Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.328
Filter
1.
PLoS One ; 19(7): e0306700, 2024.
Article in English | MEDLINE | ID: mdl-38990841

ABSTRACT

Cells and microorganisms are motile, yet the stationary nature of conventional microscopes impedes comprehensive, long-term behavioral and biomechanical analysis. The limitations are twofold: a narrow focus permits high-resolution imaging but sacrifices the broader context of organism behavior, while a wider focus compromises microscopic detail. This trade-off is especially problematic when investigating rapidly motile ciliates, which often have to be confined to small volumes between coverslips affecting their natural behavior. To address this challenge, we introduce Trackoscope, a 2-axis autonomous tracking microscope designed to follow swimming organisms ranging from 10µm to 2mm across a 325cm2 area (equivalent to an A5 sheet) for extended durations-ranging from hours to days-at high resolution. Utilizing Trackoscope, we captured a diverse array of behaviors, from the air-water swimming locomotion of Amoeba to bacterial hunting dynamics in Actinosphaerium, walking gait in Tardigrada, and binary fission in motile Blepharisma. Trackoscope is a cost-effective solution well-suited for diverse settings, from high school labs to resource-constrained research environments. Its capability to capture diverse behaviors in larger, more realistic ecosystems extends our understanding of the physics of living systems. The low-cost, open architecture democratizes scientific discovery, offering a dynamic window into the lives of previously inaccessible small aquatic organisms.


Subject(s)
Microscopy , Microscopy/methods , Microscopy/instrumentation , Microscopy/economics , Animals , Amoeba/physiology , Locomotion/physiology , Swimming/physiology
2.
Proc Natl Acad Sci U S A ; 121(30): e2319628121, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39012821

ABSTRACT

Heterotrophic protists are vital in Earth's ecosystems, influencing carbon and nutrient cycles and occupying key positions in food webs as microbial predators. Fossils and molecular data suggest the emergence of predatory microeukaryotes and the transition to a eukaryote-rich marine environment by 800 million years ago (Ma). Neoproterozoic vase-shaped microfossils (VSMs) linked to Arcellinida testate amoebae represent the oldest evidence of heterotrophic microeukaryotes. This study explores the phylogenetic relationship and divergence times of modern Arcellinida and related taxa using a relaxed molecular clock approach. We estimate the origin of nodes leading to extant members of the Arcellinida Order to have happened during the latest Mesoproterozoic and Neoproterozoic (1054 to 661 Ma), while the divergence of extant infraorders postdates the Silurian. Our results demonstrate that at least one major heterotrophic eukaryote lineage originated during the Neoproterozoic. A putative radiation of eukaryotic groups (e.g., Arcellinida) during the early-Neoproterozoic sustained by favorable ecological and environmental conditions may have contributed to eukaryotic life endurance during the Cryogenian severe ice ages. Moreover, we infer that Arcellinida most likely already inhabited terrestrial habitats during the Neoproterozoic, coexisting with terrestrial Fungi and green algae, before land plant radiation. The most recent extant Arcellinida groups diverged during the Silurian Period, alongside other taxa within Fungi and flowering plants. These findings shed light on heterotrophic microeukaryotes' evolutionary history and ecological significance in Earth's ecosystems, using testate amoebae as a proxy.


Subject(s)
Ecosystem , Fossils , Heterotrophic Processes , Phylogeny , Biodiversity , Biological Evolution , Amoebozoa/genetics , Amoebozoa/classification , Amoeba/genetics , Amoeba/classification , Amoeba/physiology , Eukaryota/genetics , Eukaryota/classification
3.
mSphere ; 9(7): e0017624, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38953618

ABSTRACT

Katrina Velle is a cell biologist who uses microscopy to study amoebae. In this mSphere of Influence article, she reflects on how a classic paper on Listeria by Tilney and Portnoy made an impact on her by highlighting how much we can learn from simply looking at cells.


Subject(s)
Microscopy , Listeria/genetics , Observational Studies as Topic , Amoeba , Humans
4.
Environ Sci Pollut Res Int ; 31(35): 48073-48084, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39017868

ABSTRACT

Recent advancements in membrane technologies and disinfection methods have enhanced drinking water quality significantly. However, microorganisms, including free-living amoebae (FLA), persist and pose potential threats to humans. FLA are linked to severe neuro-ophthalmic infections and serve as hosts of pathogenic bacteria. This study examined FLA presence in chlorinated and ultrafiltration drinking water and evaluated chlorine's disinfectant. Of 115 water samples, 21 tested positive for Acanthamoeba sp., Allovahlkampfia sp., and Vermamoeba vermiformis, originating from chlorinated sources. FLA trophozoites withstand temperatures up to 37 °C, while the cysts tolerate heat shocks of 60-70 °C. Trophozoites are susceptible to 5 mg L-1 chlorine, but cysts remain viable at concentrations up to 10 mg L-1. FLAs' survival in chlorinated waters is attributed to high cyst tolerance and lower residual chlorine concentrations. These findings highlight the need for ultrafiltration or enhanced chlorination protocols to ensure safer drinking water.


Subject(s)
Amoeba , Drinking Water , Halogenation , Amoeba/drug effects , Drinking Water/chemistry , Chlorine/pharmacology , Disinfection/methods , Disinfectants , Water Purification/methods
5.
Environ Microbiol Rep ; 16(3): e13304, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38923306

ABSTRACT

The photosynthetic amoeba, Paulinella provides a recent (ca. 120 Mya) example of primary plastid endosymbiosis. Given the extensive data demonstrating host lineage-driven endosymbiont integration, we analysed nuclear genome and transcriptome data to investigate mechanisms that may have evolved in Paulinella micropora KR01 (hereinafter, KR01) to maintain photosynthetic function in the novel organelle, the chromatophore. The chromatophore is of α-cyanobacterial provenance and has undergone massive gene loss due to Muller's ratchet, but still retains genes that encode the ancestral α-carboxysome and the shell carbonic anhydrase, two critical components of the biophysical CO2 concentrating mechanism (CCM) in cyanobacteria. We identified KR01 nuclear genes potentially involved in the CCM that arose via duplication and divergence and are upregulated in response to high light and downregulated under elevated CO2. We speculate that these genes may comprise a novel CO2 delivery system (i.e., a biochemical CCM) to promote the turnover of the RuBisCO carboxylation reaction and counteract photorespiration. We posit that KR01 has an inefficient photorespiratory system that cannot fully recycle the C2 product of RuBisCO oxygenation back to the Calvin-Benson cycle. Nonetheless, both these systems appear to be sufficient to allow Paulinella to persist in environments dominated by faster-growing phototrophs.


Subject(s)
Carbon Dioxide , Chromatophores , Photosynthesis , Symbiosis , Carbon Dioxide/metabolism , Photosynthesis/genetics , Chromatophores/metabolism , Amoeba/genetics , Cyanobacteria/genetics , Cyanobacteria/metabolism , Phylogeny
6.
Parasites Hosts Dis ; 62(2): 180-192, 2024 May.
Article in English | MEDLINE | ID: mdl-38835259

ABSTRACT

Free-living amoebae (FLA) are found in diverse environments, such as soils, rivers, and seas. Hence, they can be used as bioindicators to assess the water quality based solely on their presence. In this study, we determined the presence of FLA in river water by filtering water samples collected from various sites and culturing the resulting filtrates. FLA were detected in all the water samples with varying quality grades (Grades Ι-V). The significant increase in the size of the amoebae population with the deterioration in the water quality. Monoxenic cultures of the amoebae were performed, and genomic DNAs were isolated, among which 18S rDNAs were sequenced to identify the amoeba species. Of the 12 species identified, 10 belonged to the Acanthamoeba genus; of the remaining 2 species, one was identified as Vannella croatica and the other as a species of Vermamoeba. Acanthamoeba was detected in samples with Grades Ι to VI quality, whereas the Vermamoeba species was present only in Grade Ι water. V. croatica was found exclusively in water with Grade ΙΙ quality. Following morphological observations, genomic DNA was sequenced using 16S rDNA to determine whether the species of Acanthamoeba harbored endosymbionts. Most of the isolated Acanthamoeba contained endosymbionts, among which 4 species of endogenous bacteria were identified and examined using transmission electron microscopy. This study provides evidence that the distribution of amoebae other than Acanthamoeba may be associated with water quality. However, further confirmation will be required based on accurate water quality ratings and assessments using a more diverse range of FLA.


Subject(s)
Amoeba , Water Quality , Amoeba/genetics , Amoeba/isolation & purification , Amoeba/classification , Phylogeny , Rivers/parasitology , DNA, Protozoan/genetics , Acanthamoeba/genetics , Acanthamoeba/isolation & purification , Acanthamoeba/classification , RNA, Ribosomal, 18S/genetics , DNA, Ribosomal/genetics , Biodiversity , Sequence Analysis, DNA/methods , RNA, Ribosomal, 16S/genetics
7.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38848278

ABSTRACT

Amoeba-bacteria interactions are prevalent in both natural ecosystems and engineered environments. Amoebae, as essential consumers, hold significant ecological importance within ecosystems. Besides, they can establish stable symbiotic associations with bacteria. Copper plays a critical role in amoeba predation by either killing or restricting the growth of ingested bacteria in phagosomes. However, certain symbiotic bacteria have evolved mechanisms to persist within the phagosomal vacuole, evading antimicrobial defenses. Despite these insights, the impact of copper on the symbiotic relationships between amoebae and bacteria remains poorly understood. In this study, we investigated the effects of copper stress on amoebae and their symbiotic relationships with bacteria. Our findings revealed that elevated copper concentration adversely affected amoeba growth and altered cellular fate. Symbiont type significantly influenced the responses of the symbiotic relationships to copper stress. Beneficial symbionts maintained stability under copper stress, but parasitic symbionts exhibited enhanced colonization of amoebae. Furthermore, copper stress favored the transition of symbiotic relationships between amoebae and beneficial symbionts toward the host's benefit. Conversely, the pathogenic effects of parasitic symbionts on hosts were exacerbated under copper stress. This study sheds light on the intricate response mechanisms of soil amoebae and amoeba-bacteria symbiotic systems to copper stress, providing new insights into symbiotic dynamics under abiotic factors. Additionally, the results underscore the potential risks of copper accumulation in the environment for pathogen transmission and biosafety.


Subject(s)
Amoeba , Bacteria , Copper , Symbiosis , Copper/metabolism , Amoeba/microbiology , Amoeba/physiology , Bacteria/drug effects , Stress, Physiological , Bacterial Physiological Phenomena
8.
Parasite ; 31: 28, 2024.
Article in English | MEDLINE | ID: mdl-38819296

ABSTRACT

Parasites and free-living amoebae (FLA) are common pathogens that pose threats to wildlife and humans. The black-necked crane (Grus nigricollis) is a near-threatened species and there is a shortage of research on its parasite diversity. Our study aimed to use noninvasive methods to detect intestinal parasites and pathogenic FLA in G. nigricollis using high-throughput sequencing (HTS) based on the 18S rDNA V9 region. A total of 38 fresh fecal samples were collected in Dashanbao, China, during the overwintering period (early-, middle I-, middle II-, and late-winter). Based on the 18S data, eight genera of parasites were identified, including three protozoan parasites: Eimeria sp. (92.1%) was the dominant parasite, followed by Tetratrichomonas sp. (36.8%) and Theileria sp. (2.6%). Five genera of helminths were found: Echinostoma sp. (100%), Posthodiplostomum sp. (50.0%), Euryhelmis sp. (26.3%), Eucoleus sp. (50.0%), and Halomonhystera sp. (2.6%). Additionally, eight genera of FLA were detected, including the known pathogens Acanthamoeba spp. (n = 13) and Allovahlkampfia spp. (n = 3). Specific PCRs were used to further identify the species of some parasites and FLA. Furthermore, the 18S data indicated significant changes in the relative abundance and genus diversity of the protozoan parasites and FLA among the four periods. These results underscore the importance of long-term monitoring of pathogens in black-necked cranes to protect this near-endangered species.


Title: Métabarcoding des protozoaires et des helminthes chez les grues à cou noir : forte prévalence de parasites et d'amibes libres. Abstract: Les parasites et les amibes libres sont des agents pathogènes courants qui constituent une menace pour la faune et les humains. La grue à cou noir (Grus nigricollis) est une espèce quasi menacée et les recherches sur sa diversité parasitaire sont insuffisantes. Notre étude visait à utiliser des méthodes non invasives pour détecter les parasites intestinaux et les amibes libres pathogènes chez G. nigricollis en utilisant le séquençage à haut débit basé sur la région V9 de l'ADNr 18S. Au total, 38 échantillons de matières fécales fraîches ont été collectés à Dashanbao, en Chine, au cours de la période d'hivernage (début, milieu I, milieu II et fin de l'hiver). Sur la base des données 18S, huit genres de parasites ont été identifiés, dont trois parasites protozoaires : Eimeria sp. (92,1 %) était le parasite dominant, suivi de Tetratrichomonas sp. (36,8 %) et Theileria sp. (2,6 %). Cinq genres d'helminthes ont été trouvés : Echinostoma sp. (100 %), Posthodiplostomum sp. (50,0 %), Euryhelmis sp. (26,3 %), Eucoleus sp. (50,0 %) et Halomonhystera sp. (2,6 %). De plus, huit genres d'amibes libres ont été détectés, y compris les agents pathogènes connus Acanthamoeba spp. (n = 13) et Allovahlkampfia spp. (n = 3). Des PCR spécifiques ont été utilisées pour identifier davantage les espèces de certains parasites et amibes libres. En outre, les données 18S ont indiqué des changements significatifs dans l'abondance relative et la diversité des genres des parasites protozoaires et des amibes au cours des quatre périodes. Ces résultats soulignent l'importance de la surveillance à long terme des agents pathogènes chez les grues à cou noir pour protéger cette espèce quasi menacée.


Subject(s)
Birds , DNA Barcoding, Taxonomic , Feces , Helminths , RNA, Ribosomal, 18S , Animals , Feces/parasitology , Helminths/classification , Helminths/isolation & purification , Helminths/genetics , RNA, Ribosomal, 18S/genetics , Birds/parasitology , High-Throughput Nucleotide Sequencing , Prevalence , China/epidemiology , Bird Diseases/parasitology , Bird Diseases/epidemiology , Helminthiasis, Animal/parasitology , Helminthiasis, Animal/epidemiology , Eimeria/isolation & purification , Eimeria/classification , Eimeria/genetics , Theileria/isolation & purification , Theileria/genetics , Theileria/classification , Amoeba/isolation & purification , Amoeba/classification , Amoeba/genetics , DNA, Protozoan/isolation & purification , Intestinal Diseases, Parasitic/veterinary , Intestinal Diseases, Parasitic/parasitology , Intestinal Diseases, Parasitic/epidemiology , Seasons , Phylogeny
9.
mBio ; 15(6): e0034224, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38747615

ABSTRACT

Amoebae are environmental predators feeding on bacteria, fungi, and other eukaryotic microbes. Predatory interactions alter microbial communities and impose selective pressure toward phagocytic resistance or escape which may, in turn, foster virulence attributes. The ubiquitous fungivorous amoeba Protostelium aurantium has a wide prey spectrum in the fungal kingdom but discriminates against members of the Saccharomyces clade, such as Saccharomyces cerevisiae and Candida glabrata. Here, we show that this prey discrimination among fungi is solely based on the presence of ubiquinone as an essential cofactor for the predator. While the amoeba readily fed on fungi with CoQ presenting longer isoprenyl side chain variants CoQ8-10, such as those from the Candida clade, it failed to proliferate on those with shorter CoQ variants, specifically from the Saccharomyces clade (CoQ6). Supplementing non-edible yeast with CoQ9 or CoQ10 rescued the growth of P. aurantium, highlighting the importance of a long isoprenyl side chain. Heterologous biosynthesis of CoQ9 in S. cerevisiae by introducing genes responsible for CoQ9 production from the evolutionary more basic Yarrowia lipolytica complemented the function of the native CoQ6. The results suggest that the use of CoQ6 among members of the Saccharomyces clade might have originated as a predatory escape strategy in fungal lineages and could be retained in organisms that were able to thrive by fermentation. IMPORTANCE: Ubiquinones (CoQ) are universal electron carriers in the respiratory chain of all aerobic bacteria and eukaryotes. Usually 8-10 isoprenyl units ensure their localization within the lipid bilayer. Members of the Saccharomyces clade among fungi are unique in using only 6. The reason for this is unclear. Here we provide evidence that the use of CoQ6 efficiently protects these fungi from predation by the ubiquitous fungivorous amoeba Protostelium aurantium which lacks its own biosynthetic pathway for this vitamin. The amoebae were starving on a diet of CoQ6 yeasts which could be complemented by either the addition of longer CoQs or the genetic engineering of a CoQ9 biosynthetic pathway.


Subject(s)
Ubiquinone , Ubiquinone/analogs & derivatives , Ubiquinone/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Amoeba/microbiology , Amoeba/genetics , Yarrowia/genetics , Yarrowia/metabolism , Fungi/genetics , Fungi/metabolism , Fungi/physiology
10.
Sci Total Environ ; 941: 173318, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38777057

ABSTRACT

Free-living amoebae (FLA) such as Acanthamoeba, Balamuthia mandrillaris, Naegleria fowleri and Sappinia pedata are naturally widespread in freshwater, causing rare but fatal and debilitating infections in humans. Although recent studies have shown an increase in infection rates, there is a paucity of epidemiological studies regarding the presence of these emerging pathogens in water. Herein, we studied the diversity and relative abundance of thermophilic FLA in different recreational baths in a tropical climate for 5 years. From 2018 to 2022, a total of 96 water samples were collected from 7 recreational baths (natural, tiled, regularly cleaned or not, and with temperatures ranging from 27 to 40 °C). DNA was extracted from FLA cultivated at 37 °C to detect thermophilic culturable FLA. Metabarcoding studies were conducted through FLA 18S rRNA gene amplicons sequencing; amplicon sequence variants (ASV) were extracted from each sample and taxonomy assigned against PR2 database using dada2 and phyloseq tools. We also searched for Naegleria sp. and N. fowleri using PCR targeting ITS and NFITS genes (respectively) and we quantified them using an optimized most probable number (MPN) method for FLA. Our results showed that differences in FLA diversity and abundance were observed amongst the 7 baths, but without a clear seasonal distribution. Naegleria, Vermamoeba and Stenamoeba were the most represented genera, while the genera Acanthamoeba and Vahlkampfia were mainly found in 2 baths. The MPN values for Naegleria sp. (NT/l) increased between 2018 and 2022, but the MPN values for N. fowleri (NF/l) seemed to decrease. Globally, our results showed that since we cannot establish a seasonal distribution of FLA, the regular presence of FLA (namely Naegleria and Acanthamoeba) in recreational waters can pose a potential threat in terms of neuroinfections as well as Acanthamoeba keratitis. It is thus imperious to perform the regular control of these baths as a preventive health measure.


Subject(s)
Amoeba , Guadeloupe/epidemiology , Environmental Monitoring , Fresh Water , Bathing Beaches
11.
Environ Microbiol ; 26(5): e16623, 2024 May.
Article in English | MEDLINE | ID: mdl-38715450

ABSTRACT

Free-living amoebae (FLA) serve as hosts for a variety of endosymbionts, which are microorganisms that reside and multiply within the FLA. Some of these endosymbionts pose a pathogenic threat to humans, animals, or both. The symbiotic relationship with FLA not only offers these microorganisms protection but also enhances their survival outside their hosts and assists in their dispersal across diverse habitats, thereby escalating disease transmission. This review is intended to offer an exhaustive overview of the existing mathematical models that have been applied to understand the dynamics of FLA, especially concerning their interactions with bacteria. An extensive literature review was conducted across Google Scholar, PubMed, and Scopus databases to identify mathematical models that describe the dynamics of interactions between FLA and bacteria, as published in peer-reviewed scientific journals. The literature search revealed several FLA-bacteria model systems, including Pseudomonas aeruginosa, Pasteurella multocida, and Legionella spp. Although the published mathematical models account for significant system dynamics such as predator-prey relationships and non-linear growth rates, they generally overlook spatial and temporal heterogeneity in environmental conditions, such as temperature, and population diversity. Future mathematical models will need to incorporate these factors to enhance our understanding of FLA-bacteria dynamics and to provide valuable insights for future risk assessment and disease control measures.


Subject(s)
Amoeba , Bacteria , Symbiosis , Amoeba/microbiology , Models, Biological , Bacterial Physiological Phenomena , Models, Theoretical , Animals
12.
PeerJ ; 12: e17118, 2024.
Article in English | MEDLINE | ID: mdl-38562996

ABSTRACT

Cooperation is widespread across life, but its existence can be threatened by exploitation. The rise of obligate social cheaters that are incapable of contributing to a necessary cooperative function can lead to the loss of that function. In the social amoeba Dictyostelium discoideum, obligate social cheaters cannot form dead stalk cells and in chimeras instead form living spore cells. This gives them a competitive advantage within chimeras. However, obligate cheaters of this kind have thus far not been found in nature, probably because they are often enough in clonal populations that they need to retain the ability to produce stalks. In this study we discovered an additional cost to obligate cheaters. Even when there are wild-type cells to parasitize, the chimeric fruiting bodies that result have shorter stalks and these are disadvantaged in spore dispersal. The inability of obligate cheaters to form fruiting bodies when they are on their own combined with the lower functionality of fruiting bodies when they are not represent limits on obligate social cheating as a strategy.


Subject(s)
Amoeba , Dictyostelium , Reproduction , Spores, Protozoan
13.
Sci Total Environ ; 929: 172470, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38621530

ABSTRACT

Microplastics (MP) have become a well-known and widely investigated environmental pollutant. Despite the huge amount of new studies investigating the potential threat posed by MP, the possible uptake and trophic transfer in lower trophic levels of freshwater ecosystems remains understudied. This study aims to investigate the internalization and potential trophic transfer of fluorescent polystyrene (PS) beads (0.5 µm, 3.6 × 108 particles/mL; 6 µm, 2.1 × 105 particles/mL) and fragments (<30 µm, 5 × 103 particles/mL) in three unicellular eukaryotes. This study focuses on the size-dependent uptake of MP by two freshwater Ciliophora, Tetrahymena pyriformis, Paramecium caudatum and one Amoebozoa, Amoeba proteus, serving also as predator for experiments on potential trophic transfer. Size-dependent uptake of MP in all three unicellular eukaryotes was shown. P. caudatum is able to take up MP fragments up to 27.7 µm, while T. pyriformis ingests particles up to 10 µm. In A. proteus, small MP (PS0.5µm and PS6µm) were taken up via pinocytosis and were detected in the cytoplasm for up to 14 days after exposure. Large PS-MP (PS<30µm) were detected in A. proteus only after predation on MP-fed Ciliophora. These results indicate that A. proteus ingests larger MP via predation on Ciliophora (PS<30µm), which would not be taken up otherwise. This study shows trophic transfer of MP at the base of the aquatic food web and serves as basis to study the impact of MP in freshwater ecosystems.


Subject(s)
Food Chain , Fresh Water , Microplastics , Polystyrenes , Water Pollutants, Chemical , Water Pollutants, Chemical/metabolism , Environmental Monitoring , Tetrahymena pyriformis/metabolism , Amoeba/metabolism , Paramecium caudatum/metabolism , Particle Size
14.
Sci Rep ; 14(1): 7677, 2024 04 01.
Article in English | MEDLINE | ID: mdl-38561423

ABSTRACT

The social amoeba Dictyostelium discoideum switches between solitary growth and social fruitification depending on nutrient availability. Under starvation, cells aggregate and form fruiting bodies consisting of spores and altruistic stalk cells. Once cells socially committed, they complete fruitification, even if a new source of nutrients becomes available. This social commitment is puzzling because it hinders individual cells from resuming solitary growth quickly. One idea posits that traits that facilitate premature de-commitment are hindered from being selected. We studied outcomes of the premature de-commitment through forced refeeding. Our results show that when refed cells interacted with non-refed cells, some of them became solitary, whereas a fraction was redirected to the altruistic stalk, regardless of their original fate. The refed cells exhibited reduced cohesiveness and were sorted out during morphogenesis. Our findings provide an insight into a division of labor of the social amoeba, in which less cohesive individuals become altruists.


Subject(s)
Amoeba , Dictyostelium , Humans , Cell Differentiation , Morphogenesis , Cell Movement
15.
Genome Biol Evol ; 16(3)2024 03 02.
Article in English | MEDLINE | ID: mdl-38504610

ABSTRACT

This study investigates the genomic characteristics of Echinamoeba silvestris, a small-sized amoeba within the Tubulinea clade of the Amoebozoa supergroup. Despite Tubulinea's significance in various fields, genomic data for this clade have been scarce. E. silvestris presents the smallest free-living amoeba genome within Tubulinea and Amoebozoa to date. Comparative analysis reveals intriguing parallels with parasitic lineages in terms of genome size and predicted gene numbers, emphasizing the need to understand the consequences of reduced genomes in free-living amoebae. Functional categorization of predicted genes in E. silvestris shows similar percentages of ortholog groups to other amoebae in various categories, but a distinctive feature is the extensive gene contraction in orphan (ORFan) genes and those involved in biological processes. Notably, among the few genes that underwent expansion, none are related to cellular components, suggesting adaptive processes that streamline biological processes and cellular components for efficiency and energy conservation. Additionally, our investigation into noncoding and repetitive elements sheds light on the evolution of genome size in amoebae, with E. silvestris distinguished by low percentage of repetitive elements. Furthermore, the analysis reveals that E. silvestris has the lowest mean number of introns per gene among the species studied, providing further support for its observed compact genome. Overall, this research underscores the diversity within Tubulinea, highlights knowledge gaps in Amoebozoa genomics, and positions E. silvestris as a valuable addition to genomic data sets, prompting further exploration of complexities in Amoebozoa diversity and genome evolution.


Subject(s)
Amoeba , Amoebozoa , Amoeba/genetics , Phylogeny , Genome , Amoebozoa/genetics , Genomics
16.
Int J Hyg Environ Health ; 258: 114345, 2024 May.
Article in English | MEDLINE | ID: mdl-38471337

ABSTRACT

Free living amoeba (FLA) are among the organisms commonly found in wastewater and are well-established hosts for diverse microbial communities. Despite its clinical significance, there is little knowledge on the FLA microbiome and resistome, with previous studies relying mostly on conventional approaches. In this study we comprehensively analyzed the microbiome, antibiotic resistome and virulence factors (VFs) within FLA isolated from final treated effluents of two wastewater treatment plants (WWTPs) using shotgun metagenomics. Acanthamoeba has been identified as the most common FLA, followed by Entamoeba. The bacterial diversity showed no significant difference (p > 0.05) in FLA microbiomes obtained from the two WWTPs. At phylum level, the most dominant taxa were Proteobacteria, followed by Firmicutes and Actinobacteria. The most abundant genera identified were Enterobacter followed by Citrobacter, Paenibacillus, and Cupriavidus. The latter three genera are reported here for the first time in Acanthamoeba. In total, we identified 43 types of ARG conferring resistance to cephalosporins, phenicol, streptomycin, trimethoprim, quinolones, cephalosporins, tigecycline, rifamycin, and kanamycin. Similarly, a variety of VFs in FLA metagenomes were detected which included flagellar proteins, Type IV pili twitching motility proteins (pilH and rpoN), alginate biosynthesis genes AlgI, AlgG, AlgD and AlgW and Type VI secretion system proteins and general secretion pathway proteins (tssM, tssA, tssL, tssK, tssJ, fha, tssG, tssF, tssC and tssB, gspC, gspE, gspD, gspF, gspG, gspH, gspI, gspJ, gspK, and gspM). To the best of our knowledge, this is the first study of its kind to examine both the microbiomes and resistome in FLA, as well as their potential pathogenicity in treated effluents. Additionally, this study showed that FLA can host a variety of potentially pathogenic bacteria including Paenibacillus, and Cupriavidus that had not previously been reported, indicating that their relationship may play a role in the spread and persistence of antibiotic resistant bacteria (ARBs) and antibiotic resistance genes (ARGs) as well as the evolution of novel pathogens.


Subject(s)
Amoeba , Microbiota , Wastewater , Anti-Bacterial Agents/pharmacology , Amoeba/microbiology , Angiotensin Receptor Antagonists , Angiotensin-Converting Enzyme Inhibitors , Microbiota/genetics , Bacteria , Genes, Bacterial , Drug Resistance, Microbial/genetics , Cephalosporins
17.
Proc Natl Acad Sci U S A ; 121(14): e2313203121, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38530891

ABSTRACT

Consumers range from specialists that feed on few resources to generalists that feed on many. Generalism has the clear advantage of having more resources to exploit, but the costs that limit generalism are less clear. We explore two understudied costs of generalism in a generalist amoeba predator, Dictyostelium discoideum, feeding on naturally co-occurring bacterial prey. Both involve costs of combining prey that are suitable on their own. First, amoebas exhibit a reduction in growth rate when they switched to one species of prey bacteria from another compared to controls that experience only the second prey. The effect was consistent across all six tested species of bacteria. These switching costs typically disappear within a day, indicating adjustment to new prey bacteria. This suggests that these costs are physiological. Second, amoebas usually grow more slowly on mixtures of prey bacteria compared to the expectation based on their growth on single prey. There were clear mixing costs in three of the six tested prey mixtures, and none showed significant mixing benefits. These results support the idea that, although amoebas can consume a variety of prey, they must use partially different methods and thus must pay costs to handle multiple prey, either sequentially or simultaneously.


Subject(s)
Amoeba , Dictyostelium , Animals , Dictyostelium/microbiology , Eukaryota , Diet , Bacteria , Amoeba/microbiology , Predatory Behavior , Food Chain
18.
Proc Natl Acad Sci U S A ; 121(14): e2317492121, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38547056

ABSTRACT

Energy metabolism is highly interdependent with adaptive cell migration in vivo. Mechanical confinement is a critical physical cue that induces switchable migration modes of the mesenchymal-to-amoeboid transition (MAT). However, the energy states in distinct migration modes, especially amoeboid-like stable bleb (A2) movement, remain unclear. In this report, we developed multivalent DNA framework-based nanomachines to explore strategical mitochondrial trafficking and differential ATP levels during cell migration in mechanically heterogeneous microenvironments. Through single-particle tracking and metabolomic analysis, we revealed that fast A2-moving cells driven by biomimetic confinement recruited back-end positioning of mitochondria for powering highly polarized cytoskeletal networks, preferentially adopting an energy-saving mode compared with a mesenchymal mode of cell migration. We present a versatile DNA nanotool for cellular energy exploration and highlight that adaptive energy strategies coordinately support switchable migration modes for facilitating efficient metastatic escape, offering a unique perspective for therapeutic interventions in cancer metastasis.


Subject(s)
Amoeba , Cell Line, Tumor , Cell Movement , Physical Phenomena
19.
J Chem Theory Comput ; 20(7): 2921-2933, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38507252

ABSTRACT

Accurately predicting protein behavior across diverse pH environments remains a significant challenge in biomolecular simulations. Existing constant-pH molecular dynamics (CpHMD) algorithms are limited to fixed-charge force fields, hindering their application to biomolecular systems described by permanent atomic multipoles or induced dipoles. This work overcomes these limitations by introducing the first polarizable CpHMD algorithm in the context of the Atomic Multipole Optimized Energetics for Biomolecular Applications (AMOEBA) force field. Additionally, our implementation in the open-source Force Field X (FFX) software has the unique ability to handle titration state changes for crystalline systems including flexible support for all 230 space groups. The evaluation of constant-pH molecular dynamics (CpHMD) with the AMOEBA force field was performed on 11 crystalline peptide systems that span the titrating amino acids (Asp, Glu, His, Lys, and Cys). Titration states were correctly predicted for 15 out of the 16 amino acids present in the 11 systems, including for the coordination of Zn2+ by cysteines. The lone exception was for a HIS-ALA peptide where CpHMD predicted both neutral histidine tautomers to be equally populated, whereas the experimental model did not consider multiple conformers and diffraction data are unavailable for rerefinement. This work demonstrates the promise polarizable CpHMD simulations for pKa predictions, the study of biochemical mechanisms such as the catalytic triad of proteases, and for improved protein-ligand binding affinity accuracy in the context of pharmaceutical lead optimization.


Subject(s)
Amoeba , Proteins/chemistry , Peptides , Molecular Dynamics Simulation , Hydrogen-Ion Concentration , Amino Acids
20.
Front Cell Infect Microbiol ; 14: 1367656, 2024.
Article in English | MEDLINE | ID: mdl-38550616

ABSTRACT

Amoebae are micropredators that play an important role in controlling fungal populations in ecosystems. However, the interaction between fungi and their amoebic predators suggests that the pressure from predatory selection can significantly influence the development of fungal virulence and evolutionary processes. Thus, the purpose of this study was to investigate the adaptation of saprotrophic Candida albicans strains during their interactions with Acanthamoeba castellanii. We conducted a comprehensive analysis of survival after co-culture by colony counting of the yeast cells and examining yeast cell phenotypic and genetic characteristics. Our results indicated that exposure to amoebae enhanced the survival capacity of environmental C. albicans and induced visible morphological alterations in C. albicans, particularly by an increase in filamentation. These observed phenotypic changes were closely related to concurrent genetic variations. Notably, mutations in genes encoding transcriptional repressors (TUP1 and SSN6), recognized for their negative regulation of filamentous growth, were exclusively identified in amoeba-passaged isolates, and absent in unexposed isolates. Furthermore, these adaptations increased the exposed isolates' fitness against various stressors, simultaneously enhancing virulence factors and demonstrating an increased ability to invade A549 lung human epithelial cells. These observations indicate that the sustained survival of C. albicans under ongoing amoebic predation involved a key role of mutation events in microevolution to modulate the ability of these isolates to change phenotype and increase their virulence factors, demonstrating an enhanced potential to survive in diverse environmental niches.


Subject(s)
Amoeba , Candida albicans , Humans , Virulence/genetics , Ecosystem , Virulence Factors , Mutation , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL