocytes , Adipogenesis , Cell Differentiation , Chickens , RNA, Long Noncoding , Animals , Adipocytes/metabolism , Adipocytes/cytology , Chickens/genetics , Adipogenesis/genetics , RNA, Long Noncoding/genetics , Cell Differentiation/genetics , Cell Proliferation/genetics
6.
BMC Genomics ; 25(1): 634, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918701

ABSTRACT

BACKGROUND: Previous studies have demonstrated the role of N6-methyladenosine (m6A) RNA methylation in various biological processes, our research is the first to elucidate its specific impact on LCAT mRNA stability and adipogenesis in poultry. RESULTS: The 6 100-day-old female chickens were categorized into high (n = 3) and low-fat chickens (n = 3) based on their abdominal fat ratios, and their abdominal fat tissues were processed for MeRIP-seq and RNA-seq. An integrated analysis of MeRIP-seq and RNA-seq omics data revealed 16 differentially expressed genes associated with to differential m6A modifications. Among them, ELOVL fatty acid elongase 2 (ELOVL2), pyruvate dehydrogenase kinase 4 (PDK4), fatty acid binding protein 9 (PMP2), fatty acid binding protein 1 (FABP1), lysosomal associated membrane protein 3 (LAMP3), lecithin-cholesterol acyltransferase (LCAT) and solute carrier family 2 member 1 (SLC2A1) have ever been reported to be associated with adipogenesis. Interestingly, LCAT was down-regulated and expressed along with decreased levels of mRNA methylation methylation in the low-fat group. Mechanistically, the highly expressed ALKBH5 gene regulates LCAT RNA demethylation and affects LCAT mRNA stability. In addition, LCAT inhibits preadipocyte proliferation and promotes preadipocyte differentiation, and plays a key role in adipogenesis. CONCLUSIONS: In conclusion, ALKBH5 mediates RNA stability of LCAT through demethylation and affects chicken adipogenesis. This study provides a theoretical basis for further understanding of RNA methylation regulation in chicken adipogenesis.


Subject(s)
Adenosine , Adipogenesis , AlkB Homolog 5, RNA Demethylase , Chickens , Phosphatidylcholine-Sterol O-Acyltransferase , RNA Stability , Animals , Adipogenesis/genetics , Chickens/genetics , Chickens/metabolism , Phosphatidylcholine-Sterol O-Acyltransferase/genetics , Phosphatidylcholine-Sterol O-Acyltransferase/metabolism , AlkB Homolog 5, RNA Demethylase/metabolism , AlkB Homolog 5, RNA Demethylase/genetics , Female , Adenosine/analogs & derivatives , Adenosine/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Methylation
7.
Cell Mol Life Sci ; 81(1): 260, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38878096

ABSTRACT

The pathological advancement of osteoporosis is caused by the uneven development of bone marrow-derived mesenchymal stem cells (BMSCs) in terms of osteogenesis and adipogenesis. While the role of EEF1B2 in intellectual disability and tumorigenesis is well established, its function in the bone-fat switch of BMSCs is still largely unexplored. During the process of osteogenic differentiation, we observed an increase in the expression of EEF1B2, while a decrease in its expression was noted during adipogenesis. Suppression of EEF1B2 hindered the process of osteogenic differentiation and mineralization while promoting adipogenic differentiation. On the contrary, overexpression of EEF1B2 enhanced osteogenesis and strongly inhibited adipogenesis. Furthermore, the excessive expression of EEF1B2 in the tibias has the potential to mitigate bone loss and decrease marrow adiposity in mice with osteoporosis. In terms of mechanism, the suppression of ß-catenin activity occurred when EEF1B2 function was suppressed during osteogenesis. Our collective findings indicate that EEF1B2 functions as a regulator, influencing the differentiation of BMSCs and maintaining a balance between bone and fat. Our finding highlights its potential as a therapeutic target for diseases related to bone metabolism.


Subject(s)
Adipogenesis , Cell Differentiation , Mesenchymal Stem Cells , Osteogenesis , Osteoporosis , Wnt Signaling Pathway , beta Catenin , Animals , Male , Mice , Adipogenesis/genetics , beta Catenin/metabolism , Bone Marrow Cells/metabolism , Bone Marrow Cells/cytology , Cells, Cultured , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Mice, Inbred C57BL , Osteogenesis/genetics , Osteoporosis/metabolism , Osteoporosis/pathology , Peptide Elongation Factor 1/metabolism , Guanine Nucleotide Exchange Factors/metabolism
8.
Front Biosci (Landmark Ed) ; 29(6): 236, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38940054

ABSTRACT

BACKGROUND: This study aimed to elucidate the molecular mechanism through which C1q/tumor necrosis factor (TNF)-related protein 9 (CTRP9) acts in the formation and differentiation of brown adipose tissue (BAT). METHODS: Adenovirus particles encoding CTRP9 and green fluorescent protein were inoculated into the scapula of C57BL/6J mice and fed a high-fat diet for 8 weeks; the body weight, lipid droplet morphology, glucose tolerance, insulin tolerance, and protein expression levels were analyzed. In addition, CTRP9 adenovirus was transfected into brown preadipocytes, and differentiation was induced to identify the effect of CTRP9 overexpression on adipocyte differentiation. RESULTS: CTRP9 overexpression significantly increased the weight gain of mice. Additionally, the CTRP9 overexpression group exhibited significantly increased adipose tissue weight and glucose clearance rates and decreased insulin sensitivity and serum triglyceride levels compared to the control group. Furthermore, CTRP9 overexpression significantly upregulated the adipose triglyceride lipase (ATGL) and perilipin 1 protein expression levels in BAT. The cell experiment results confirmed that CTRP9 overexpression significantly inhibited the adipogenesis of brown adipocytes as evidenced by the downregulation of uncoupling protein 1, beta-3 adrenergic receptor, ATGL, and hormone-sensitive lipase mRNA levels and the significant suppression of uncoupling protein 1, ATGL, and perilipin 1 protein levels in brown adipocytes. CONCLUSIONS: The finding of this study demonstrated that CTRP9 promotes lipolysis by upregulating ATGL expression in vivo and inhibits the differentiation of brown preadipocytes in vitro.


Subject(s)
Adipose Tissue, Brown , Diet, High-Fat , Lipolysis , Mice, Inbred C57BL , Animals , Diet, High-Fat/adverse effects , Adipose Tissue, Brown/metabolism , Male , Mice , Adiponectin/metabolism , Adiponectin/genetics , Insulin Resistance , Lipase/metabolism , Lipase/genetics , Cell Differentiation , Adipogenesis/genetics , Perilipin-1/metabolism , Perilipin-1/genetics , Acyltransferases , Glycoproteins
9.
Am J Physiol Endocrinol Metab ; 327(1): E69-E80, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38717361

ABSTRACT

Acylglycerophosphate acyltransferases (AGPATs) catalyze the de novo formation of phosphatidic acid to synthesize glycerophospholipids and triglycerides. AGPATs demonstrate unique physiological roles despite a similar biochemical function. AGPAT3 is highly expressed in the testis, kidney, and liver, with intermediate expression in adipose tissue. Loss of AGPAT3 is associated with reproductive abnormalities and visual dysfunction. However, the role of AGPAT3 in adipose tissue and whole body metabolism has not been investigated. We found that male Agpat3 knockout (KO) mice exhibited reduced body weights with decreased white and brown adipose tissue mass. Such changes were less pronounced in the female Agpat3-KO mice. Agpat3-KO mice have reduced plasma insulin growth factor 1 (IGF1) and insulin levels and diminished circulating lipid metabolites. They manifested intact glucose homeostasis and insulin sensitivity despite a lean phenotype. Agpat3-KO mice maintained an energy balance with normal food intake, energy expenditure, and physical activity, except for increased water intake. Their adaptive thermogenesis was also normal despite reduced brown adipose mass and triglyceride content. Mechanistically, Agpat3 was elevated during mouse and human adipogenesis and enriched in adipocytes. Agpat3-knockdown 3T3-L1 cells and Agpat3-deficient mouse embryonic fibroblasts (MEFs) have impaired adipogenesis in vitro. Interestingly, pioglitazone treatment rescued the adipogenic deficiency in Agpat3-deficient cells. We conclude that AGPAT3 regulates adipogenesis and adipose development. It is possible that adipogenic impairment in Agpat3-deficient cells potentially leads to reduced adipose mass. Findings from this work support the unique role of AGPAT3 in adipose tissue.NEW & NOTEWORTHY AGPAT3 deficiency results in male-specific growth retardation. It reduces adipose tissue mass but does not significantly impact glucose homeostasis or energy balance, except for influencing water intake in mice. Like AGPAT2, AGPAT3 is upregulated during adipogenesis, potentially by peroxisome proliferator-activated receptor gamma (PPARγ). Loss of AGPAT3 impairs adipocyte differentiation, which could be rescued by pioglitazone. Overall, AGPAT3 plays a significant role in regulating adipose tissue mass, partially involving its influence on adipocyte differentiation.


Subject(s)
1-Acylglycerol-3-Phosphate O-Acyltransferase , Adipocytes , Mice, Knockout , Animals , Female , Male , Mice , 1-Acylglycerol-3-Phosphate O-Acyltransferase/genetics , 1-Acylglycerol-3-Phosphate O-Acyltransferase/metabolism , Adipocytes/metabolism , Adipogenesis/genetics , Adipogenesis/physiology , Adipose Tissue, Brown/metabolism , Cell Differentiation , Energy Metabolism/genetics , Insulin Resistance/genetics , Mice, Inbred C57BL , Phenotype , Thermogenesis/genetics , Thinness/metabolism , Thinness/genetics
10.
Obesity (Silver Spring) ; 32(7): 1315-1328, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38798028

ABSTRACT

OBJECTIVE: This study aimed to investigate the role of Nkx1-2, a transcription factor with the NK homeobox domain, in the regulation of fat production. METHODS: Gene expression was analyzed using quantitative real-time polymerase chain reaction or transcriptome sequencing. CRISPR/Cas9 technology was employed to generate nkx1.2 knockout zebrafish and nkx1.2-deleted 3T3-L1 cells. Lipid droplet production in zebrafish larvae was visually quantified using Nile red staining, whereas lipid droplets in 3T3-L1 cells were stained with Oil red O. The binding of Nkx1-2 to the promoter was verified through an electrophoretic mobility shift assay experiment. RESULTS: Nkx1-2 plays crucial roles in the regulation of fat production in zebrafish. Knockout of nkx1.2 in zebrafish leads to weight loss, accompanied by significantly reduced lipid droplet production and decreased visceral and liver fat content. Furthermore, genes related to lipid biosynthesis are significantly downregulated. In 3T3-L1 preadipocytes, Nkx1-2 induces differentiation into mature adipocytes by binding to the cebpa promoter, thereby activating its transcription. Additionally, the expression of nkx1.2 is regulated by the p38 MAPK, JNK, or Smad2/3 signaling pathways in 3T3-L1 cells. CONCLUSIONS: Our findings suggest that Nkx1-2 functions as a positive regulator of fat production, playing a critical role in adipocyte differentiation and lipid biosynthesis.


Subject(s)
3T3-L1 Cells , Homeodomain Proteins , Transcription Factors , Zebrafish Proteins , Zebrafish , Animals , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Mice , Transcription Factors/metabolism , Transcription Factors/genetics , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Adipocytes/metabolism , Adipogenesis/genetics , Cell Differentiation , CRISPR-Cas Systems , Signal Transduction , Lipid Droplets/metabolism , Promoter Regions, Genetic , Lipid Metabolism/genetics , Larva/metabolism , Homeobox Protein Nkx-2.2
11.
Biochem Biophys Res Commun ; 716: 149998, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38692012

ABSTRACT

The equilibrium between the hypertrophic growth of existing adipocytes and adipogenesis is vital in managing metabolic stability in white adipocytes when faced with overnutrition. Adipogenesis has been established as a key player in combating metabolic irregularities caused by various factors. However, the benefits of increasing adipogenesis-mediated white adipose tissue (WAT) expansion for metabolic health regulation remain uncertain. Our findings reveal an increase in Impdh2 expression during the adipogenesis phase, both in vivo and in vitro. Xmp enhances adipogenic potential by fostering mitotic clonal expansion (MCE). The conditional knockout of Impdh2 in adipocyte progenitor cells(APCs) in adult and aged mice effectively curbs white adipose tissue expansion, ameliorates glucose tolerance, and augments energy expenditure under high-fat diet (HFD). However, no significant difference is observed under normal chow diet (NCD). Concurrently, the knockout of Impdh2 in APCs significantly reduces the count of new adipocytes induced by HFD, without affecting adipocyte size. Mechanistically, Impdh2 regulates the proliferation of APCs during the MCE phase via Xmp. Exogenous Xmp can significantly offset the reduction in adipogenic abilities of APCs due to Impdh2 deficiency. In summary, we discovered that adipogenesis-mediated WAT expansion, induced by overnutrition, also contributes to metabolic abnormalities. Moreover, the pivotal role of Impdh2 in regulating adipogenesis in APCs offers a novel therapeutic approach to combat obesity.


Subject(s)
Adipocytes , Adipogenesis , Adipose Tissue, White , Diet, High-Fat , Mice, Knockout , Overnutrition , Animals , Adipose Tissue, White/metabolism , Adipogenesis/genetics , Overnutrition/metabolism , Overnutrition/genetics , Mice , Adipocytes/metabolism , Mice, Inbred C57BL , Male , Energy Metabolism/genetics , Gene Deletion , Cell Proliferation , Stem Cells/metabolism , Stem Cells/cytology , Stem Cells/pathology
12.
Sci Rep ; 14(1): 10924, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38740866

ABSTRACT

Bovine intramuscular fat (IMF), commonly referred to as marbling, is regulated by lipid metabolism, which includes adipogenesis, lipogenesis, glycerolipid synthesis, and lipolysis. In recent years, breeding researchers have identified single nucleotide polymorphisms (SNPs) as useful marker-assisted selection tools for improving marbling scores in national breeding programs. These included causal SNPs that induce phenotypic variation. MicroRNAs (miRNAs) are small highly conserved non-coding RNA molecules that bind to multiple non-coding regions. They are involved in post-transcriptional regulation. Multiple miRNAs may regulate a given target. Previously, three SNPs in the GPAM 3' UTR and four miRNAs were identified through in silico assays. The aim of this study is to verify the binding ability of the four miRNAs to the SNPs within the 3'UTR of GPAM, and to identify the regulatory function of miR-375 in the expression of genes related to lipid metabolism in mammalian adipocytes. It was verified that the four miRNAs bind to the GPAM 3'UTR, and identified that the miR-375 sequence is highly conserved. Furthermore, it was founded that miR-375 upregulated the GPAM gene, C/EBPα, PPARγ and lipid metabolism-related genes and promoted lipid droplet accumulation in 3T3-L1 cells. In conclusion, these results suggest that miR-375 is a multifunctional regulator of multiple lipid metabolism-related genes and may aid in obesity research as a biomarker.


Subject(s)
3' Untranslated Regions , 3T3-L1 Cells , Lipid Metabolism , MicroRNAs , Polymorphism, Single Nucleotide , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Mice , Lipid Metabolism/genetics , Cattle , Gene Expression Regulation , Adipocytes/metabolism , Adipogenesis/genetics
13.
Front Endocrinol (Lausanne) ; 15: 1385811, 2024.
Article in English | MEDLINE | ID: mdl-38765953

ABSTRACT

Background: Thermogenic beige adipocytes, which dissipate energy as heat, are found in neonates and adults. Recent studies show that neonatal beige adipocytes are highly plastic and contribute to >50% of beige adipocytes in adults. Neonatal beige adipocytes are distinct from recruited beige adipocytes in that they develop independently of temperature and sympathetic innervation through poorly defined mechanisms. Methods: We characterized the neonatal beige adipocytes in the inguinal white adipose tissue (iWAT) of C57BL6 postnatal day 3 and 20 mice (P3 and P20) by imaging, genome-wide RNA-seq analysis, ChIP-seq analysis, qRT-PCR validation, and biochemical assays. Results: We found an increase in acetylated histone 3 lysine 27 (H3K27ac) on the promoter and enhancer regions of beige-specific gene UCP1 in iWAT of P20 mice. Furthermore, H3K27ac ChIP-seq analysis in the iWAT of P3 and P20 mice revealed strong H3K27ac signals at beige adipocyte-associated genes in the iWAT of P20 mice. The integration of H3K27ac ChIP-seq and RNA-seq analysis in the iWAT of P20 mice reveal epigenetically active signatures of beige adipocytes, including oxidative phosphorylation and mitochondrial metabolism. We identify the enrichment of GA-binding protein alpha (GABPα) binding regions in the epigenetically active chromatin regions of the P20 iWAT, particularly on beige genes, and demonstrate that GABPα is required for beige adipocyte differentiation. Moreover, transcriptomic analysis and glucose oxidation assays revealed increased glycolytic activity in the neonatal iWAT from P20. Conclusions: Our findings demonstrate that epigenetic mechanisms regulate the development of peri-weaning beige adipocytes via GABPα. Further studies to better understand the upstream mechanisms that regulate epigenetic activation of GABPα and characterization of the metabolic identity of neonatal beige adipocytes will help us harness their therapeutic potential in metabolic diseases.


Subject(s)
Adipocytes, Beige , Adipogenesis , Adipose Tissue, White , Animals, Newborn , Chromatin , Epigenesis, Genetic , GA-Binding Protein Transcription Factor , Mice, Inbred C57BL , Animals , Mice , Adipocytes, Beige/metabolism , Chromatin/metabolism , Chromatin/genetics , Adipogenesis/genetics , Adipose Tissue, White/metabolism , GA-Binding Protein Transcription Factor/metabolism , GA-Binding Protein Transcription Factor/genetics , Male , Thermogenesis/genetics , Histones/metabolism , Histones/genetics
14.
Mol Genet Genomics ; 299(1): 48, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38700639

ABSTRACT

Intramuscular fat (IMF) is a critical factor in beef quality. IMF is mainly distributed between muscle fibres and its accumulation can affect the marbling and meat quality of beef. IMF formation and deposition is a complex process and in recent years a group of non-coding RNAs (ncRNAs), known as circRNAs, have been discovered to play an important role in regulating intramuscular fat deposition. CircRNAs form a covalent loop structure after reverse splicing of precursor mRNAs. They can act by adsorbing miRNAs, thereby reducing their repressive effects on downstream target genes. Based on high-throughput sequencing of circRNAs in intramuscular fat of Qinchuan and Japanese black cattle, we identified a novel circSSBP2 that is differentially expressed between the two species and associated with adipogenesis. We show that circSSBP2 knockdown promotes bovine intramuscular preadipocyte proliferation, whereas overexpression inhibits bovine intramuscular preadipocyte proliferation. We also show that circSSBP2 can act as a molecular sponge for miR-2400 and that miR-2400 overexpression promotes bovine intramuscular preadipocyte proliferation. Furthermore, N-myc downstream-regulated gene 1 (NDRG1) was identified as a direct target gene of miR-2400, and NDRG1 interference promoted the proliferation of bovine intramuscular preadipocytes. In conclusion, our results suggest that circSSBP2 inhibits the proliferation of bovine intramuscular preadipocytes by regulating the miR-2400/NDRG1 axis.


Subject(s)
Adipocytes , Adipogenesis , Cell Cycle Proteins , Cell Proliferation , Intracellular Signaling Peptides and Proteins , MicroRNAs , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Proliferation/genetics , Cattle , Adipocytes/metabolism , Adipocytes/cytology , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Adipogenesis/genetics , RNA, Circular/genetics , Gene Expression Regulation
15.
Elife ; 122024 May 22.
Article in English | MEDLINE | ID: mdl-38775132

ABSTRACT

The energy-burning capability of beige adipose tissue is a potential therapeutic tool for reducing obesity and metabolic disease, but this capacity is decreased by aging. Here, we evaluate the impact of aging on the profile and activity of adipocyte stem and progenitor cells (ASPCs) and adipocytes during the beiging process in mice. We found that aging increases the expression of Cd9 and other fibro-inflammatory genes in fibroblastic ASPCs and blocks their differentiation into beige adipocytes. Fibroblastic ASPC populations from young and aged mice were equally competent for beige differentiation in vitro, suggesting that environmental factors suppress adipogenesis in vivo. Examination of adipocytes by single nucleus RNA-sequencing identified compositional and transcriptional differences in adipocyte populations with aging and cold exposure. Notably, cold exposure induced an adipocyte population expressing high levels of de novo lipogenesis (DNL) genes, and this response was severely blunted in aged animals. We further identified Npr3, which encodes the natriuretic peptide clearance receptor, as a marker gene for a subset of white adipocytes and an aging-upregulated gene in adipocytes. In summary, this study indicates that aging blocks beige adipogenesis and dysregulates adipocyte responses to cold exposure and provides a resource for identifying cold and aging-regulated pathways in adipose tissue.


Subject(s)
Adipocytes, Beige , Adipogenesis , Aging , Cold Temperature , Animals , Adipogenesis/genetics , Aging/metabolism , Aging/physiology , Mice , Adipocytes, Beige/metabolism , Mice, Inbred C57BL , Male , Adipocytes/metabolism , Cell Differentiation , Cellular Reprogramming , Metabolic Reprogramming
16.
Anim Sci J ; 95(1): e13951, 2024.
Article in English | MEDLINE | ID: mdl-38703069

ABSTRACT

Intramuscular fat (IMF) is a crucial determinant of meat quality and is influenced by various regulatory factors. Despite the growing recognition of the important role of long noncoding RNAs (lncRNAs) in IMF deposition, the mechanisms underlying buffalo IMF deposition remain poorly understood. In this study, we identified and characterized a lncRNA, lncFABP4, which is transcribed from the antisense strand of fatty acid-binding protein 4 (FABP4). lncFABP4 inhibited cell proliferation in buffalo intramuscular preadipocytes. Moreover, lncFABP4 significantly increased intramuscular preadipocyte differentiation, as indicated by an increase in the expression of the adipogenic markers peroxisome proliferator-activated receptor gamma (PPARG), CCAAT enhancer binding protein alpha (C/EBPα), and FABP4. Mechanistically, lncFABP4 was found to have the potential to regulate downstream gene expression by participating in protein-protein interaction pathways. These findings contribute to further understanding of the intricate mechanisms through which lncRNAs modulate intramuscular adipogenesis in buffaloes.


Subject(s)
Adipocytes , Adipogenesis , Buffaloes , Cell Differentiation , Cell Proliferation , Fatty Acid-Binding Proteins , PPAR gamma , RNA, Long Noncoding , Animals , Buffaloes/genetics , Buffaloes/metabolism , Adipogenesis/genetics , Adipocytes/metabolism , Adipocytes/cytology , Fatty Acid-Binding Proteins/metabolism , Fatty Acid-Binding Proteins/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Cell Differentiation/genetics , PPAR gamma/metabolism , PPAR gamma/genetics , Gene Expression , Cells, Cultured , CCAAT-Enhancer-Binding Protein-alpha/metabolism , CCAAT-Enhancer-Binding Protein-alpha/genetics , Food Quality
17.
J Endocrinol ; 262(1)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38692289

ABSTRACT

CD44, a cell surface adhesion receptor and stem cell biomarker, is recently implicated in chronic metabolic diseases. Ablation of CD44 ameliorates adipose tissue inflammation and insulin resistance in obesity. Here, we investigated cell type-specific CD44 expression in human and mouse adipose tissue and further studied how CD44 in preadipocytes regulates adipocyte function. Using Crispr Cas9-mdediated gene deletion and lentivirus-mediated gene re-expression, we discovered that deletion of CD44 promotes adipocyte differentiation and adipogenesis, whereas re-expression of CD44 abolishes this effect and decreases insulin responsiveness and adiponectin secretion in 3T3-L1 cells. Mechanistically, CD44 does so via suppressing Pparg expression. Using quantitative proteomics analysis, we further discovered that cell cycle-regulated pathways were mostly decreased by deletion of CD44. Indeed, re-expression of CD44 moderately restored expression of proteins involved in all phases of the cell cycle. These data were further supported by increased preadipocyte proliferation rates in CD44-deficient cells and re-expression of CD44 diminished this effect. Our data suggest that CD44 plays a crucial role in regulating adipogenesis and adipocyte function possibly through regulating PPARγ and cell cycle-related pathways. This study provides evidence for the first time that CD44 expressed in preadipocytes plays key roles in regulating adipocyte function outside immune cells where CD44 is primarily expressed. Therefore, targeting CD44 in (pre)adipocytes may provide therapeutic potential to treat obesity-associated metabolic complications.


Subject(s)
3T3-L1 Cells , Adipocytes , Adipogenesis , Cell Cycle , Hyaluronan Receptors , PPAR gamma , Adipogenesis/genetics , Adipogenesis/physiology , Hyaluronan Receptors/metabolism , Hyaluronan Receptors/genetics , Animals , PPAR gamma/metabolism , PPAR gamma/genetics , Mice , Cell Cycle/genetics , Cell Cycle/physiology , Humans , Adipocytes/metabolism , Gene Deletion , Cell Differentiation/genetics , Male , Adipose Tissue/metabolism , Adipose Tissue/cytology , Signal Transduction/physiology
18.
Life Sci Alliance ; 7(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-38702075

ABSTRACT

Excess abdominal fat is a sexually dimorphic risk factor for cardio-metabolic disease and is approximated by the waist-to-hip ratio adjusted for body mass index (WHRadjBMI). Whereas this trait is highly heritable, few causal genes are known. We aimed to identify novel drivers of WHRadjBMI using systems genetics. We used two independent cohorts of adipose tissue gene expression and constructed sex- and depot-specific Bayesian networks to model gene-gene interactions from 8,492 genes. Using key driver analysis, we identified genes that, in silico and putatively in vitro, regulate many others. 51-119 key drivers in each network were replicated in both cohorts. In other cell types, 23 of these genes are found in crucial adipocyte pathways: Wnt signaling or mitochondrial function. We overexpressed or down-regulated seven key driver genes in human subcutaneous pre-adipocytes. Key driver genes ANAPC2 and RSPO1 inhibited adipogenesis, whereas PSME3 increased adipogenesis. RSPO1 increased Wnt signaling activity. In differentiated adipocytes, MIGA1 and UBR1 down-regulation led to mitochondrial dysfunction. These five genes regulate adipocyte function, and we hypothesize that they regulate fat distribution.


Subject(s)
Adipocytes , Adipogenesis , Body Fat Distribution , Humans , Adipocytes/metabolism , Male , Female , Adipogenesis/genetics , Body Mass Index , Adult , Gene Regulatory Networks , Middle Aged , Bayes Theorem , Waist-Hip Ratio , Adipose Tissue/metabolism , Wnt Signaling Pathway/genetics , Gene Expression Regulation/genetics , Systems Biology/methods
19.
Int J Biol Macromol ; 270(Pt 1): 132057, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38710243

ABSTRACT

Adipose tissue plays a crucial role in maintaining energy balance, regulating hormones, and promoting metabolic health. To address disorders related to obesity and develop effective therapies, it is essential to have a deep understanding of adipose tissue biology. In recent years, RNA methylation has emerged as a significant epigenetic modification involved in various cellular functions and metabolic pathways. Particularly in the realm of adipogenesis and lipid metabolism, extensive research is ongoing to uncover the mechanisms and functional importance of RNA methylation. Increasing evidence suggests that RNA methylation plays a regulatory role in adipocyte development, metabolism, and lipid utilization across different organs. This comprehensive review aims to provide an overview of common RNA methylation modifications, their occurrences, and regulatory mechanisms, focusing specifically on their intricate connections to fat metabolism. Additionally, we discuss the research methodologies used in studying RNA methylation and highlight relevant databases that can aid researchers in this rapidly advancing field.


Subject(s)
Epigenesis, Genetic , Lipid Metabolism , RNA , Lipid Metabolism/genetics , Humans , Methylation , Animals , RNA/metabolism , RNA/genetics , Adipogenesis/genetics , Adipose Tissue/metabolism , RNA Methylation
20.
STAR Protoc ; 5(2): 103075, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38805394

ABSTRACT

3T3-L1 is a model cell line which can be differentiated from preadipocytes into mature adipocytes. Here, we present a protocol for changing gene expression in 3T3-L1 (pre)adipocytes using small interfering RNA (siRNA)-mediated knockdown. We describe steps to perform the knockdown of a certain gene prior to differentiation (day 4) to analyze the impact on adipogenesis. We then detail procedures for knockdown on day 8 of differentiation to study the role of a certain gene in mature adipocyte function. For complete details on the use and execution of this protocol, please refer to Kaczmarek et al.1.


Subject(s)
3T3-L1 Cells , Adipocytes , Adipogenesis , Cell Differentiation , Gene Knockdown Techniques , RNA, Small Interfering , Animals , Mice , Adipocytes/metabolism , Adipocytes/cytology , RNA, Small Interfering/genetics , Gene Knockdown Techniques/methods , Adipogenesis/genetics , Cell Differentiation/genetics , Gene Expression/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...