Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.336
Filter
1.
Nat Commun ; 15(1): 6551, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095371

ABSTRACT

Jumbo phages are a group of tailed bacteriophages with large genomes and capsids. As a prototype of jumbo phage, ΦKZ infects Pseudomonas aeruginosa, a multi-drug-resistant (MDR) opportunistic pathogen leading to acute or chronic infection in immunocompromised individuals. It holds potential to be used as an antimicrobial agent and as a model for uncovering basic phage biology. Although previous low-resolution structural studies have indicated that jumbo phages may have more complicated capsid structures than smaller phages such as HK97, the detailed structures and the assembly mechanism of their capsids remain largely unknown. Here, we report a 3.5-Å-resolution cryo-EM structure of the ΦKZ capsid. The structure unveiled ten minor capsid proteins, with some decorating the outer surface of the capsid and the others forming a complex network attached to the capsid's inner surface. This network seems to play roles in driving capsid assembly and capsid stabilization. Similar mechanisms of capsid assembly and stabilization are probably employed by many other jumbo viruses.


Subject(s)
Capsid Proteins , Capsid , Cryoelectron Microscopy , Pseudomonas aeruginosa , Capsid/ultrastructure , Capsid/chemistry , Capsid/metabolism , Capsid Proteins/chemistry , Capsid Proteins/metabolism , Pseudomonas aeruginosa/virology , Virus Assembly , Pseudomonas Phages/ultrastructure , Pseudomonas Phages/chemistry , Bacteriophages/physiology , Bacteriophages/chemistry , Bacteriophages/ultrastructure , Models, Molecular , Genome, Viral
2.
Viruses ; 16(8)2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39205232

ABSTRACT

Bufaviruses (BuV) are members of the Parvoviridae of the Protoparvovirus genus. They are non-enveloped, T = 1 icosahedral ssDNA viruses isolated from patients exhibiting acute diarrhea. The lack of treatment options and a limited understanding of their disease mechanisms require studying these viruses on a molecular and structural level. In the present study, we utilize glycan arrays and cell binding assays to demonstrate that BuV1 capsid binds terminal sialic acid (SIA) glycans. Furthermore, using cryo-electron microscopy (cryo-EM), SIA is shown to bind on the 2/5-fold wall of the capsid surface. Interestingly, the capsid residues stabilizing SIA binding are conserved in all human BuVs identified to date. Additionally, biophysical assays illustrate BuV1 capsid stabilization during endo-lysosomal (pH 7.4-pH 4) trafficking and capsid destabilization at pH 3 and less, which correspond to the pH of the stomach. Hence, we determined the cryo-EM structures of BuV1 capsids at pH 7.4, 4.0, and 2.6 to 2.8 Å, 3.2 Å, and 2.7 Å, respectively. These structures reveal capsid structural rearrangements during endo-lysosomal escape and provide a potential mechanism for this process. The structural insights gained from this study will add to the general knowledge of human pathogenic parvoviruses. Furthermore, the identification of the conserved SIA receptor binding site among BuVs provides a possible targetable surface-accessible pocket for the design of small molecules to be developed as anti-virals for these viruses.


Subject(s)
Capsid Proteins , Capsid , Cryoelectron Microscopy , Endosomes , Humans , Hydrogen-Ion Concentration , Capsid/metabolism , Capsid/ultrastructure , Capsid/chemistry , Endosomes/virology , Endosomes/metabolism , Capsid Proteins/metabolism , Capsid Proteins/chemistry , Parvoviridae Infections/virology , Parvoviridae Infections/metabolism , Protein Binding , Polysaccharides/metabolism , Polysaccharides/chemistry , N-Acetylneuraminic Acid/metabolism , N-Acetylneuraminic Acid/chemistry , Receptors, Virus/metabolism , Models, Molecular
3.
Biochemistry ; 63(15): 1913-1924, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39037053

ABSTRACT

Virus-like particles (VLPs) from bacteriophage MS2 provide a platform to study protein self-assembly and create engineered systems for drug delivery. Here, we aim to understand the impact of intersubunit interface mutations on the local and global structure and function of MS2-based VLPs. In previous work, our lab identified locally supercharged double mutants [T71K/G73R] that concentrate positive charge at capsid pores, enhancing uptake into mammalian cells. To study the effects of particle size on cellular internalization, we combined these double mutants with a single point mutation [S37P] that was previously reported to switch particle geometry from T = 3 to T = 1 icosahedral symmetry. These new variants retained their enhanced cellular uptake activity and could deliver small-molecule drugs with efficacy levels similar to our first-generation capsids. Surprisingly, these engineered triple mutants exhibit increased thermostability and unexpected geometry, producing T = 3 particles instead of the anticipated T = 1 assemblies. Transmission electron microscopy revealed various capsid assembly states, including wild-type (T = 3), T = 1, and rod-like particles, that could be accessed using different combinations of these point mutations. Molecular dynamics experiments recapitulated the structural rationale in silico for the single point mutation [S37P] forming a T = 1 virus-like particle and showed that this assembly state was not favored when combined with mutations that favor rod-like architectures. Through this work, we investigated how interdimer interface dynamics influence VLP size and morphology and how these properties affect particle function in applications such as drug delivery.


Subject(s)
Capsid , Levivirus , Levivirus/genetics , Levivirus/chemistry , Levivirus/metabolism , Capsid/metabolism , Capsid/chemistry , Capsid/ultrastructure , Mutation , Capsid Proteins/chemistry , Capsid Proteins/genetics , Capsid Proteins/metabolism , Virion/metabolism , Virion/genetics , Virion/chemistry , Point Mutation , Protein Stability , Humans , Models, Molecular
4.
Cell ; 187(16): 4213-4230.e19, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39013471

ABSTRACT

Foamy viruses (FVs) are an ancient lineage of retroviruses, with an evolutionary history spanning over 450 million years. Vector systems based on Prototype Foamy Virus (PFV) are promising candidates for gene and oncolytic therapies. Structural studies of PFV contribute to the understanding of the mechanisms of FV replication, cell entry and infection, and retroviral evolution. Here we combine cryoEM and cryoET to determine high-resolution in situ structures of the PFV icosahedral capsid (CA) and envelope glycoprotein (Env), including its type III transmembrane anchor and membrane-proximal external region (MPER), and show how they are organized in an integrated structure of assembled PFV particles. The atomic models reveal an ancient retroviral capsid architecture and an unexpected relationship between Env and other class 1 fusion proteins of the Mononegavirales. Our results represent the de novo structure determination of an assembled retrovirus particle.


Subject(s)
Cryoelectron Microscopy , Spumavirus , Virus Assembly , Virus Internalization , Spumavirus/genetics , Capsid/metabolism , Capsid/chemistry , Capsid/ultrastructure , Capsid Proteins/chemistry , Capsid Proteins/metabolism , Capsid Proteins/genetics , Humans , Evolution, Molecular , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/metabolism , Viral Envelope Proteins/genetics , Models, Molecular
5.
Viruses ; 16(7)2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39066266

ABSTRACT

Spiroplasma virus 4 (SpV4) is a bacteriophage of the Microviridae, which packages circular ssDNA within non-enveloped T = 1 icosahedral capsids. It infects spiroplasmas, which are known pathogens of honeybees. Here, the structure of the SpV4 virion is determined using cryo-electron microscopy to a resolution of 2.5 Å. A striking feature of the SpV4 capsid is the mushroom-like protrusions at the 3-fold axes, which is common among all members of the subfamily Gokushovirinae. While the function of the protrusion is currently unknown, this feature varies widely in this subfamily and is therefore possibly an adaptation for host recognition. Furthermore, on the interior of the SpV4 capsid, the location of DNA-binding protein VP8 was identified and shown to have low structural conservation to the capsids of other viruses in the family. The structural characterization of SpV4 will aid future studies analyzing the virus-host interaction, to understand disease mechanisms at a molecular level. Furthermore, the structural comparisons in this study, including a low-resolution structure of the chlamydia phage 2, provide an overview of the structural repertoire of the viruses in this family that infect various bacterial hosts, which in turn infect a wide range of animals and plants.


Subject(s)
Capsid Proteins , Capsid , Cryoelectron Microscopy , Microviridae , Spiroplasma , Virion , Capsid/ultrastructure , Capsid/metabolism , Capsid/chemistry , Capsid Proteins/chemistry , Capsid Proteins/metabolism , Capsid Proteins/genetics , Spiroplasma/ultrastructure , Microviridae/genetics , Microviridae/ultrastructure , Microviridae/chemistry , Virion/ultrastructure , Bacteriophages/ultrastructure , Bacteriophages/genetics , Bacteriophages/classification , Bacteriophages/chemistry , Bacteriophages/physiology , Models, Molecular
6.
Curr Opin Struct Biol ; 87: 102840, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38810313

ABSTRACT

Microsecond time-resolved cryo-electron microscopy has emerged as a novel approach for directly observing protein dynamics. By providing microsecond temporal and near-atomic spatial resolution, it has the potential to elucidate a wide range of dynamics that were previously inaccessible and therefore, to significantly advance our understanding of protein function. This review summarizes the properties of the laser melting and revitrification process that underlies the technique and describes different experimental implementations. Strategies for initiating and probing dynamics are discussed. Finally, the microsecond time-resolved observation of the capsid dynamics of cowpea chlorotic mottle virus, an icosahedral plant virus, is reviewed, which illustrates important features of the technique as well as its potential.


Subject(s)
Cryoelectron Microscopy , Cryoelectron Microscopy/methods , Bromovirus/chemistry , Time Factors , Capsid/chemistry , Capsid/ultrastructure , Capsid/metabolism , Capsid Proteins/chemistry , Capsid Proteins/metabolism , Capsid Proteins/ultrastructure
7.
Proc Natl Acad Sci U S A ; 121(20): e2321260121, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38722807

ABSTRACT

Protein capsids are a widespread form of compartmentalization in nature. Icosahedral symmetry is ubiquitous in capsids derived from spherical viruses, as this geometry maximizes the internal volume that can be enclosed within. Despite the strong preference for icosahedral symmetry, we show that simple point mutations in a virus-like capsid can drive the assembly of unique symmetry-reduced structures. Starting with the encapsulin from Myxococcus xanthus, a 180-mer bacterial capsid that adopts the well-studied viral HK97 fold, we use mass photometry and native charge detection mass spectrometry to identify a triple histidine point mutant that forms smaller dimorphic assemblies. Using cryoelectron microscopy, we determine the structures of a precedented 60-mer icosahedral assembly and an unexpected 36-mer tetrahedron that features significant geometric rearrangements around a new interaction surface between capsid protomers. We subsequently find that the tetrahedral assembly can be generated by triple-point mutation to various amino acids and that even a single histidine point mutation is sufficient to form tetrahedra. These findings represent a unique example of tetrahedral geometry when surveying all characterized encapsulins, HK97-like capsids, or indeed any virus-derived capsids reported in the Protein Data Bank, revealing the surprising plasticity of capsid self-assembly that can be accessed through minimal changes in the protein sequence.


Subject(s)
Capsid Proteins , Capsid , Cryoelectron Microscopy , Point Mutation , Capsid/metabolism , Capsid/chemistry , Capsid/ultrastructure , Capsid Proteins/genetics , Capsid Proteins/chemistry , Capsid Proteins/metabolism , Myxococcus xanthus/genetics , Myxococcus xanthus/metabolism , Models, Molecular
8.
Commun Biol ; 7(1): 557, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730276

ABSTRACT

The high abundance of most viruses in infected host cells benefits their structural characterization. However, endogenous viruses are present in low copy numbers and are therefore challenging to investigate. Here, we retrieve cell extracts enriched with an endogenous virus, the yeast L-A virus. The determined cryo-EM structure discloses capsid-stabilizing cation-π stacking, widespread across viruses and within the Totiviridae, and an interplay of non-covalent interactions from ten distinct capsomere interfaces. The capsid-embedded mRNA decapping active site trench is supported by a constricting movement of two flexible opposite-facing loops. tRNA-loaded polysomes and other biomacromolecules, presumably mRNA, are found in virus proximity within the cell extract. Mature viruses participate in larger viral communities resembling their rare in-cell equivalents in terms of size, composition, and inter-virus distances. Our results collectively describe a 3D-architecture of a viral milieu, opening the door to cell-extract-based high-resolution structural virology.


Subject(s)
Cryoelectron Microscopy , Capsid/metabolism , Capsid/ultrastructure , Capsid/chemistry , Cell Extracts , Saccharomyces cerevisiae/genetics , RNA, Viral/metabolism , RNA, Viral/genetics , RNA, Messenger/metabolism , RNA, Messenger/genetics
9.
PLoS Pathog ; 20(4): e1012140, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38598600

ABSTRACT

The Giardia lamblia virus (GLV) is a non-enveloped icosahedral dsRNA and endosymbiont virus that infects the zoonotic protozoan parasite Giardia duodenalis (syn. G. lamblia, G. intestinalis), which is a pathogen of mammals, including humans. Elucidating the transmission mechanism of GLV is crucial for gaining an in-depth understanding of the virulence of the virus in G. duodenalis. GLV belongs to the family Totiviridae, which infects yeast and protozoa intracellularly; however, it also transmits extracellularly, similar to the phylogenetically, distantly related toti-like viruses that infect multicellular hosts. The GLV capsid structure is extensively involved in the longstanding discussion concerning extracellular transmission in Totiviridae and toti-like viruses. Hence, this study constructed the first high-resolution comparative atomic models of two GLV strains, namely GLV-HP and GLV-CAT, which showed different intracellular localization and virulence phenotypes, using cryogenic electron microscopy single-particle analysis. The atomic models of the GLV capsids presented swapped C-terminal extensions, extra surface loops, and a lack of cap-snatching pockets, similar to those of toti-like viruses. However, their open pores and absence of the extra crown protein resemble those of other yeast and protozoan Totiviridae viruses, demonstrating the essential structures for extracellular cell-to-cell transmission. The structural comparison between GLV-HP and GLV-CAT indicates the first evidence of critical structural motifs for the transmission and virulence of GLV in G. duodenalis.


Subject(s)
Giardia lamblia , Giardiavirus , Giardia lamblia/ultrastructure , Giardia lamblia/pathogenicity , Giardiavirus/genetics , Cryoelectron Microscopy , Animals , Capsid/ultrastructure , Capsid/metabolism , Humans , Phylogeny
10.
J Virol ; 98(5): e0006824, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38661364

ABSTRACT

The portal protein of tailed bacteriophage plays essential roles in various aspects of capsid assembly, motor assembly, genome packaging, connector formation, and infection processes. After DNA packaging is complete, additional proteins are assembled onto the portal to form the connector complex, which is crucial as it bridges the mature head and tail. In this study, we report high-resolution cryo-electron microscopy (cryo-EM) structures of the portal vertex from bacteriophage lambda in both its prohead and mature virion states. Comparison of these structures shows that during head maturation, in addition to capsid expansion, the portal protein undergoes conformational changes to establish interactions with the connector proteins. Additionally, the independently assembled tail undergoes morphological alterations at its proximal end, facilitating its connection to the head-tail joining protein and resulting in the formation of a stable portal-connector-tail complex. The B-DNA molecule spirally glides through the tube, interacting with the nozzle blade region of the middle-ring connector protein. These insights elucidate a mechanism for portal maturation and DNA translocation within the phage lambda system. IMPORTANCE: The tailed bacteriophages possess a distinct portal vertex that consists of a ring of 12 portal proteins associated with a 5-fold capsid shell. This portal protein is crucial in multiple stages of virus assembly and infection. Our research focused on examining the structures of the portal vertex in both its preliminary prohead state and the fully mature virion state of bacteriophage lambda. By analyzing these structures, we were able to understand how the portal protein undergoes conformational changes during maturation, the mechanism by which it prevents DNA from escaping, and the process of DNA spirally gliding.


Subject(s)
Bacteriophage lambda , Capsid Proteins , Capsid , Virus Assembly , Bacteriophage lambda/physiology , Bacteriophage lambda/genetics , Capsid/metabolism , Capsid/ultrastructure , Capsid Proteins/metabolism , Capsid Proteins/chemistry , Cryoelectron Microscopy , DNA Packaging , DNA, Viral/genetics , DNA, Viral/metabolism , Models, Molecular , Protein Conformation , Virion/metabolism , Virion/ultrastructure
11.
Cell ; 187(9): 2236-2249.e17, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38614100

ABSTRACT

Unlike those of double-stranded DNA (dsDNA), single-stranded DNA (ssDNA), and ssRNA viruses, the mechanism of genome packaging of dsRNA viruses is poorly understood. Here, we combined the techniques of high-resolution cryoelectron microscopy (cryo-EM), cellular cryoelectron tomography (cryo-ET), and structure-guided mutagenesis to investigate genome packaging and capsid assembly of bluetongue virus (BTV), a member of the Reoviridae family of dsRNA viruses. A total of eleven assembly states of BTV capsid were captured, with resolutions up to 2.8 Å, with most visualized in the host cytoplasm. ATPase VP6 was found underneath the vertices of capsid shell protein VP3 as an RNA-harboring pentamer, facilitating RNA packaging. RNA packaging expands the VP3 shell, which then engages middle- and outer-layer proteins to generate infectious virions. These revealed "duality" characteristics of the BTV assembly mechanism reconcile previous contradictory co-assembly and core-filling models and provide insights into the mysterious RNA packaging and capsid assembly of Reoviridae members and beyond.


Subject(s)
Bluetongue virus , Capsid Proteins , Capsid , Cryoelectron Microscopy , RNA, Viral , Viral Genome Packaging , Bluetongue virus/genetics , Bluetongue virus/physiology , Bluetongue virus/metabolism , Capsid/metabolism , Capsid/ultrastructure , Capsid Proteins/metabolism , Capsid Proteins/genetics , Capsid Proteins/chemistry , Animals , RNA, Viral/metabolism , RNA, Viral/genetics , Genome, Viral/genetics , Virus Assembly , Electron Microscope Tomography , Virion/metabolism , Virion/genetics , Virion/ultrastructure , Models, Molecular , Cell Line , Cricetinae
12.
Structure ; 32(7): 856-865.e3, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38614087

ABSTRACT

The flagellotropic bacteriophage χ (Chi) infects bacteria via the flagellar filament. Despite years of study, its structural architecture remains partly characterized. Through cryo-EM, we unveil χ's nearly complete structure, encompassing capsid, neck, tail, and tail tip. While the capsid and tail resemble phage YSD1, the neck and tail tip reveal new proteins and their arrangement. The neck shows a unique conformation of the tail tube protein, forming a socket-like structure for attachment to the neck. The tail tip comprises four proteins, including distal tail protein (DTP), two baseplate hub proteins (BH1P and BH2P), and tail tip assembly protein (TAP) exhibiting minimal organization compared to other siphophages. Deviating from the consensus in other siphophages, DTP in χ forms a trimeric assembly, reducing tail symmetry from 6-fold to 3-fold at the tip. These findings illuminate the previously unexplored structural organization of χ's neck and tail tip.


Subject(s)
Cryoelectron Microscopy , Models, Molecular , Bacteriophages , Viral Tail Proteins/chemistry , Viral Tail Proteins/metabolism , Capsid Proteins/chemistry , Capsid Proteins/metabolism , Protein Conformation , Protein Multimerization , Capsid/ultrastructure , Capsid/chemistry , Capsid/metabolism
13.
J Virol ; 98(2): e0173523, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38236007

ABSTRACT

Murine norovirus (MNV) undergoes extremely large conformational changes in response to the environment. The T = 3 icosahedral capsid is composed of 180 copies of ~58-kDa VP1 comprised of N-terminus (N), shell (S), and C-terminal protruding (P) domains. At neutral pH, the P domains are loosely tethered to the shell and float ~15 Å above the surface. At low pH or in the presence of bile salts, the P domain drops onto the shell and this movement is accompanied by conformational changes within the P domain that enhance receptor interactions while blocking antibody binding. While previous crystallographic studies identified metal binding sites in the isolated P domain, the ~2.7-Å cryo-electron microscopy structures of MNV in the presence of Mg2+ or Ca2+ presented here show that metal ions can recapitulate the contraction observed at low pH or in the presence of bile. Further, we show that these conformational changes are reversed by dialysis against EDTA. As observed in the P domain crystal structures, metal ions bind to and contract the G'H' loop. This movement is correlated with the lifting of the C'D' loop and rotation of the P domain dimers about each other, exposing the bile salt binding pocket. Isothermal titration calorimetry experiments presented here demonstrate that the activation signals (bile salts, low pH, and metal ions) act in a synergistic manner that, individually, all result in the same activated structure. We present a model whereby these reversible conformational changes represent a uniquely dynamic and tissue-specific structural adaptation to the in vivo environment.IMPORTANCEThe highly mobile protruding domains on the calicivirus capsids are recognized by cell receptor(s) and antibodies. At neutral pH, they float ~15 Å above the shell but at low pH or in the presence of bile salts, they contract onto the surface. Concomitantly, changes within the P domain block antibody binding while enhancing receptor binding. While we previously demonstrated that metals also block antibody binding, it was unknown whether they might also cause similar conformational changes in the virion. Here, we present the near atomic cryo-electron microscopy structures of infectious murine norovirus (MNV) in the presence of calcium or magnesium ions. The metal ions reversibly induce the same P domain contraction as low pH and bile salts and act in a synergistic manner with the other stimuli. We propose that, unlike most other viruses, MNV facilely changes conformations as a unique means to escape immune surveillance as it moves through various tissues.


Subject(s)
Calcium , Magnesium , Norovirus , Animals , Mice , Bile Acids and Salts , Capsid/ultrastructure , Capsid Proteins/chemistry , Cryoelectron Microscopy , Norovirus/chemistry , Norovirus/ultrastructure , Calcium/chemistry , Magnesium/chemistry
14.
Nature ; 623(7989): 1026-1033, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37993716

ABSTRACT

Human immunodeficiency virus 1 (HIV-1) infection is initiated by binding of the viral envelope glycoprotein (Env) to the cell-surface receptor CD41-4. Although high-resolution structures of Env in a complex with the soluble domains of CD4 have been determined, the binding process is less understood in native membranes5-13. Here we used cryo-electron tomography to monitor Env-CD4 interactions at the membrane-membrane interfaces formed between HIV-1 and CD4-presenting virus-like particles. Env-CD4 complexes organized into clusters and rings, bringing the opposing membranes closer together. Env-CD4 clustering was dependent on capsid maturation. Subtomogram averaging and classification revealed that Env bound to one, two and finally three CD4 molecules, after which Env adopted an open state. Our data indicate that asymmetric HIV-1 Env trimers bound to one and two CD4 molecules are detectable intermediates during virus binding to host cell membranes, which probably has consequences for antibody-mediated immune responses and vaccine immunogen design.


Subject(s)
CD4 Antigens , Cell Membrane , HIV Envelope Protein gp120 , HIV-1 , Protein Multimerization , Humans , AIDS Vaccines/chemistry , AIDS Vaccines/immunology , Capsid/chemistry , Capsid/metabolism , Capsid/ultrastructure , CD4 Antigens/chemistry , CD4 Antigens/metabolism , CD4 Antigens/ultrastructure , Cell Membrane/chemistry , Cell Membrane/metabolism , Cell Membrane/ultrastructure , Cryoelectron Microscopy , Electron Microscope Tomography , HIV Antibodies/immunology , HIV Envelope Protein gp120/chemistry , HIV Envelope Protein gp120/metabolism , HIV Envelope Protein gp120/ultrastructure , HIV Infections/virology , HIV-1/chemistry , HIV-1/ultrastructure , Virion/chemistry , Virion/metabolism , Virion/ultrastructure
15.
J Cell Biol ; 222(9)2023 09 04.
Article in English | MEDLINE | ID: mdl-37516914

ABSTRACT

Herpes simplex virus (HSV-1) progeny form in the nucleus and exit to successfully infect other cells. Newly formed capsids navigate complex chromatin architecture to reach the inner nuclear membrane (INM) and egress. Here, we demonstrate by transmission electron microscopy (TEM) that HSV-1 capsids traverse heterochromatin associated with trimethylation on histone H3 lysine 27 (H3K27me3) and the histone variant macroH2A1. Through chromatin profiling during infection, we revealed global redistribution of these marks whereby massive host genomic regions bound by macroH2A1 and H3K27me3 correlate with decreased host transcription in active compartments. We found that the loss of these markers resulted in significantly lower viral titers but did not impact viral genome or protein accumulation. Strikingly, we discovered that loss of macroH2A1 or H3K27me3 resulted in nuclear trapping of capsids. Finally, by live-capsid tracking, we quantified this decreased capsid movement. Thus, our work demonstrates that HSV-1 takes advantage of the dynamic nature of host heterochromatin formation during infection for efficient nuclear egress.


Subject(s)
Herpesvirus 1, Human , Heterochromatin , Virus Release , Cell Nucleus/virology , Chromatin , Herpesvirus 1, Human/genetics , Heterochromatin/genetics , Histones/genetics , Capsid/ultrastructure
16.
J Virol ; 97(7): e0016123, 2023 07 27.
Article in English | MEDLINE | ID: mdl-37367301

ABSTRACT

Parvoviruses are among the smallest and superficially simplest animal viruses, infecting a broad range of hosts, including humans, and causing some deadly infections. In 1990, the first atomic structure of the canine parvovirus (CPV) capsid revealed a 26-nm-diameter T=1 particle made up of two or three versions of a single protein, and packaging about 5,100 nucleotides of single-stranded DNA. Our structural and functional understanding of parvovirus capsids and their ligands has increased as imaging and molecular techniques have advanced, and capsid structures for most groups within the Parvoviridae family have now been determined. Despite those advances, significant questions remain unanswered about the functioning of those viral capsids and their roles in release, transmission, or cellular infection. In addition, the interactions of capsids with host receptors, antibodies, or other biological components are also still incompletely understood. The parvovirus capsid's apparent simplicity likely conceals important functions carried out by small, transient, or asymmetric structures. Here, we highlight some remaining open questions that may need to be answered to provide a more thorough understanding of how these viruses carry out their various functions. The many different members of the family Parvoviridae share a capsid architecture, and while many functions are likely similar, others may differ in detail. Many of those parvoviruses have not been experimentally examined in detail (or at all in some cases), so we, therefore, focus this minireview on the widely studied protoparvoviruses, as well as the most thoroughly investigated examples of adeno-associated viruses.


Subject(s)
Parvoviridae , Animals , Humans , Capsid/ultrastructure , Capsid Proteins/chemistry , Capsid Proteins/metabolism , DNA, Viral/metabolism , Parvoviridae/genetics , Parvoviridae/ultrastructure , Parvoviridae Infections/metabolism , Parvoviridae Infections/virology , Dependovirus/genetics , Dependovirus/metabolism , Dependovirus/ultrastructure
17.
Nature ; 617(7960): 409-416, 2023 05.
Article in English | MEDLINE | ID: mdl-37138077

ABSTRACT

CrAssphage and related viruses of the order Crassvirales (hereafter referred to as crassviruses) were originally discovered by cross-assembly of metagenomic sequences. They are the most abundant viruses in the human gut, are found in the majority of individual gut viromes, and account for up to 95% of the viral sequences in some individuals1-4. Crassviruses are likely to have major roles in shaping the composition and functionality of the human microbiome, but the structures and roles of most of the virally encoded proteins are unknown, with only generic predictions resulting from bioinformatic analyses4,5. Here we present a cryo-electron microscopy reconstruction of Bacteroides intestinalis virus ΦcrAss0016, providing the structural basis for the functional assignment of most of its virion proteins. The muzzle protein forms an assembly about 1 MDa in size at the end of the tail and exhibits a previously unknown fold that we designate the 'crass fold', that is likely to serve as a gatekeeper that controls the ejection of cargos. In addition to packing the approximately 103 kb of virus DNA, the ΦcrAss001 virion has extensive storage space for virally encoded cargo proteins in the capsid and, unusually, within the tail. One of the cargo proteins is present in both the capsid and the tail, suggesting a general mechanism for protein ejection, which involves partial unfolding of proteins during their extrusion through the tail. These findings provide a structural basis for understanding the mechanisms of assembly and infection of these highly abundant crassviruses.


Subject(s)
DNA Viruses , Intestines , Viral Proteins , Virion , Humans , Capsid/chemistry , Capsid/metabolism , Capsid/ultrastructure , Cryoelectron Microscopy , DNA Viruses/chemistry , DNA Viruses/classification , DNA Viruses/isolation & purification , DNA Viruses/metabolism , DNA Viruses/ultrastructure , Virion/chemistry , Virion/metabolism , Virion/ultrastructure , Virus Assembly , Intestines/microbiology , Intestines/virology , Viral Proteins/chemistry , Viral Proteins/metabolism , Viral Proteins/ultrastructure , Protein Unfolding , Protein Folding
18.
J Virol ; 97(6): e0026823, 2023 06 29.
Article in English | MEDLINE | ID: mdl-37191520

ABSTRACT

African swine fever virus (ASFV), the cause of a highly contagious hemorrhagic and fatal disease of domestic pigs, has a complex multilayer structure. The inner capsid of ASFV located underneath the inner membrane enwraps the genome-containing nucleoid and is likely the assembly of proteolytic products from the virally encoded polyproteins pp220 and pp62. Here, we report the crystal structure of ASFV p150△NC, a major middle fragment of the pp220 proteolytic product p150. The structure of ASFV p150△NC contains mainly helices and has a triangular plate-like shape. The triangular plate is approximately 38 Šin thickness, and the edge of the triangular plate is approximately 90 Šlong. The structure of ASFV p150△NC is not homologous to any of the known viral capsid proteins. Further analysis of the cryo-electron microscopy maps of the ASFV and the homologous faustovirus inner capsids revealed that p150 or the p150-like protein of faustovirus assembles to form screwed propeller-shaped hexametric and pentametric capsomeres of the icosahedral inner capsids. Complexes of the C terminus of p150 and other proteolytic products of pp220 likely mediate interactions between the capsomeres. Together, these findings provide new insights into the assembling of ASFV inner capsid and provide a reference for understanding the assembly of the inner capsids of nucleocytoplasmic large DNA viruses (NCLDV). IMPORTANCE African swine fever virus has caused catastrophic destruction to the pork industry worldwide since it was first discovered in Kenya in 1921. The architecture of ASFV is complicated, with two protein shells and two membrane envelopes. Currently, mechanisms involved in the assembly of the ASFV inner core shell are less understood. The structural studies of the ASFV inner capsid protein p150 performed in this research enable the building of a partial model of the icosahedral ASFV inner capsid, which provides a structural basis for understanding the structure and assembly of this complex virion. Furthermore, the structure of ASFV p150△NC represents a new type of fold for viral capsid assembly, which could be a common fold for the inner capsid assembly of nucleocytoplasmic large DNA viruses (NCLDV) and would facilitate the development of vaccine and antivirus drugs against these complex viruses.


Subject(s)
African Swine Fever Virus , Capsid , Models, Molecular , Virus Assembly , Animals , African Swine Fever/virology , African Swine Fever Virus/chemistry , African Swine Fever Virus/metabolism , African Swine Fever Virus/ultrastructure , Capsid/chemistry , Capsid/metabolism , Capsid/ultrastructure , Cryoelectron Microscopy , Sus scrofa , Crystallography, X-Ray , Protein Structure, Tertiary
19.
J Virol ; 97(4): e0024823, 2023 04 27.
Article in English | MEDLINE | ID: mdl-36943070

ABSTRACT

Most of studied bacteriophages (phages) are terrestrial viruses. However, marine phages are shown to be highly involved in all levels of oceanic regulation. They are, however, still largely overlooked by the scientific community. By inducing cell lysis on half of the bacterial population daily, their role and influence on the bacterial biomass and evolution, as well as their impact in the global biogeochemical cycles, is undeniable. Cobetia marina virus 1 (Carin-1) is a member of the Podoviridae family infecting the γ-protoabacteria C. marina. Here, we present the almost complete, nearly-atomic resolution structure of Carin-1 comprising capsid, portal, and tail machineries at 3.5 Å, 3.8 Å and 3.9 Å, respectively, determined by cryo-electron microscopy (cryo-EM). Our experimental results, combined with AlphaFold2 (AF), allowed us to obtain the nearly-atomic structure of Carin-1 by fitting and refining the AF atomic models in the high resolution cryo-EM map, skipping the bottleneck of de-novo manual building and speeding up the structure determination process. Our structural results highlighted the T7-like nature of Carin1, as well as several novel structural features like the presence of short spikes on the capsid, reminiscent those described for Rhodobacter capsulatus gene transfer agent (RcGTA). This is, to our knowledge, the first time such assembly is described for a bacteriophage, shedding light into the common evolution and shared mechanisms between gene transfer agents and phages. This first full structure determined for a marine podophage allowed to propose an infection mechanism different than the one proposed for the archetypal podophage T7. IMPORTANCE Oceans play a central role in the carbon cycle on Earth and on the climate regulation (half of the planet's CO2 is absorbed by phytoplankton photosynthesis in the oceans and just as much O2 is liberated). The understanding of the biochemical equilibriums of marine biology represents a major goal for our future. By lysing half of the bacterial population every day, marine bacteriophages are key actors of these equilibriums. Despite their importance, these marine phages have, so far, only been studied a little and, in particular, structural insights are currently lacking, even though they are fundamental for the understanding of the molecular mechanisms of their mode of infection. The structures described in our manuscript allow us to propose an infection mechanism that differs from the one proposed for the terrestrial T7 virus, and might also allow us to, in the future, better understand the way bacteriophages shape the global ecosystem.


Subject(s)
Bacteriophages , Podoviridae , Bacteriophages/classification , Bacteriophages/ultrastructure , Cryoelectron Microscopy , Podoviridae/ultrastructure , Capsid/ultrastructure , Viral Tail Proteins/ultrastructure , Halomonadaceae/virology
20.
J Virol ; 96(17): e0060422, 2022 09 14.
Article in English | MEDLINE | ID: mdl-35939401

ABSTRACT

Enterovirus 70 (EV70) is a human pathogen belonging to the family Picornaviridae. EV70 is transmitted by eye secretions and causes acute hemorrhagic conjunctivitis, a serious eye disease. Despite the severity of the disease caused by EV70, its structure is unknown. Here, we present the structures of the EV70 virion, altered particle, and empty capsid determined by cryo-electron microscopy. The capsid of EV70 is composed of the subunits VP1, VP2, VP3, and VP4. The partially collapsed hydrophobic pocket located in VP1 of the EV70 virion is not occupied by a pocket factor, which is commonly present in other enteroviruses. Nevertheless, we show that the pocket can be targeted by the antiviral compounds WIN51711 and pleconaril, which block virus infection. The inhibitors prevent genome release by stabilizing EV70 particles. Knowledge of the structures of complexes of EV70 with inhibitors will enable the development of capsid-binding therapeutics against this virus. IMPORTANCE Globally distributed enterovirus 70 (EV70) causes local outbreaks of acute hemorrhagic conjunctivitis. The discharge from infected eyes enables the high-efficiency transmission of EV70 in overcrowded areas with low hygienic standards. Currently, only symptomatic treatments are available. We determined the structures of EV70 in its native form, the genome release intermediate, and the empty capsid resulting from genome release. Furthermore, we elucidated the structures of EV70 in complex with two inhibitors that block virus infection, and we describe the mechanism of their binding to the virus capsid. These results enable the development of therapeutics against EV70.


Subject(s)
Antiviral Agents , Capsid , Enterovirus D, Human , Antiviral Agents/pharmacology , Capsid/ultrastructure , Capsid Proteins , Conjunctivitis, Acute Hemorrhagic/virology , Cryoelectron Microscopy , Enterovirus D, Human/drug effects , Enterovirus D, Human/ultrastructure , Humans , Oxadiazoles/pharmacology , Oxazoles/pharmacology , Virion/drug effects , Virion/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL