Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.441
Filter
1.
J Bioinform Comput Biol ; 22(3): 2450017, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39051143

ABSTRACT

DNA-binding transcription factors (TFs) play a central role in transcriptional regulation mechanisms, mainly through their specific binding to target sites on the genome and regulation of the expression of downstream genes. Therefore, a comprehensive analysis of the function of these TFs will lead to the understanding of various biological mechanisms. However, the functions of TFs in vivo are diverse and complicated, and the identified binding sites on the genome are not necessarily involved in the regulation of downstream gene expression. In this study, we investigated whether DNA structural information around the binding site of TFs can be used to predict the involvement of the binding site in the regulation of the expression of genes located downstream of the binding site. Specifically, we calculated the structural parameters based on the DNA shape around the DNA binding motif located upstream of the gene whose expression is directly regulated by one TF AoXlnR from Aspergillus oryzae, and showed that the presence or absence of expression regulation can be predicted from the sequence information with high accuracy ([Formula: see text]-1.0) by machine learning incorporating these parameters.


Subject(s)
Aspergillus oryzae , Gene Expression Regulation, Fungal , Transcription Factors , Transcription Factors/genetics , Transcription Factors/metabolism , Aspergillus oryzae/genetics , Aspergillus oryzae/metabolism , Binding Sites , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fungal Proteins/chemistry , Machine Learning , Nucleotide Motifs , Computational Biology/methods , Models, Genetic , DNA, Fungal/metabolism , DNA, Fungal/genetics
2.
Nat Commun ; 15(1): 6066, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39025853

ABSTRACT

DNA N6-adenine methylation (6mA) has recently gained importance as an epigenetic modification in eukaryotes. Its function in lineages with high levels, such as early-diverging fungi (EDF), is of particular interest. Here, we investigated the biological significance and evolutionary implications of 6mA in EDF, which exhibit divergent evolutionary patterns in 6mA usage. The analysis of two Mucorales species displaying extreme 6mA usage reveals that species with high 6mA levels show symmetric methylation enriched in highly expressed genes. In contrast, species with low 6mA levels show mostly asymmetric 6mA. Interestingly, transcriptomic regulation throughout development and in response to environmental cues is associated with changes in the 6mA landscape. Furthermore, we identify an EDF-specific methyltransferase, likely originated from endosymbiotic bacteria, as responsible for asymmetric methylation, while an MTA-70 methylation complex performs symmetric methylation. The distinct phenotypes observed in the corresponding mutants reinforced the critical role of both types of 6mA in EDF.


Subject(s)
Adenine , DNA Methylation , Gene Expression Regulation, Fungal , Mucorales , Adenine/metabolism , Mucorales/genetics , Mucorales/metabolism , Epigenesis, Genetic , Fungal Proteins/genetics , Fungal Proteins/metabolism , Phylogeny , Evolution, Molecular , Methyltransferases/metabolism , Methyltransferases/genetics , DNA, Fungal/genetics , DNA, Fungal/metabolism , Mutation
3.
Nat Commun ; 15(1): 5113, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38879529

ABSTRACT

Factor-dependent termination uses molecular motors to remodel transcription machineries, but the associated mechanisms, especially in eukaryotes, are poorly understood. Here we use single-molecule fluorescence assays to characterize in real time the composition and the catalytic states of Saccharomyces cerevisiae transcription termination complexes remodeled by Sen1 helicase. We confirm that Sen1 takes the RNA transcript as its substrate and translocates along it by hydrolyzing multiple ATPs to form an intermediate with a stalled RNA polymerase II (Pol II) transcription elongation complex (TEC). We show that this intermediate dissociates upon hydrolysis of a single ATP leading to dissociation of Sen1 and RNA, after which Sen1 remains bound to the RNA. We find that Pol II ends up in a variety of states: dissociating from the DNA substrate, which is facilitated by transcription bubble rewinding, being retained to the DNA substrate, or diffusing along the DNA substrate. Our results provide a complete quantitative framework for understanding the mechanism of Sen1-dependent transcription termination in eukaryotes.


Subject(s)
Adenosine Triphosphate , DNA Helicases , RNA Polymerase II , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Single Molecule Imaging , Transcription Termination, Genetic , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , RNA Polymerase II/metabolism , Adenosine Triphosphate/metabolism , DNA Helicases/metabolism , DNA Helicases/genetics , Single Molecule Imaging/methods , RNA Helicases/metabolism , RNA Helicases/genetics , Transcription, Genetic , RNA, Fungal/metabolism , RNA, Fungal/genetics , DNA, Fungal/metabolism , DNA, Fungal/genetics , Hydrolysis
4.
Biochem J ; 481(12): 805-821, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38829003

ABSTRACT

Aflatoxins (AFs), potent foodborne carcinogens produced by Aspergillus fungi, pose significant health risks worldwide and present challenges to food safety and productivity in the food chain. Novel strategies for disrupting AF production, cultivating resilient crops, and detecting contaminated food are urgently needed. Understanding the regulatory mechanisms of AF production is pivotal for targeted interventions to mitigate toxin accumulation in food and feed. The gene cluster responsible for AF biosynthesis encodes biosynthetic enzymes and pathway-specific regulators, notably AflR and AflS. While AflR, a DNA-binding protein, activates gene transcription within the cluster, AflS enhances AF production through mechanisms that are not fully understood. In this study, we developed protocols to purify recombinant AflR and AflS proteins and utilized multiple assays to characterize their interactions with DNA. Our biophysical analysis indicated that AflR and AflS form a complex. AflS exhibited no DNA-binding capability on its own but unexpectedly reduced the DNA-binding affinity of AflR. Additionally, we found that AflR achieves its binding specificity through a mechanism in which either two copies of AflR or its complex with AflS bind to target sites on DNA in a highly cooperative manner. The estimated values of the interaction parameters of AflR, AflS and DNA target sites constitute a fundamental framework against which the function and mechanisms of other AF biosynthesis regulators can be compared.


Subject(s)
Aflatoxins , Fungal Proteins , Aflatoxins/biosynthesis , Aflatoxins/metabolism , Aflatoxins/genetics , Fungal Proteins/metabolism , Fungal Proteins/genetics , Kinetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Protein Binding , DNA/metabolism , DNA/genetics , DNA, Fungal/genetics , DNA, Fungal/metabolism , Aspergillus/metabolism , Aspergillus/genetics , Transcription Factors/metabolism , Transcription Factors/genetics
5.
Nat Commun ; 15(1): 4526, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806488

ABSTRACT

One elusive aspect of the chromosome architecture is how it constrains the DNA topology. Nucleosomes stabilise negative DNA supercoils by restraining a DNA linking number difference (∆Lk) of about -1.26. However, whether this capacity is uniform across the genome is unknown. Here, we calculate the ∆Lk restrained by over 4000 nucleosomes in yeast cells. To achieve this, we insert each nucleosome in a circular minichromosome and perform Topo-seq, a high-throughput procedure to inspect the topology of circular DNA libraries in one gel electrophoresis. We show that nucleosomes inherently restrain distinct ∆Lk values depending on their genomic origin. Nucleosome DNA topologies differ at gene bodies (∆Lk = -1.29), intergenic regions (∆Lk = -1.23), rDNA genes (∆Lk = -1.24) and telomeric regions (∆Lk = -1.07). Nucleosomes near the transcription start and termination sites also exhibit singular DNA topologies. Our findings demonstrate that nucleosome DNA topology is imprinted by its native chromatin context and persists when the nucleosome is relocated.


Subject(s)
DNA, Fungal , Nucleosomes , Saccharomyces cerevisiae , Nucleosomes/metabolism , Nucleosomes/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , DNA, Fungal/genetics , DNA, Fungal/metabolism , Nucleic Acid Conformation , Chromatin/genetics , Chromatin/metabolism , Telomere/genetics , Telomere/metabolism , DNA/genetics , DNA/chemistry
6.
Nucleic Acids Res ; 52(11): 6317-6332, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38613387

ABSTRACT

Telomerase is the enzyme that lengthens telomeres and is tightly regulated by a variety of means to maintain genome integrity. Several DNA helicases function at telomeres, and we previously found that the Saccharomyces cerevisiae helicases Hrq1 and Pif1 directly regulate telomerase. To extend these findings, we are investigating the interplay between helicases, single-stranded DNA (ssDNA) binding proteins (ssBPs), and telomerase. The yeast ssBPs Cdc13 and RPA differentially affect Hrq1 and Pif1 helicase activity, and experiments to measure helicase disruption of Cdc13/ssDNA complexes instead revealed that Cdc13 can exchange between substrates. Although other ssBPs display dynamic binding, this was unexpected with Cdc13 due to the reported in vitro stability of the Cdc13/telomeric ssDNA complex. We found that the DNA exchange by Cdc13 occurs rapidly at physiological temperatures, requires telomeric repeat sequence DNA, and is affected by ssDNA length. Cdc13 truncations revealed that the low-affinity binding site (OB1), which is distal from the high-affinity binding site (OB3), is required for this intermolecular dynamic DNA exchange (DDE). We hypothesize that DDE by Cdc13 is the basis for how Cdc13 'moves' at telomeres to alternate between modes where it regulates telomerase activity and assists in telomere replication.


Subject(s)
DNA Helicases , DNA, Single-Stranded , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Telomere-Binding Proteins , Telomere , Binding Sites , DNA Helicases/metabolism , DNA, Fungal/metabolism , DNA, Fungal/genetics , DNA, Single-Stranded/metabolism , DNA-Binding Proteins/metabolism , Protein Binding , RecQ Helicases , Replication Protein A/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Telomerase/metabolism , Telomere/metabolism , Telomere-Binding Proteins/metabolism
7.
STAR Protoc ; 5(2): 102995, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38578833

ABSTRACT

To understand the transition from interphase chromatin into well-shaped chromosomes during cell divisions, we need to understand the biochemical activities of the contributing proteins. Here, we present a protocol to investigate how the ring-shaped condensin complex sequentially and topologically entraps two DNA substrates. We describe the steps to prepare purified Schizosaccharomyces pombe condensin, as well as bulk biochemical assays to monitor the first and second DNA capture reactions. This protocol may facilitate further investigations of these essential genome organizers. For complete details on the use and execution of this protocol, please refer to Tang et al.1.


Subject(s)
Adenosine Triphosphatases , DNA-Binding Proteins , Multiprotein Complexes , Schizosaccharomyces , Schizosaccharomyces/metabolism , Multiprotein Complexes/metabolism , Multiprotein Complexes/chemistry , DNA-Binding Proteins/metabolism , Adenosine Triphosphatases/metabolism , DNA, Fungal/metabolism , DNA, Fungal/genetics , Schizosaccharomyces pombe Proteins/metabolism
8.
Nucleic Acids Res ; 52(10): 5720-5731, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38597680

ABSTRACT

The Origin Recognition Complex (ORC) seeds replication-fork formation by binding to DNA replication origins, which in budding yeast contain a 17bp DNA motif. High resolution structure of the ORC-DNA complex revealed two base-interacting elements: a disordered basic patch (Orc1-BP4) and an insertion helix (Orc4-IH). To define the ORC elements guiding its DNA binding in vivo, we mapped genomic locations of 38 designed ORC mutants, revealing that different ORC elements guide binding at different sites. At silencing-associated sites lacking the motif, ORC binding and activity were fully explained by a BAH domain. Within replication origins, we reveal two dominating motif variants showing differential binding modes and symmetry: a non-repetitive motif whose binding requires Orc1-BP4 and Orc4-IH, and a repetitive one where another basic patch, Orc1-BP3, can replace Orc4-IH. Disordered basic patches are therefore key for ORC-motif binding in vivo, and we discuss how these conserved, minor-groove interacting elements can guide specific ORC-DNA recognition.


Subject(s)
Origin Recognition Complex , Replication Origin , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Binding Sites , DNA Replication , DNA, Fungal/metabolism , DNA, Fungal/chemistry , DNA, Fungal/genetics , Mutation , Nucleotide Motifs , Origin Recognition Complex/metabolism , Origin Recognition Complex/genetics , Origin Recognition Complex/chemistry , Protein Binding , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/chemistry
9.
J Cell Sci ; 137(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38482739

ABSTRACT

CSL proteins [named after the homologs CBF1 (RBP-Jκ in mice), Suppressor of Hairless and LAG-1] are conserved transcription factors found in animals and fungi. In the fission yeast Schizosaccharomyces pombe, they regulate various cellular processes, including cell cycle progression, lipid metabolism and cell adhesion. CSL proteins bind to DNA through their N-terminal Rel-like domain and central ß-trefoil domain. Here, we investigated the importance of DNA binding for CSL protein functions in fission yeast. We created CSL protein mutants with disrupted DNA binding and found that the vast majority of CSL protein functions depend on intact DNA binding. Specifically, DNA binding is crucial for the regulation of cell adhesion, lipid metabolism, cell cycle progression, long non-coding RNA expression and genome integrity maintenance. Interestingly, perturbed lipid metabolism leads to chromatin structure changes, potentially linking lipid metabolism to the diverse phenotypes associated with CSL protein functions. Our study highlights the critical role of DNA binding for CSL protein functions in fission yeast.


Subject(s)
Cell Cycle Proteins , Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Transcription Factors , Schizosaccharomyces/metabolism , Schizosaccharomyces/genetics , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces pombe Proteins/genetics , Protein Binding , Lipid Metabolism/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Cell Cycle/genetics , Gene Expression Regulation, Fungal , DNA, Fungal/metabolism , DNA, Fungal/genetics
10.
Nature ; 627(8005): 890-897, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38448592

ABSTRACT

In eukaryotes, DNA compacts into chromatin through nucleosomes1,2. Replication of the eukaryotic genome must be coupled to the transmission of the epigenome encoded in the chromatin3,4. Here we report cryo-electron microscopy structures of yeast (Saccharomyces cerevisiae) replisomes associated with the FACT (facilitates chromatin transactions) complex (comprising Spt16 and Pob3) and an evicted histone hexamer. In these structures, FACT is positioned at the front end of the replisome by engaging with the parental DNA duplex to capture the histones through the middle domain and the acidic carboxyl-terminal domain of Spt16. The H2A-H2B dimer chaperoned by the carboxyl-terminal domain of Spt16 is stably tethered to the H3-H4 tetramer, while the vacant H2A-H2B site is occupied by the histone-binding domain of Mcm2. The Mcm2 histone-binding domain wraps around the DNA-binding surface of one H3-H4 dimer and extends across the tetramerization interface of the H3-H4 tetramer to the binding site of Spt16 middle domain before becoming disordered. This arrangement leaves the remaining DNA-binding surface of the other H3-H4 dimer exposed to additional interactions for further processing. The Mcm2 histone-binding domain and its downstream linker region are nested on top of Tof1, relocating the parental histones to the replisome front for transfer to the newly synthesized lagging-strand DNA. Our findings offer crucial structural insights into the mechanism of replication-coupled histone recycling for maintaining epigenetic inheritance.


Subject(s)
Chromatin , DNA Replication , Epistasis, Genetic , Histones , Saccharomyces cerevisiae , Binding Sites , Chromatin/chemistry , Chromatin/genetics , Chromatin/metabolism , Chromatin/ultrastructure , Cryoelectron Microscopy , DNA Replication/genetics , DNA, Fungal/biosynthesis , DNA, Fungal/chemistry , DNA, Fungal/metabolism , DNA, Fungal/ultrastructure , Epistasis, Genetic/genetics , Histones/chemistry , Histones/metabolism , Histones/ultrastructure , Multienzyme Complexes/chemistry , Multienzyme Complexes/metabolism , Multienzyme Complexes/ultrastructure , Nucleosomes/chemistry , Nucleosomes/metabolism , Nucleosomes/ultrastructure , Protein Binding , Protein Domains , Protein Multimerization , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/ultrastructure , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/ultrastructure
11.
Nature ; 626(7999): 653-660, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38267580

ABSTRACT

Two newly duplicated copies of genomic DNA are held together by the ring-shaped cohesin complex to ensure faithful inheritance of the genome during cell division1-3. Cohesin mediates sister chromatid cohesion by topologically entrapping two sister DNAs during DNA replication4,5, but how cohesion is established at the replication fork is poorly understood. Here, we studied the interplay between cohesin and replication by reconstituting a functional replisome using purified proteins. Once DNA is encircled before replication, the cohesin ring accommodates replication in its entirety, from initiation to termination, leading to topological capture of newly synthesized DNA. This suggests that topological cohesin loading is a critical molecular prerequisite to cope with replication. Paradoxically, topological loading per se is highly rate limiting and hardly occurs under the replication-competent physiological salt concentration. This inconsistency is resolved by the replisome-associated cohesion establishment factors Chl1 helicase and Ctf4 (refs. 6,7), which promote cohesin loading specifically during continuing replication. Accordingly, we found that bubble DNA, which mimics the state of DNA unwinding, induces topological cohesin loading and this is further promoted by Chl1. Thus, we propose that cohesin converts the initial electrostatic DNA-binding mode to a topological embrace when it encounters unwound DNA structures driven by enzymatic activities including replication. Together, our results show how cohesin initially responds to replication, and provide a molecular model for the establishment of sister chromatid cohesion.


Subject(s)
Cohesins , DNA Replication , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Chromatids/metabolism , Cohesins/metabolism , DNA, Fungal/biosynthesis , DNA, Fungal/metabolism , DNA-Binding Proteins/metabolism , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Static Electricity
12.
Nature ; 620(7974): 669-675, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37468628

ABSTRACT

Context-dependent dynamic histone modifications constitute a key epigenetic mechanism in gene regulation1-4. The Rpd3 small (Rpd3S) complex recognizes histone H3 trimethylation on lysine 36 (H3K36me3) and deacetylates histones H3 and H4 at multiple sites across transcribed regions5-7. Here we solved the cryo-electron microscopy structures of Saccharomyces cerevisiae Rpd3S in its free and H3K36me3 nucleosome-bound states. We demonstrated a unique architecture of Rpd3S, in which two copies of Eaf3-Rco1 heterodimers are asymmetrically assembled with Rpd3 and Sin3 to form a catalytic core complex. Multivalent recognition of two H3K36me3 marks, nucleosomal DNA and linker DNAs by Eaf3, Sin3 and Rco1 positions the catalytic centre of Rpd3 next to the histone H4 N-terminal tail for deacetylation. In an alternative catalytic mode, combinatorial readout of unmethylated histone H3 lysine 4 and H3K36me3 by Rco1 and Eaf3 directs histone H3-specific deacetylation except for the registered histone H3 acetylated lysine 9. Collectively, our work illustrates dynamic and diverse modes of multivalent nucleosomal engagement and methylation-guided deacetylation by Rpd3S, highlighting the exquisite complexity of epigenetic regulation with delicately designed multi-subunit enzymatic machineries in transcription and beyond.


Subject(s)
Histones , Lysine , Methylation , Multiprotein Complexes , Nucleosomes , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Acetylation , Cryoelectron Microscopy , DNA, Fungal/genetics , DNA, Fungal/metabolism , Epigenesis, Genetic , Histones/chemistry , Histones/metabolism , Lysine/metabolism , Nucleosomes/chemistry , Nucleosomes/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism
13.
J Cell Biol ; 222(9)2023 09 04.
Article in English | MEDLINE | ID: mdl-37358474

ABSTRACT

The nuclear pore complex (NPC) physically interacts with chromatin and regulates gene expression. The Saccharomyces cerevisiae inner ring nucleoporin Nup170 has been implicated in chromatin organization and the maintenance of gene silencing in subtelomeric regions. To gain insight into how Nup170 regulates this process, we used protein-protein interactions, genetic interactions, and transcriptome correlation analyses to identify the Ctf18-RFC complex, an alternative proliferating cell nuclear antigen (PCNA) loader, as a facilitator of the gene regulatory functions of Nup170. The Ctf18-RFC complex is recruited to a subpopulation of NPCs that lack the nuclear basket proteins Mlp1 and Mlp2. In the absence of Nup170, PCNA levels on DNA are reduced, resulting in the loss of silencing of subtelomeric genes. Increasing PCNA levels on DNA by removing Elg1, which is required for PCNA unloading, rescues subtelomeric silencing defects in nup170Δ. The NPC, therefore, mediates subtelomeric gene silencing by regulating PCNA levels on DNA.


Subject(s)
Chromatin , Gene Silencing , Nuclear Pore , Proliferating Cell Nuclear Antigen , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Telomere , Carrier Proteins/genetics , Carrier Proteins/metabolism , Chromatin/genetics , Chromatin/metabolism , Nuclear Pore/chemistry , Nuclear Pore/metabolism , Proliferating Cell Nuclear Antigen/genetics , Proliferating Cell Nuclear Antigen/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Telomere/genetics , Telomere/metabolism , DNA, Fungal/metabolism
14.
Nature ; 616(7958): 843-848, 2023 04.
Article in English | MEDLINE | ID: mdl-37076626

ABSTRACT

Structural maintenance of chromosomes (SMC) protein complexes are essential for the spatial organization of chromosomes1. Whereas cohesin and condensin organize chromosomes by extrusion of DNA loops, the molecular functions of the third eukaryotic SMC complex, Smc5/6, remain largely unknown2. Using single-molecule imaging, we show that Smc5/6 forms DNA loops by extrusion. Upon ATP hydrolysis, Smc5/6 reels DNA symmetrically into loops at a force-dependent rate of one kilobase pair per second. Smc5/6 extrudes loops in the form of dimers, whereas monomeric Smc5/6 unidirectionally translocates along DNA. We also find that the subunits Nse5 and Nse6 (Nse5/6) act as negative regulators of loop extrusion. Nse5/6 inhibits loop-extrusion initiation by hindering Smc5/6 dimerization but has no influence on ongoing loop extrusion. Our findings reveal functions of Smc5/6 at the molecular level and establish DNA loop extrusion as a conserved mechanism among eukaryotic SMC complexes.


Subject(s)
Cell Cycle Proteins , Chromosomes, Fungal , DNA, Fungal , Saccharomyces cerevisiae , Adenosine Triphosphate/metabolism , Cell Cycle Proteins/metabolism , Chromosomal Proteins, Non-Histone , Chromosomes, Fungal/chemistry , Chromosomes, Fungal/metabolism , DNA, Fungal/chemistry , DNA, Fungal/metabolism , Hydrolysis , Multiprotein Complexes , Single Molecule Imaging , Cohesins
15.
Nucleic Acids Res ; 51(8): 3869-3887, 2023 05 08.
Article in English | MEDLINE | ID: mdl-36951094

ABSTRACT

A haploid of the fission yeast Schizosaccharomyces pombe expresses either the P or M mating-type, determined by the active, euchromatic, mat1 cassette. Mating-type is switched by Rad51-driven gene conversion of mat1 using a heterochromatic donor cassette, mat2-P or mat3-M. The Swi2-Swi5 complex, a mating-type switching factor, is central to this process by designating a preferred donor in a cell-type-specific manner. Swi2-Swi5 selectively enables one of two cis-acting recombination enhancers, SRE2 adjacent to mat2-P or SRE3 adjacent to mat3-M. Here, we identified two functionally important motifs in Swi2, a Swi6 (HP1 homolog)-binding site and two DNA-binding AT-hooks. Genetic analysis demonstrated that the AT-hooks were required for Swi2 localization at SRE3 to select the mat3-M donor in P cells, while the Swi6-binding site was required for Swi2 localization at SRE2 to select mat2-P in M cells. In addition, the Swi2-Swi5 complex promoted Rad51-driven strand exchange in vitro. Taken together, our results show how the Swi2-Swi5 complex would localize to recombination enhancers through a cell-type specific binding mechanism and stimulate Rad51-driven gene conversion at the localization site.


Subject(s)
Schizosaccharomyces pombe Proteins , Schizosaccharomyces , DNA, Fungal/genetics , DNA, Fungal/metabolism , Gene Conversion , Genes, Fungal , Genes, Mating Type, Fungal/genetics , Recombination, Genetic , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism
16.
Methods Mol Biol ; 2605: 79-102, 2023.
Article in English | MEDLINE | ID: mdl-36520390

ABSTRACT

Extraction of high-quality, high molecular weight DNA is a critical step for sequencing an organism's genome. For fungi, DNA extraction is often complicated by co-precipitation of secondary metabolites, the most destructive being polysaccharides, polyphenols, and melanin. Different DNA extraction protocols and clean-up methods have been developed to address challenging materials and contaminants; however, the method of fungal cultivation and tissue preparation also plays a critical role to limit the production of inhibitory compounds prior to extraction. Here, we provide protocols and guidelines for (i) fungal tissue cultivation and processing with solid media containing a cellophane overlay or in liquid media, (ii) DNA extraction with customized recommendations for taxonomically and ecologically diverse plant-associated fungi, and (iii) assessing DNA quantity and quality for downstream genome sequencing with single-molecule technology such as PacBio.


Subject(s)
Fungi , Genome , DNA, Fungal/genetics , DNA, Fungal/metabolism , Molecular Weight , Fungi/genetics , Fungi/metabolism , Chromosome Mapping
17.
Ecotoxicol Environ Saf ; 246: 114146, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36215880

ABSTRACT

Ochratoxin A (OTA) is one of the most common and deleterious mycotoxins found in food and feedstuffs worldwide; however, Apiotrichum mycotoxinivorans can detoxify OTA. Our results show that A. mycotoxinivorans GUM1709 efficiently degraded OTA, but it caused the accumulation of intracellular reactive oxygen species. The main aim of this study was to identify potential OTA-detoxifying enzymes and to explore the effects of OTA on A. mycotoxinivorans GMU1709. RNA-seq data revealed that 1643 and 1980 genes were significantly upregulated and downregulated, respectively, after OTA exposure. Functional enrichment analyses indicated that OTA exposure enhanced defense capability, protein transport, endocytosis, and energy metabolism; caused ribosomal stress; suppressed DNA replication and transcription; inhibited cell growth and division; and promoted cell death. The integration of secretome, gene expression, and molecular docking analyses revealed that two carboxypeptidase homologues (members of the metallocarboxypeptidase family) were most likely responsible for the detoxification of both extracellular and intracellular OTA. Superoxide dismutase and catalase were the main genes activated in response to oxidative stress. In addition, analysis of key genes associated with cell division and apoptosis showed that OTA exposure inhibited mitosis and promoted cell death. This study revealed the possible OTA response and detoxification mechanisms in A. mycotoxinivorans.


Subject(s)
Basidiomycota , Ochratoxins , DNA, Fungal/metabolism , DNA, Fungal/pharmacology , Molecular Docking Simulation , Ochratoxins/toxicity , Oxidative Stress/genetics , Basidiomycota/metabolism , Gene Expression Profiling , Gene Expression
18.
Nat Struct Mol Biol ; 29(2): 121-129, 2022 02.
Article in English | MEDLINE | ID: mdl-35173352

ABSTRACT

Chromatin remodelers are ATP-dependent enzymes that reorganize nucleosomes within all eukaryotic genomes. Here we report a complex of the Chd1 remodeler bound to a nucleosome in a nucleotide-free state, determined by cryo-EM to 2.3 Å resolution. The remodeler stimulates the nucleosome to absorb an additional nucleotide on each strand at two different locations: on the tracking strand within the ATPase binding site and on the guide strand one helical turn from the ATPase motor. Remarkably, the additional nucleotide on the tracking strand is associated with a local transformation toward an A-form geometry, explaining how sequential ratcheting of each DNA strand occurs. The structure also reveals a histone-binding motif, ChEx, which can block opposing remodelers on the nucleosome and may allow Chd1 to participate in histone reorganization during transcription.


Subject(s)
DNA, Fungal/chemistry , DNA, Fungal/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Nucleosomes/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/metabolism , Amino Acid Sequence , Binding Sites , Chromatin Assembly and Disassembly/physiology , Cryoelectron Microscopy , DNA-Binding Proteins/genetics , Models, Biological , Models, Molecular , Molecular Motor Proteins/chemistry , Molecular Motor Proteins/metabolism , Nucleosomes/chemistry , Nucleotides/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics
19.
J Mol Biol ; 434(7): 167497, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35189129

ABSTRACT

The artificial 601 DNA sequence is often used to constrain the position of nucleosomes on a DNA molecule in vitro. Although the ability of the 147 base pair sequence to precisely position a nucleosome in vitro is well documented, application of this property in vivo has been explored only in a few studies and yielded contradictory conclusions. Our goal in the present study was to test the ability of the 601 sequence to dictate nucleosome positioning in Saccharomyces cerevisiae in the context of a long tandem repeat array inserted in a yeast chromosome. We engineered such arrays with three different repeat size, namely 167, 197 and 237 base pairs. Although our arrays are able to position nucleosomes in vitro, analysis of nucleosome occupancy in vivo revealed that nucleosomes are not preferentially positioned as expected on the 601-core sequence along the repeats and that the measured nucleosome repeat length does not correspond to the one expected by design. Altogether our results demonstrate that the rules defining nucleosome positions on this DNA sequence in vitro are not valid in vivo, at least in this chromosomal context, questioning the relevance of using the 601 sequence in vivo to achieve precise nucleosome positioning on designer synthetic DNA sequences.


Subject(s)
Nucleosomes , Saccharomyces cerevisiae , Tandem Repeat Sequences , Chromatin Assembly and Disassembly , DNA, Fungal/genetics , DNA, Fungal/metabolism , Genetic Engineering , Nucleosomes/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Tandem Repeat Sequences/genetics
20.
Nucleic Acids Res ; 50(2): 962-974, 2022 01 25.
Article in English | MEDLINE | ID: mdl-35037018

ABSTRACT

We report the properties of two mutations in the exonuclease domain of the Saccharomyces cerevisiae DNA polymerase ϵ. One, pol2-Y473F, increases the mutation rate by about 20-fold, similar to the catalytically dead pol2-D290A/E290A mutant. The other, pol2-N378K, is a stronger mutator. Both retain the ability to excise a nucleotide from double-stranded DNA, but with impaired activity. pol2-Y473F degrades DNA poorly, while pol2-N378K degrades single-stranded DNA at an elevated rate relative to double-stranded DNA. These data suggest that pol2-Y473F reduces the capacity of the enzyme to perform catalysis in the exonuclease active site, while pol2-N378K impairs partitioning to the exonuclease active site. Relative to wild-type Pol ϵ, both variants decrease the dNTP concentration required to elicit a switch between proofreading and polymerization by more than an order of magnitude. While neither mutation appears to alter the sequence specificity of polymerization, the N378K mutation stimulates polymerase activity, increasing the probability of incorporation and extension of a mismatch. Considered together, these data indicate that impairing the primer strand transfer pathway required for proofreading increases the probability of common mutations by Pol ϵ, elucidating the association of homologous mutations in human DNA polymerase ϵ with cancer.


Subject(s)
DNA Polymerase II/metabolism , DNA, Fungal/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , DNA Replication , Mutation , Mutation Rate
SELECTION OF CITATIONS
SEARCH DETAIL