Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.447
Filter
1.
J Chromatogr A ; 1732: 465203, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39096781

ABSTRACT

The retention of three peptides was studied under analytical and overloaded conditions at different concentrations of trifluoroacetic acid (TFA) and water added to the co-solvent methanol (MeOH). Four columns with different stationary phase properties, i.e., silica, diol, 2-ethylpyridine and cyanopropyl (CN) columns, were evaluated in this investigation. The overall aim was to get a deeper understanding on how column chemistry as well as water and TFA in the co-solvent affect the analytical and overloaded elution profiles using multivariate design of experiments and adsorption measurements of co-solvent components. Multivariate experimental design modeling indicated that water had on average around five times higher effect on the retention than the addition of TFA. The results also showed that the retention increases with the addition of TFA and water to the co-solvent on all columns except the CN column, on which the retention decreased. When examining the effect of adding water to the co-solvent, evidence of a hydrophilic interaction liquid chromatography (HILIC)-like retention mechanism was found on the three other columns with more polar stationary phases. However, on the CN column water acted as an additive, decreasing the retention due to competition with the peptide for available adsorption surface. Adsorption isotherm measurements of the polar solvent MeOH showed that MeOH adsorbs much weaker on the CN column than on the other columns. Addition of TFA and water to the co-solvent substantially sharpened the elution profiles under both overloaded and analytical conditions. Adding a small amount of TFA (from 0 % to 0.05 %) to the co-solvent substantially improved the peak shape of the elution profiles, while further addition (from 0.05 % to 0.15 %) had only a minor effect on the elution profile shape. The reduced retention on the CN column could not be explained by TFA adsorption, which was very weak on all studied columns (retention factor, 0.05-0.15). One could therefore speculate that the ion-pairing complex formed between the peptide and TFA in the mobile phase, reduce the retention due to its reduced polarity. On the other columns displaying HILIC-like properties, the TFA probably just decreased the pH of the mobile phase, thereby promoting the partitioning of the peptide into the water-rich layer. Finally, peak deformation due to diluent-eluent mismatch was observed under overloaded conditions. This was most severe in the cases where MeOH adsorption to the stationary phase was strong and the peptides were only mildly retained. Adding 1,4-dioxan to the diluent resolved this issue.


Subject(s)
Chromatography, Supercritical Fluid , Hydrophobic and Hydrophilic Interactions , Methanol , Peptides , Trifluoroacetic Acid , Water , Peptides/chemistry , Peptides/isolation & purification , Adsorption , Water/chemistry , Chromatography, Supercritical Fluid/methods , Trifluoroacetic Acid/chemistry , Methanol/chemistry , Solvents/chemistry
2.
J Chromatogr A ; 1732: 465210, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39098100

ABSTRACT

Various crossover phenomena are immanent to supercritical fluids due to multidirectional temperature effects in highly compressible supercritical fluid media. Solubility crossover, i.e. controversial effect of temperature on solubility at different pressures, is probably the most well-known among them. A curious discrepancy in upper crossover pressure values between solubility in supercritical carbon dioxide and retention in supercritical fluid chromatography with pure CO2 as an eluent was unexpectedly observed for several non-polar compounds on different stationary phases. In some cases, retention crossover was found to happen at pressures almost twice as high as pressures for solubility crossover for the same compound. Retention data for three solutes with known solubility crossovers: anthracene, benzoic acid and vanillin, were collected at different pressures and temperatures for several stationary phases. The existence of upper retention crossovers, i.e. such pressure values beyond which temperature increase starts decreasing retention, were registered for all solute-sorbent combinations. Using known thermodynamic models of temperature effect on retention in supercritical fluid chromatography and on solubility in supercritical carbon dioxide, possible reasoning for the observed discrepancies is discussed. Major contribution of the balance between adsorption and partition retention mechanisms in defining retention crossover values is hypothesized.


Subject(s)
Carbon Dioxide , Chromatography, Supercritical Fluid , Pressure , Solubility , Temperature , Chromatography, Supercritical Fluid/methods , Carbon Dioxide/chemistry , Anthracenes/chemistry , Benzoic Acid/chemistry , Thermodynamics , Benzaldehydes/chemistry , Adsorption
3.
J Chromatogr A ; 1732: 465214, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39116684

ABSTRACT

During drug development, chromatography is frequently used for purity and stability testing of both drug substance and drug product. Reversed phase liquid chromatography (RPLC) is one of the most widely used methodologies due to its wide scope of application. In the later stages of drug development, the specified impurities and degradation products that define the critical quality attribute of the final API, also known as Key Predictive Sample Set (KPSS), are usually well defined and controlled. At this point, a method review enables selecting the most appropriate technique which should be the one providing optimal robustness (ICH-Q14[1]), with the support of Quality by Design (QbD) approaches. Supercritical Fluid Chromatography (SFC) is a preferred technique for its proven diversity in selectivity. The adoption of a technique which presents the most favourable environmental impact, such as, but not limited to, SFC, is also becoming increasingly important as laboratories strive to reduce carbon footprint. Re-developing a method requires high resource-demands in terms of staff, materials, and time. Any step of the process that can be automated can facilitate this approach, speeding up the delivery of the method whilst preserving robustness. In this article we describe how an SFC method was developed for the purity profiling of a late-stage oncology candidate, taking advantage of the superior selectivity of SFC towards structurally similar analytes, owed to the high orthogonality with R2 as low as 0.014 towards the KPSS. We describe two approaches to automate the method development. Firstly, a multifactorial design of experiments (DoE) and secondly, an optimization via a Bayesian algorithm, which was completed in one night, highlighting the potential and limitations, with an insight into the robustness. Both methods achieved baseline separation with varying levels of automation embedded into the process and a large reduction of the resource demands when compared to traditional optimisation methods. Finally, we describe the beneficial environmental impact that implementing SFC methods can yield, with a calculated green score reduced to a value between 17 and 30 % compared to RPLC, depending on the number of runs per sequence.


Subject(s)
Algorithms , Bayes Theorem , Chromatography, Supercritical Fluid , Chromatography, Supercritical Fluid/methods , Pharmaceutical Preparations/analysis , Pharmaceutical Preparations/chemistry , Green Chemistry Technology/methods
4.
Mar Drugs ; 22(8)2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39195482

ABSTRACT

This study explores the potential of Cucumaria frondosa (C. frondosa) viscera as a natural source of omega-3 FAs using supercritical carbon dioxide (scCO2) extraction. The extraction conditions were optimized using a response surface design, and the optimal parameters were identified as 75 °C and 45 MPa, with a 20 min static and a 30 min dynamic extraction, and a 2:1 ethanol to feedstock mass ratio. Under these conditions, the scCO2 extraction yielded higher FAs than the solvent-based Bligh and Dyer method. The comparative analysis demonstrated that scCO2 extraction (16.30 g of FAs/100 g of dried samples) yielded more fatty acids than the conventional Bligh and Dyer method (9.02 g, or 13.59 g of FAs/100 g of dried samples with ultrasonic assistance), indicating that scCO2 extraction is a viable, green alternative to traditional solvent-based techniques for recovering fatty acids. The pre-treatment effects, including drying methods and ethanol-soaking, were investigated. Freeze-drying significantly enhanced FA yields to almost 100% recovery, while ethanol-soaked viscera tripled the FA yields compared to fresh samples, achieving similar EPA and DHA levels to hot-air-dried samples. These findings highlight the potential of sea cucumber viscera as an efficient source of omega-3 FA extraction and offer an alternative to traditional extraction procedures.


Subject(s)
Carbon Dioxide , Fatty Acids, Omega-3 , Viscera , Animals , Carbon Dioxide/chemistry , Fatty Acids, Omega-3/isolation & purification , Fatty Acids, Omega-3/chemistry , Viscera/chemistry , Chromatography, Supercritical Fluid/methods , Cucumaria/chemistry , Sea Cucumbers/chemistry , Freeze Drying
5.
Molecules ; 29(16)2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39202838

ABSTRACT

Cinnamomum tamala leaf (CTL), also known as Indian bay leaf, is used all over the world for seasoning, flavoring, and medicinal purposes. These characteristics could be explained by the presence of several essential bioactive substances and lipid derivatives. In this work, rapid screening and identification of the chemical compounds in supercritical (SC)-CO2 extracts of CTL by use of UPLC-Q-TOF-MSE with a multivariate statistical analysis approach was established in both negative and positive mode. A total of 166 metabolites, including 66 monocarboxylic fatty acids, 52 dicarboxylic fatty acids, 27 fatty acid amides, and 21 cinnamic acid derivatives, were tentatively identified based on accurate mass and the mass spectrometric fragmentation pattern, out of which 142 compounds were common in all SC-CO2 extracts of CTL. Further, PCA and cluster hierarchical analysis clearly discriminated the chemical profile of analyzed extracts and allowed the selection of SC-CO2 extract rich in fatty acids, fatty acid amides, and other bioactive constituents. The result showed that the higher number of compounds was detected in CTL4 (300 bar/55 °C) extract than the other CTL extracts. The mono- and di-carboxylic fatty acids, fatty acid amides, and cinnamic acid derivatives were identified in CTL for the first time. UPLC-Q-TOF-MSE combined with chemometric analysis is a powerful method to rapidly screen the metabolite profiling to justify the quality of CTL as a flavoring agent and in functional foods.


Subject(s)
Amides , Cinnamates , Cinnamomum , Fatty Acids , Plant Extracts , Plant Leaves , Cinnamates/chemistry , Cinnamates/analysis , Plant Extracts/chemistry , Fatty Acids/chemistry , Fatty Acids/analysis , Plant Leaves/chemistry , Chromatography, High Pressure Liquid/methods , Amides/chemistry , Cinnamomum/chemistry , Carbon Dioxide/chemistry , Chemometrics , Chromatography, Supercritical Fluid/methods , Mass Spectrometry/methods
6.
PLoS One ; 19(7): e0301558, 2024.
Article in English | MEDLINE | ID: mdl-38985711

ABSTRACT

Extraction is the first and most important step in obtaining the effective ingredients of medicinal plants. Mentha longifolia (L.) L. is of considerable economic importance as a natural raw material for the food and pharmaceutical industries. Since the effect of different extraction methods (traditional and modern methods) on the quantity, quality and antimicrobial activity of the essential oil of this plant has not been done simultaneously; the present study was designed for the first time with the aim of identifying the best extraction method in terms of these features. For this purpose, extracting the essential oil of M. longifolia with the methods of hydrodistillation with Clevenger device (HDC), steam distillation with Kaiser device (SDK), simultaneous distillation with a solvent (SDE), hydrodistillation with microwave device (HDM), pretreatment of ultrasonic waves and Clevenger (U+HDC) and supercritical fluid (SF) were performed. Chemical compounds were identified by gas chromatography coupled with mass spectrometer (GC-MS). Antimicrobial activity of essential oils against various clinical microbial strains was evaluated by agar diffusion method and determination of the minimum inhibitory concentration and minimum bactericidal concentration (MIC and MBC). The results showed that the highest and lowest yields of M. longifolia leaf essential oil belonged to HDC (1.6083%) and HDM (0.3416%). The highest number of compounds belonged to SDK essential oil and was equal to 72 compounds (with a relative percentage of 87.13%) and the lowest number of compounds was related to the SF essential oil sample (7 compounds with a relative percentage of 100%). Piperitenone (25.2-41.38%), piperitenone oxide (22.02-0%), pulegone (10.81-0%) and 1,8-cineole (5-35.0%) are the dominant and main components of M. longifolia essential oil were subjected to different extraction methods. Antimicrobial activity results showed that the lowest MIC value belonged to essential oils extracted by HDM, SDK, SDE and U+HDC methods with a value of 1000 µg/mL was observed against Gram-negative bacteria Shigella dysenteriae, which was 5 times weaker than rifampin and 7 times weaker than gentamicin. Therefore, it can be concluded that in terms of efficiency of the HDC method, in terms of the percentage of compounds of the HDM method, and in terms of microbial activity, the SDK, HDM and U+HDC methods performed better.


Subject(s)
Anti-Bacterial Agents , Mentha , Microbial Sensitivity Tests , Oils, Volatile , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Mentha/chemistry , Anti-Bacterial Agents/pharmacology , Gas Chromatography-Mass Spectrometry , Distillation/methods , Bacteria/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Chromatography, Supercritical Fluid/methods , Plant Oils/pharmacology , Plant Oils/chemistry
7.
Anal Chim Acta ; 1317: 342913, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39030025

ABSTRACT

BACKGROUND: Lipidomics studies require rapid separations with accurate and reliable quantification results to further elucidate the role of lipids in biological processes and their biological functions. Supercritical fluid chromatography (SFC), in particular, can provide this rapid and high-resolution separation. The combination with trapped ion mobility spectrometry (TIMS) has not yet been applied, although the post-ionization separation method in combination with liquid chromatography or imaging techniques has already proven itself in resolving isomeric and isobaric lipids and preventing false identifications. However, a multidimensional separation method should not only allow confident identification but also provide quantitative results to substantiate studies with absolute concentrations. RESULTS: A SFC method was developed and the hyphenation of SFC and TIMS was further explored towards the separation of different isobaric overlaps. Furthermore, lipid identification was performed using mass spectrometry (MS) and parallel accumulation serial fragmentation (PASEF) MS/MS experiments in addition to retention time and collision cross section (CCS). Quantification was further investigated with short TIMS ramps and performed based on the ion mobility signal of lipids, since TIMS increases the sensitivity by noise filtering. The final method was, as an exemplary study, applied to investigate the function of different ceramide synthases (CerS) in the nematode and model organism Caenorhabditis elegans (C. elegans). Loss of three known CerS hyl-1, hyl-2 and lagr-1 demonstrated different influences on and alterations in the sphingolipidome. SIGNIFICANCE: This method describes for the first time the combination of SFC and TIMS-MS/MS, which enables a fast and sensitive quantification of lipids. The results of the application to C. elegans samples prove the functionality of the method and support research on the metabolism of sphingolipids in nematodes.


Subject(s)
Caenorhabditis elegans , Chromatography, Supercritical Fluid , Ion Mobility Spectrometry , Lipidomics , Lipids , Chromatography, Supercritical Fluid/methods , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/chemistry , Animals , Ion Mobility Spectrometry/methods , Lipidomics/methods , Lipids/analysis , Lipids/chemistry , Mass Spectrometry/methods
9.
J Chromatogr A ; 1730: 465112, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38972253

ABSTRACT

A macrocyclic peptide A was successfully purified in large quantities (∼30 g) in >95 % purity by an integrated two-step orthogonal purification process combining supercritical fluid chromatography (SFC) with medium-pressure reverse-phase liquid chromatography (MP-RPLC). MP-RPLC was used to fractionate the crude peptide A, remove unwanted trifluoroacetic acid (TFA) originating from the peptide A cleavage off the resin, and convert the peptide A into ammonium acetate salt form, prior to the final purification by SFC. A co-solvent of methanol/acetonitrile containing ammonium acetate and water in CO2 was developed on a Waters BEH 2-Ethylpyridine column. The developed SFC method was readily scaled up onto a 5 cm diameter column to process multi-gram quantities of the MP-RPLC fraction to reach > 95 % purity with a throughput/productivity of 0.96 g/h. The incorporation of SFC with MP-RPLC has been demonstrated to have a broader application in other large-scale polypeptide purifications.


Subject(s)
Chromatography, Reverse-Phase , Chromatography, Supercritical Fluid , Chromatography, Supercritical Fluid/methods , Chromatography, Reverse-Phase/methods , Acetates/chemistry , Trifluoroacetic Acid/chemistry , Peptides, Cyclic/chemistry , Peptides, Cyclic/isolation & purification , Acetonitriles/chemistry , Methanol/chemistry
10.
J Proteome Res ; 23(7): 2619-2628, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38910295

ABSTRACT

Chromatography-mass spectrometry-based lipidomics represents an essential tool for elucidating lipid dysfunction mechanisms and is extensively employed in investigating disease mechanisms and identifying biomarkers. However, the detection of low-abundance lipids in biological matrices, along with cumbersome operational procedures, complicates comprehensive lipidomic analyses, necessitating the development of highly sensitive, environmentally friendly, and automated methods. In this study, an online phase transition trapping-supercritical fluid extraction-chromatography-mass spectrometry (PTT-SFEC-MS/MS) method was developed and successfully applied to plasma lipidomics analysis in Type 1 diabetes (T1D) rats. The PTT strategy captured entire extracts at the column head by converting CO2 from a supercritical state to a gaseous state, thereby preventing peak spreading, enhancing peak shape for precise quantification, and boosting sensitivity without any sample loss. This method utilized only 5 µL of plasma and accomplished sample extraction, separation, and detection within 27 min. Ultimately, 77 differential lipids were identified, including glycerophospholipids, sphingolipids, and glycerolipids, in T1D rat plasma. The results indicated that the progression of the disease might be linked to alterations in glycerophospholipid and sphingolipid metabolism. Our findings demonstrated a green, highly efficient, and automated method for the lipidomics analysis of biological samples, providing a scientific foundation for understanding the pathogenesis and diagnosis of T1D.


Subject(s)
Chromatography, Supercritical Fluid , Diabetes Mellitus, Type 1 , Lipidomics , Tandem Mass Spectrometry , Animals , Lipidomics/methods , Tandem Mass Spectrometry/methods , Rats , Chromatography, Supercritical Fluid/methods , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/metabolism , Lipids/blood , Lipids/chemistry , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/metabolism , Male , Rats, Sprague-Dawley , Phase Transition , Biomarkers/blood , Sphingolipids/blood , Sphingolipids/analysis , Sphingolipids/isolation & purification
11.
Food Res Int ; 190: 114603, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945572

ABSTRACT

More than 40 volatile compounds were detected in sea cucumber powder during the processing (through freeze-dried, desalination, supercritical fluid extraction and ultra-micro grinding) by multiple methods including e-nose, GC-IMS and GC-MS. It has been determined that aldehydes are the predominant volatile substances in the original freeze-dried sample, accounting for about 30 % of the total volatile substances. In addition, we established a supercritical fluid extraction strategy that could efficiently remove the aldehydes from the sea cucumber powder. GC-IMS and GC-MS showed that the relative content of aldehydes significantly decreased by 14 % and 28 %, respectively. Quantification of aldehydes using GC-MS showed a significant decrease in octanal from 927 µg/kg to 159 µg/kg. Further investigation combined with OAV analysis showed that 17 volatile substances in the freeze-dried sea cucumber powder were considered to be the predominant volatile compounds (OAV > 1).The primary fishy compounds found in sea cucumber powder were identified as hexanal, octanal, and an unidentified compound using GC-O, which can be effectively removed (OAV can't been estimated) by the supercritical fluid extraction strategy we established.


Subject(s)
Chromatography, Supercritical Fluid , Food Handling , Gas Chromatography-Mass Spectrometry , Powders , Sea Cucumbers , Volatile Organic Compounds , Chromatography, Supercritical Fluid/methods , Sea Cucumbers/chemistry , Volatile Organic Compounds/analysis , Volatile Organic Compounds/isolation & purification , Animals , Food Handling/methods , Freeze Drying , Aldehydes/analysis , Aldehydes/isolation & purification , Electronic Nose , Seafood/analysis
12.
Sci Rep ; 14(1): 14955, 2024 06 28.
Article in English | MEDLINE | ID: mdl-38942802

ABSTRACT

The size of the drug particles is one of the essential factors for the proper absorption of the drug compared to the dose of the drug. When particle size is decreased, drug uptake into the body increases. Recent studies have revealed that the rapid expansion of supercritical solution with cosolvent plays a significant role in preparing micron and submicron particles. This paper examines the preparation of Erlotinib hydrochloride nanoparticles using a supercritical solution through the cosolvent method for the first time. An examination of the parameters of temperature (318-338 K), pressures (15-25 MPa) and nozzle diameter (300-700 µm) was investigated by Box-Behnken design, and their respective effects on particle size revealed that the nozzle diameter has a more significant impact on particle size than the other parameters. The smallest particles were produced at temperature 338 K, pressure 20 MPa, and nozzle diameter 700 µm. Besides, the ERL nanoparticles were characterized using SEM, DLS, XRD, FTIR, and DSC analyses. Finally, the results showed that the average size of the ERL particles decreased from 31.6 µm to 200-1100 nm.


Subject(s)
Antineoplastic Agents , Erlotinib Hydrochloride , Nanoparticles , Particle Size , Erlotinib Hydrochloride/chemistry , Nanoparticles/chemistry , Antineoplastic Agents/chemistry , Temperature , Chromatography, Supercritical Fluid/methods , Drug Compounding/methods , Pressure
13.
Food Chem ; 455: 139848, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38823122

ABSTRACT

Supercritical fluid extraction (SFE) employing carbon dioxide (SC-CO2) is an efficient method to extract bioactive compounds from agro-forest wastes. These compounds maintain and/or improve food nutrition, safety, freshness, taste, and health and are employed as natural functional food components. To highlight the potential of this technology, we focus on the following current advances: (I) parameters affecting solubility in SFE (pressure, temperature, SC-CO2 flow rate, extraction time, and co-solvents); (II) extraction spectra and yield obtained according to proportion and composition of co-solvents; (III) extract bioactivity for functional food production. Fatty acids, monoterpenes, sesquiterpenes, diterpenoids, and low-polarity phenolic acids and triterpenoids were extracted using SFE without a co-solvent. High-polarity phenolic acids and flavonoids, tannins, carotenoids, and alkaloids were only extracted with the help of co-solvents. Using a co-solvent significantly improved the triterpenoid, flavonoid, and phenolic acid yield with a medium polarity.


Subject(s)
Chromatography, Supercritical Fluid , Functional Food , Chromatography, Supercritical Fluid/methods , Forests , Functional Food/analysis , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Waste Products/analysis
14.
Se Pu ; 42(6): 581-589, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-38845519

ABSTRACT

Oils and fats are commonly used in the pharmaceutical industry as solvents, emulsifiers, wetting agents, and dispersants, and are an important category of pharmaceutical excipients. Fatty acids with unique compositions are important components of oil pharmaceutical excipients. The Chinese Pharmacopoeia provides clear descriptions of the fatty acid types and limits suitable for individual oil pharmaceutical excipient. An unqualified fatty acid composition or content may indicate adulteration or deterioration. The fatty acid composition, as a key indicator for the identification and adulteration evaluation of oil pharmaceutical excipients, can directly affect the quality and safety of oil pharmaceutical excipients and preparations. Gas chromatography is the most widely used technique for fatty acid analysis, but it generally requires derivatization, which affects quantitative accuracy. Supercritical fluid chromatography (SFC), an environmentally friendly technique with excellent separation capability, offers an efficient method for detecting fatty acids without derivatization. Unlike other chromatographic methods, SFC does not use nonvolatile solvents (e. g., water) as the mobile phase, rendering it compatible with an evaporative light-scattering detector (ELSD) for enhanced detection sensitivity. However, the fatty acids in oil pharmaceutical excipients exist in the free and bound forms, and the low content of free fatty acids in these oil pharmaceutical excipients not only poses challenges for their detection but also complicates the determination of characteristic fatty acid compositions and contents. Moreover, the compositions and ratios of fatty acids are influenced by environmental factors, leading to interconversion between their two forms. In this context, saponification provides a simpler and faster alternative to derivatization. Saponification degrades oils and fats by utilizing the reaction between esters and an alkaline solution, ultimately releasing the corresponding fatty acids. Because this method is more cost effective than derivatization, it is a suitable pretreatment method for the detection of fatty acids in oil pharmaceutical excipients using the SFC-ELSD approach. In this study, we employed SFC-ELSD to simultaneously determine six fatty acids, namely, myristic acid, palmitic acid, stearic acid, arachidic acid, docosanoic acid, and lignoceric acid, in oil pharmaceutical excipients. Saponification of the oil pharmaceutical excipients using sodium hydroxide methanol solution effectively avoided the bias in the determination of fatty acid species and contents caused by the interconversion of fatty acids and esters. The separation of the six fatty acids was achieved within 12 min, with good linearity within their respective mass concentration ranges. The limits of detection and quantification were 5-10 mg/L and 10-25 mg/L, respectively, and the spiked recoveries were 80.93%-111.66%. The method proved to be sensitive, reproducible, and stable, adequately meeting requirements for the analysis of fatty acids in oil pharmaceutical excipients. Finally, the analytical method was successfully applied to the determination of six fatty acids in five types of oil pharmaceutical excipients, namely, corn oil, soybean oil, coconut oil, olive oil, and peanut oil. It can be combined with principal component analysis to accurately differentiate different types of oil pharmaceutical excipients, providing technical support for the rapid identification and quality control of oil pharmaceutical excipients. Thus, the proposed method may potentially be applied to the analysis of complex systems adulterated with oil pharmaceutical excipients.


Subject(s)
Chromatography, Supercritical Fluid , Excipients , Fatty Acids , Fatty Acids/analysis , Fatty Acids/chemistry , Chromatography, Supercritical Fluid/methods , Excipients/analysis , Excipients/chemistry , Scattering, Radiation , Light , Oils/chemistry , Oils/analysis
15.
Molecules ; 29(12)2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38930806

ABSTRACT

Pterocaulon polystachyum is a species of pharmacological interest for providing volatile and non-volatile extracts with antifungal and amebicidal properties. The biological activities of non-volatile extracts may be related to the presence of coumarins, a promising group of secondary metabolites. In the present study, leaves and inflorescences previously used for the extraction of essential oils instead of being disposed of were subjected to extraction with supercritical CO2 after pretreatment with microwaves. An experimental design was followed to seek the best extraction condition with the objective function being the maximum total extract. Pressure and temperature were statistically significant factors, and the optimal extraction condition was 240 bar, 60 °C, and pretreatment at 30 °C. The applied mathematical models showed good adherence to the experimental data. The extracts obtained by supercritical CO2 were analyzed and the presence of coumarins was confirmed. The extract investigated for cytotoxicity against bladder tumor cells (T24) exhibited significant reduction in cell viability at concentrations between 6 and 12 µg/mL. The introduction of green technology, supercritical extraction, in the exploration of P. polystachyum as a source of coumarins represents a paradigm shift with regard to previous studies carried out with this species, which used organic solvents. Furthermore, the concept of circular bioeconomy was applied, i.e., the raw material used was the residue of a steam-distillation process. Therefore, the approach used here is in line with the sustainable exploitation of native plants to obtain extracts rich in coumarins with cytotoxic potential against cancer cells.


Subject(s)
Carbon Dioxide , Chromatography, Supercritical Fluid , Coumarins , Plant Extracts , Coumarins/chemistry , Coumarins/isolation & purification , Coumarins/pharmacology , Carbon Dioxide/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/isolation & purification , Humans , Chromatography, Supercritical Fluid/methods , Plant Components, Aerial/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification
16.
Food Chem ; 455: 139468, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38850979

ABSTRACT

A green approach based on simultaneous starch aerogel formation-curcumin impregnation via supercritical fluid technology was used to increase the bioavailability of curcumin. The loading amounts of curcumin were 16.4, 21.4, and 24.9 mg/g of aerogel for the 25% Amyl-loaded, 55% Amyl-loaded, and 72% Amyl-loaded samples, respectively. Curcumin-loaded aerogels showed the eventual distribution of curcumin in the hydrophobic area of the internal structure of the aerogels. In vitro gastrointestinal release profiles demonstrated the enhanced curcumin release from the curcumin-loaded aerogel formulations produced by the SC-CO2 technology over free curcumin. After intestinal digestion, the percentage of released curcumin from 25% Amyl-loaded, 55% Amyl-loaded, and 72% Amyl-loaded was 7.2, 12.1, and 12.1%, respectively, while the release of native curcumin was only 0.5%. Caco-2 cell permeation studies revealed superior bioavailability of curcumin from the curcumin-loaded aerogels. Curcumin-loaded aerogels exhibited improved storage stability than free curcumin.


Subject(s)
Biological Availability , Curcumin , Gels , Starch , Curcumin/chemistry , Curcumin/administration & dosage , Curcumin/pharmacokinetics , Humans , Caco-2 Cells , Starch/chemistry , Gels/chemistry , Green Chemistry Technology , Chromatography, Supercritical Fluid/methods , Drug Compounding
17.
J Chromatogr A ; 1730: 465118, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38936162

ABSTRACT

Terpenoids possess significant physiological activities and are rich in essential oils. Some terpenoids have chiral centers and could form enantiomers with distinct physiological activities. Therefore, the extraction and separation of terpenoids enantiomers are very important and have attracted extensive attention in recent years. Meanwhile, the specific distribution and enantiomer excess results (the excess of one enantiomer over the other in a mixture of enantiomers) could be used as quality markers for illegitimate adulteration, origin identification, and exploring component variations and functional interrelations across different plant tissues. In this study, an overview of the progress in the extraction of terpenoids from essential oils and the separation of their enantiomers over the past two decades has been made. Extraction methods were retrieved by the resultant network visualization findings. The results showed that the predominant methods are hydrodistillation, solvent-free microwave extraction, headspace solid-phase microextraction and supercritical fluid extraction methods. GC-MS combined with chiral chromatography columns is commonly used for the separation of enantiomers, while 2D GC is found to have stronger resolution ability. Finally, some prospects for future research directions in the extraction and separation identification of essential oils are proposed.


Subject(s)
Gas Chromatography-Mass Spectrometry , Oils, Volatile , Terpenes , Oils, Volatile/chemistry , Oils, Volatile/isolation & purification , Oils, Volatile/analysis , Terpenes/chemistry , Terpenes/isolation & purification , Terpenes/analysis , Gas Chromatography-Mass Spectrometry/methods , Stereoisomerism , Chromatography, Supercritical Fluid/methods , Solid Phase Microextraction/methods
18.
Food Chem ; 456: 140034, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-38870823

ABSTRACT

Citrus reticulata L leaves are one of the main post-harvest byproduct, containing bioactive compounds, that are usually undervalued. This work describes the development of a biorefinery process based on the application of supercritical CO2 (SC-CO2) followed by ultrasonic-assisted extraction (UAE) combined with Natural Deep Eutectic Solvents (NaDES) to extract bioactive terpenoids and phenolic compounds from these leaves. Extraction temperature and pressure of SC-CO2 were optimized, obtaining the highest bioactive terpenoids content using 200 bar at 60 °C. A Box-Behnken experimental design showed that 57% of water in NaDES composed of Choline Chloride and Glycerol (1:2) as extraction solvent at 25 °C for 50 min were the optimal UAE-NaDES extraction conditions to obtain the highest bioactive phenolic content from the residue of the optimal SC-CO2 extraction. The optimum extract presented the highest bioactivity and polyphenol content determined by LC-DAD-MS compared with extracts obtained using only water or NaDES as solvent.


Subject(s)
Antioxidants , Citrus , Plant Extracts , Plant Leaves , Citrus/chemistry , Plant Leaves/chemistry , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Antioxidants/chemistry , Antioxidants/isolation & purification , Green Chemistry Technology , Solvents/chemistry , Chromatography, Supercritical Fluid/methods , Deep Eutectic Solvents/chemistry , Phenols/chemistry , Phenols/isolation & purification
19.
Bioresour Technol ; 406: 131036, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38925405

ABSTRACT

The emerging nutraceutical, fucoxanthin, shows promise as a high-value product to enable the integrated biorefinery. Fucoxanthin can be extracted from algae through supercritical fluid extraction (SFE), but literature does not agree on optimal extraction conditions. Here, a statistical analysis of literature identifies supercritical carbon dioxide (scCO2) density, ethanol cosolvent amount, and polarity as significant predictors of fucoxanthin yield. Novel SFE experiments are then performed using a fucoxanthin standard, describing its fundamental solubility. These experiments establish solvent system polarity as the key knob to tune fucoxanthin recovery from 0% to 100% and give specific operating conditions for targeted fucoxanthin extraction.Further experiments compare extractions on fucoxanthin standard with extractions from Phaeodactylum tricornutum microalgae to elucidate the effect of the algae matrix. Results show selectivity of fucoxanthin over chlorophyll in scCO2 microalgae extractions that was not seen in extractions with ethanol, indicating a benefit of scCO2 to design selective extraction schemes.


Subject(s)
Chromatography, Supercritical Fluid , Microalgae , Xanthophylls , Chromatography, Supercritical Fluid/methods , Xanthophylls/isolation & purification , Xanthophylls/chemistry , Microalgae/chemistry , Ethanol/chemistry , Carbon Dioxide/chemistry , Solvents/chemistry , Diatoms/chemistry , Chlorophyll , Biotechnology/methods
20.
Ecotoxicol Environ Saf ; 281: 116611, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38909393

ABSTRACT

Nitrophenols, a versatile intermediate, have been widely used in leather, medicine, chemical synthesis, and other fields. Because these components are widely applied, they can enter the environment through various routes, leading to many hazards and toxicities. There has been a recent surge in the development of simple, rapid, environmentally friendly, and effective techniques for determining these environmental pollutants. This review provides a comprehensive overview of the latest research progress on the pretreatment and analysis methods of nitrophenols since 2017, with a focus on environmental samples. Pretreatment methods include liquid-liquid extraction, solid-phase extraction, dispersive extraction, and microextraction methods. Analysis methods mainly include liquid chromatography-based methods, gas chromatography-based methods, supercritical fluid chromatography. In addition, this review also discusses and compares the advantages/disadvantages and development prospects of different pretreatment and analysis methods to provide a reference for further research.


Subject(s)
Environmental Pollutants , Nitrophenols , Environmental Pollutants/analysis , Nitrophenols/analysis , Environmental Monitoring/methods , Liquid-Liquid Extraction/methods , Solid Phase Extraction , Chromatography, Liquid , Chromatography, Gas , Chromatography, Supercritical Fluid/methods
SELECTION OF CITATIONS
SEARCH DETAIL