Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.995
Filter
1.
J Phys Chem Lett ; 15(29): 7424-7429, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38996192

ABSTRACT

Mycosporine glycine (MyG) was produced by the fermentation of a purposely engineered bacterial strain and isolated from this sustainable source. The ultrafast spectroscopy of MyG was then investigated in its native, zwitterionic form (MyGzwitter), via femtosecond transient electronic absorption spectroscopy. Complementary nonadiabatic (NAD) simulations suggest that, upon photoexcitation to the lowest excited singlet state (S1), MyGzwitter undergoes efficient nonradiative decay to repopulate the electronic ground state (S0). We propose an initial ultrafast ring-twisting mechanism toward an S1/S0 conical intersection, followed by internal conversion to S0 and subsequent vibrational cooling. This study illuminates the workings of the archetype mycosporine, providing photoprotection, in the UV-B range, to organisms such as corals, macroalgae, and cyanobacteria. This study also contributes to our growing understanding of the photoprotection mechanisms of life.


Subject(s)
Glycine , Glycine/chemistry , Glycine/analogs & derivatives , Bioengineering , Ultraviolet Rays , Cyclohexanols
2.
J Mol Evol ; 92(4): 449-466, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39052031

ABSTRACT

Quantum mechanical calculations are used to explore the thermodynamics of possible prebiotic synthesis of the building blocks of nucleic acids. Different combinations of D-ribofuranose (Ribf) and N-(2-aminoethyl)-glycine (AEG) (trifunctional connectors (TCs)); the nature of the Ribf, its anomeric form, and its ring puckering (conformation); and the nature of the nucleobases (recognition units (RUs)) are considered. The combinatorial explosion of possible nucleosides has been drastically reduced on physicochemical grounds followed by a detailed thermodynamic evaluation of alternative synthetic pathways. The synthesis of nucleosides containing N-(2-aminoethyl)-glycine (AEG) is predicted to be thermodynamically favored suggesting a possible role of AEG as a component of an ancestral proto-RNA that may have preceded today's nucleic acids. A new pathway for the building of free nucleotides (exemplified by 5'-uridine monophosphate (UMP)) and of AEG dipeptides is proposed. This new pathway leads to a spontaneous formation of free UMP assisted by an AEG nucleoside in an aqueous environment. This appears to be a workaround to the "water problem" that prohibits the synthesis of nucleotides in water.


Subject(s)
Glycine , RNA , Thermodynamics , RNA/chemistry , Glycine/analogs & derivatives , Glycine/chemistry , Origin of Life , Evolution, Chemical , Nucleosides
3.
Cell Rep ; 43(7): 114459, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38985674

ABSTRACT

Glycine- and arginine-rich (GAR) motifs, commonly found in RNA-binding and -processing proteins, can be symmetrically (SDMA) or asymmetrically (ADMA) dimethylated at the arginine residue by protein arginine methyltransferases. Arginine-methylated protein motifs are usually read by Tudor domain-containing proteins. Here, using a GFP-Trap, we identify a non-Tudor domain protein, squamous cell carcinoma antigen recognized by T cells 3 (SART3), as a reader for SDMA-marked GAR motifs. Structural analysis and mutagenesis of SART3 show that aromatic residues lining a groove between two adjacent aromatic-rich half-a-tetratricopeptide (HAT) repeat domains are essential for SART3 to recognize and bind to SDMA-marked GAR motif peptides, as well as for the interaction between SART3 and the GAR-motif-containing proteins fibrillarin and coilin. Further, we show that the loss of this reader ability affects RNA splicing. Overall, our findings broaden the range of potential SDMA readers to include HAT domains.


Subject(s)
Amino Acid Motifs , Arginine , Glycine , Arginine/metabolism , Arginine/chemistry , Humans , Glycine/metabolism , Glycine/chemistry , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/genetics , Protein Binding , RNA Splicing , HEK293 Cells , Methylation , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/chemistry , Protein-Arginine N-Methyltransferases/metabolism , Protein-Arginine N-Methyltransferases/chemistry
4.
Chem Commun (Camb) ; 60(63): 8272-8275, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39015034

ABSTRACT

Herein, we describe the total synthesis of the depsipeptide vioprolide B and of an analogue, in which the (E)-dehydrobutyrine amino acid was replaced by glycine. The compounds were studied in biological assays which revealed cytotoxicity solely for vioprolide B presumably by covalent binding to cysteine residues of elongation factor eEF1A1 and of chromatin assembly factor CHAF1A.


Subject(s)
Depsipeptides , Glycine , Humans , Depsipeptides/chemical synthesis , Depsipeptides/chemistry , Depsipeptides/pharmacology , Glycine/analogs & derivatives , Glycine/chemistry , Glycine/chemical synthesis , Glycine/pharmacology , Peptide Elongation Factor 1/metabolism , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Molecular Structure , Aminobutyrates
5.
Mol Cell ; 84(14): 2682-2697.e6, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38996576

ABSTRACT

RNA can directly control protein activity in a process called riboregulation; only a few mechanisms of riboregulation have been described in detail, none of which have been characterized on structural grounds. Here, we present a comprehensive structural, functional, and phylogenetic analysis of riboregulation of cytosolic serine hydroxymethyltransferase (SHMT1), the enzyme interconverting serine and glycine in one-carbon metabolism. We have determined the cryoelectron microscopy (cryo-EM) structure of human SHMT1 in its free- and RNA-bound states, and we show that the RNA modulator competes with polyglutamylated folates and acts as an allosteric switch, selectively altering the enzyme's reactivity vs. serine. In addition, we identify the tetrameric assembly and a flap structural motif as key structural elements necessary for binding of RNA to eukaryotic SHMT1. The results presented here suggest that riboregulation may have played a role in evolution of eukaryotic SHMT1 and in compartmentalization of one-carbon metabolism. Our findings provide insights for RNA-based therapeutic strategies targeting this cancer-linked metabolic pathway.


Subject(s)
Cryoelectron Microscopy , Glycine Hydroxymethyltransferase , Glycine Hydroxymethyltransferase/metabolism , Glycine Hydroxymethyltransferase/genetics , Glycine Hydroxymethyltransferase/chemistry , Humans , RNA/metabolism , RNA/genetics , Serine/metabolism , Allosteric Regulation , Protein Binding , Phylogeny , Models, Molecular , Protein Conformation , Structure-Activity Relationship , Glycine/metabolism , Glycine/chemistry , Binding Sites
6.
ACS Appl Mater Interfaces ; 16(28): 36983-37006, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38953207

ABSTRACT

Repairing multiphasic defects is cumbersome. This study presents new soft and hard scaffold designs aimed at facilitating the regeneration of multiphasic defects by enhancing angiogenesis and improving cell attachment. Here, the nonimmunogenic, nontoxic, and cost-effective human serum albumin (HSA) fibril (HSA-F) was used to fabricate thermostable (up to 90 °C) and hard printable polymers. Additionally, using a 10.0 mg/mL HSA-F, an innovative hydrogel was synthesized in a mixture with 2.0% chitosan-conjugated arginine, which can gel in a cell-friendly and pH physiological environment (pH 7.4). The presence of HSA-F in both hard and soft scaffolds led to an increase in significant attachment of the scaffolds to the human periodontal ligament fibroblast (PDLF), human umbilical vein endothelial cell (HUVEC), and human osteoblast. Further studies showed that migration (up to 157%), proliferation (up to 400%), and metabolism (up to 210%) of these cells have also improved in the direction of tissue repair. By examining different in vitro and ex ovo experiments, we observed that the final multiphasic scaffold can increase blood vessel density in the process of per-vascularization as well as angiogenesis. By providing a coculture environment including PDLF and HUVEC, important cross-talk between these two cells prevails in the presence of roxadustat drug, a proangiogenic in this study. In vitro and ex ovo results demonstrated significant enhancements in the angiogenic response and cell attachment, indicating the effectiveness of the proposed design. This approach holds promise for the regeneration of complex tissue defects by providing a conducive environment for vascularization and cellular integration, thus promoting tissue healing.


Subject(s)
Human Umbilical Vein Endothelial Cells , Neovascularization, Physiologic , Tissue Scaffolds , Humans , Tissue Scaffolds/chemistry , Neovascularization, Physiologic/drug effects , Serum Albumin, Human/chemistry , Glycine/chemistry , Glycine/pharmacology , Glycine/analogs & derivatives , Fibroblasts/drug effects , Fibroblasts/cytology , Fibroblasts/metabolism , Cell Proliferation/drug effects , Amyloid/chemistry , Amyloid/metabolism , Osteoblasts/drug effects , Osteoblasts/cytology , Osteoblasts/metabolism , Periodontal Ligament/cytology , Periodontal Ligament/drug effects , Tissue Engineering , Hydrogels/chemistry , Hydrogels/pharmacology , Temperature , Isoquinolines
7.
Commun Biol ; 7(1): 867, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39014102

ABSTRACT

The function of proteins depends on their correct structure and proper dynamics. Understanding the dynamics of target proteins facilitates drug design and development. However, dynamic information is often hidden in the spatial structure of proteins. It is important but difficult to identify the specific residues that play a decisive role in protein dynamics. Here, we report that a critical glycine residue (Gly463) dominates the motion of threonyl-tRNA synthetase (ThrRS) and the sensitivity of the enzyme to antibiotics. Obafluorin (OB), a natural antibiotic, is a novel covalent inhibitor of ThrRS. The binding of OB induces a large conformational change in ThrRS. Through five crystal structures, biochemical and biophysical analyses, and computational simulations, we found that Gly463 plays an important role in the dynamics of ThrRS. Mutating this flexible residue into more rigid residues did not damage the enzyme's three-dimensional structure but significantly improved the thermal stability of the enzyme and suppressed its ability to change conformation. These mutations cause resistance of ThrRS to antibiotics that are conformationally selective, such as OB and borrelidin. This work not only elucidates the molecular mechanism of the self-resistance of OB-producing Pseudomonas fluorescens but also emphasizes the importance of backbone kinetics for aminoacyl-tRNA synthetase-targeting drug development.


Subject(s)
Glycine , Threonine-tRNA Ligase , Threonine-tRNA Ligase/metabolism , Threonine-tRNA Ligase/chemistry , Threonine-tRNA Ligase/genetics , Threonine-tRNA Ligase/antagonists & inhibitors , Glycine/chemistry , Glycine/pharmacology , Glycine/metabolism , Protein Conformation , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Mutation , Pseudomonas fluorescens/enzymology
8.
Sci Adv ; 10(29): eadn8706, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39028816

ABSTRACT

Poly(l-lactic acid) (PLLA) is a widely used U.S. Food and Drug Administration-approved implantable biomaterial that also possesses strong piezoelectricity. However, the intrinsically low stability of its high-energy piezoelectric ß phase and random domain orientations associated with current synthesis approaches remain a critical roadblock to practical applications. Here, we report an interfacial anchoring strategy for fabricating core/shell PLLA/glycine (Gly) nanofibers (NFs) by electrospinning, which show a high ratio of piezoelectric ß phase and excellent orientation alignment. The self-assembled core/shell structure offers strong intermolecular interactions between the -OH groups on Gly and C=O groups on PLLA, which promotes the crystallization of oriented PLLA polymer chains and stabilizes the ß phase structure. As-received core/shell NFs exhibit substantially enhanced piezoelectric performance and excellent stability. An all NF-based nonwoven fabric is fabricated and assembled as a flexible nanogenerator. The device offers excellent conformality to heavily wrinkled surfaces and thus can precisely detect complex physiological motions often found from biological organs.


Subject(s)
Biocompatible Materials , Nanofibers , Polyesters , Nanofibers/chemistry , Biocompatible Materials/chemistry , Polyesters/chemistry , Prostheses and Implants , Textiles , Glycine/chemistry
9.
J Mater Chem B ; 12(31): 7557-7563, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-38979673

ABSTRACT

In this work, we demonstrate the electrochemical (EC) sensing of glycine (GLY) on a gold-copper nanocluster on nitrogen-doped graphene quantum dot-modified (indigenously fabricated) screen-printed electrode (AuCuNC@N-GQD/SPE). SPE was fabricated by step-by-step printing of reference, working, and counter electrodes to develop an all-printed SPE. A comparison strategy between SPE and the glassy carbon electrode (GCE) towards the EC sensing of GLY was carried out. The sensing performance was enhanced while replacing GCE with SPE. The limit of detection (LOD) for GLY obtained by EC sensing with AuCuNC@N-GQD/GCE was 10 nM and that with AuCuNC@N-GQD/SPE was 10 times lower, 1 nM, and is the lowest LOD value reported hitherto. Compared with AuCuNC@N-GQD/GCE, the current response of AuCuNC@N-GQD/SPE exhibited a ∼2.6-times enhancement with a sensitivity of 0.206 µA µM-1 cm-2. Thus, the successful shift from GCE to SPE not only miniaturizes the sensor device but also enhances the electrochemical detection performance.


Subject(s)
Carbon , Electrochemical Techniques , Electrodes , Glycine , Glycine/chemistry , Glycine/analysis , Carbon/chemistry , Graphite/chemistry , Limit of Detection , Gold/chemistry , Glass/chemistry , Quantum Dots/chemistry , Copper/chemistry
10.
Methods Mol Biol ; 2839: 225-231, 2024.
Article in English | MEDLINE | ID: mdl-39008256

ABSTRACT

Radiolabeling enables the quantitation of newly synthesized heme and porphyrin, allowing us to distinguish heme synthesis rates from total cellular heme. Here, we describe a protocol for labeling heme with 14C-glycine or ALA and the sequential extraction of heme and porphyrin from the same samples for quantitation by liquid scintillation.


Subject(s)
Aminolevulinic Acid , Carbon Radioisotopes , Glycine , Heme , Porphyrins , Heme/chemistry , Aminolevulinic Acid/chemistry , Aminolevulinic Acid/metabolism , Carbon Radioisotopes/chemistry , Porphyrins/chemistry , Glycine/chemistry , Isotope Labeling/methods , Humans
11.
Int J Biol Macromol ; 274(Pt 2): 133301, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38914403

ABSTRACT

This work reports about the conjugation of glycine C-terminal ethyl and methyl ester peptides and L-tryptophan methyl ester with sodium hyaluronate in aqueous solutions using the peptide coupling agent DMTMM (or short DMT, 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methyl-morpholinium chloride). Detailed infrared (IR) absorbance and 1H and 13C (2D) NMR studies (heteronuclear multi-bond correlation spectroscopy, HMBC) confirmed covalent and regioselective amide bonds with the D-glucuronate, but also proves the presence of DMT traces in all conjugates. The ethyl ester`s methyl protons on the peptides` C-terminal could be used to quantify the degree of substitution of the peptide on the hyaluronate scaffold by NMR. The ester group also proved stable during conjugation and work-up, and could in some cases be selectively cleaved in water whilst leaving the amide bond intact as shown by potentiometric charge titration, NMR and IR. The conjugates did not influence the capability of human umbilical vein endothelial cells (HUVECs) to reduce MTS (5-[3-(carboxymethoxy)phenyl]-3-(4,5-dimethyl-2-thiazolyl)-2-(4-sulfophenyl)-2H-tetrazolium inner salt) to a formazan dye, which points towards a low cytotoxicity for the obtained products. The conjugation method and products could be tested for tissue engineering gels or drug delivery purposes with alternative, biologically active peptides.


Subject(s)
Glycine , Human Umbilical Vein Endothelial Cells , Hyaluronic Acid , Peptides , Tryptophan , Hyaluronic Acid/chemistry , Humans , Tryptophan/chemistry , Glycine/chemistry , Peptides/chemistry , Peptides/pharmacology , Human Umbilical Vein Endothelial Cells/drug effects , Magnetic Resonance Spectroscopy
12.
Mikrochim Acta ; 191(7): 423, 2024 06 26.
Article in English | MEDLINE | ID: mdl-38922503

ABSTRACT

A ratiometric fluorescence sensing strategy has been developed for the determination of Cu2+ and glyphosate with high sensitivity and specificity based on OPD (o-phenylenediamine) and glutathione-stabilized gold nanoclusters (GSH-AuNCs). Water-soluble 1.75-nm size GSH-AuNCs with strong red fluorescence and maximum emission wavelength at 682 nm were synthesized using GSH as the template. OPD was oxidized by Cu2+, which produced the bright yellow fluorescence oxidation product 2,3-diaminophenazine (DAP) with a maximum fluorescence emission peak at 570 nm. When glyphosate existed in the system, the chelation between glyphosate and Cu2+ hindered the formation of DAP and reduced the fluorescence intensity of the system at the wavelength of 570 nm. Meanwhile, the fluorescence intensity at the wavelength of 682 nm remained basically stable. It exhibited a good linear relationship towards Cu2+ and glyphosate in water in the range 1.0-10 µM and 0.050-3.0 µg/mL with a detection limit of 0.547 µM and 0.0028 µg/mL, respectively. The method was also used for the semi-quantitative determination of Cu2+ and glyphosate in water by fluorescence color changes visually detected by the naked eyes in the range 1.0-10 µM and 0.30-3.0 µg/mL, respectively. The sensing strategy showed higher sensitivity, more obvious color changes, and better disturbance performance, satisfying with the detection demands of Cu2+ and glyphosate in environmental water samples. The study provides a reliable detection strategy in the environment safety fields.


Subject(s)
Colorimetry , Copper , Glycine , Glyphosate , Gold , Limit of Detection , Metal Nanoparticles , Phenylenediamines , Spectrometry, Fluorescence , Water Pollutants, Chemical , Glycine/analogs & derivatives , Glycine/analysis , Glycine/chemistry , Copper/chemistry , Metal Nanoparticles/chemistry , Phenylenediamines/chemistry , Gold/chemistry , Spectrometry, Fluorescence/methods , Water Pollutants, Chemical/analysis , Colorimetry/methods , Glutathione/chemistry , Glutathione/analysis , Herbicides/analysis , Fluorescent Dyes/chemistry
13.
Adv Sci (Weinh) ; 11(29): e2402428, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38852190

ABSTRACT

Sulfur-containing amino acids and peptides play critical roles in organisms. Thiol-ene reactions between the thiol residues of L-cysteine and the alkenyl fragments in the designed coupling partners serve as primary tools for constructing C─S bonds in the synthesis of unnatural sulfur-containing amino acid derivatives. These reactions are favored due to the preference for hydrogen transfer from thiol to ß-sulfanyl carbon radical intermediates. In this paper, the study proposes utilizing carbon-centered radicals stabilized by the capto-dative effect, generated under photocatalytic conditions from N-aryl glycine derivatives. The aim is to compete with the thiol hydrogen, enabling radical C─C bond formation with ß-sulfanyl carbon radicals. This protocol is robust in the presence of air and water, offers significant potential as a modular and efficient platform for synthesizing sulfur-containing amino acids and modifying peptides, particularly with abundant disulfides and styrenes.


Subject(s)
Carbon , Glycine , Peptides , Styrenes , Sulfur , Peptides/chemistry , Peptides/chemical synthesis , Glycine/chemistry , Glycine/analogs & derivatives , Sulfur/chemistry , Carbon/chemistry , Styrenes/chemistry , Free Radicals/chemistry , Catalysis
14.
J Biotechnol ; 391: 72-80, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38876311

ABSTRACT

The lipase from Prunus dulcis almonds was inactivated under different conditions. At pH 5 and 9, enzyme stability remained similar under the different studied buffers. However, when the inactivation was performed at pH 7, there were some clear differences on enzyme stability depending on the buffer used. The enzyme was more stable in Gly than when Tris was employed for inactivation. Then, the enzyme was immobilized on methacrylate beads coated with octadecyl groups at pH 7 in the presence of Gly, Tris, phosphate and HEPES. Its activity was assayed versus triacetin and S-methyl mandelate. The biocatalyst prepared in phosphate was more active versus S-methyl mandelate, while the other ones were more active versus triacetin. The immobilized enzyme stability at pH 7 depends on the buffer used for enzyme immobilization. The buffer used in the inactivation and the substrate used determined the activity. For example, glycine was the buffer that promoted the lowest or the highest stabilities depending on the substrate used to quantify the activities.


Subject(s)
Enzyme Stability , Enzymes, Immobilized , Lipase , Prunus dulcis , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Lipase/chemistry , Lipase/metabolism , Prunus dulcis/chemistry , Prunus dulcis/enzymology , Buffers , Hydrogen-Ion Concentration , Triacetin/chemistry , Triacetin/metabolism , Glycine/chemistry , Glycine/metabolism , Tromethamine/chemistry , Biocatalysis , Substrate Specificity , Phosphates/chemistry , Phosphates/metabolism , HEPES/chemistry
15.
Rapid Commun Mass Spectrom ; 38(17): e9843, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38924168

ABSTRACT

RATIONALE: 1,2-Diacyl-sn-glycero-3-phospho-O-[N-(2-hydroxyethyl)glycines] (PHEGs) are a class of rare aminophospholipids found specifically in brown algae, including kombu seaweed. Despite their potential importance in algal physiology, a comprehensive mass spectrometry (MS) characterization, useful to understand their biological behaviour, is still lacking. METHODS: To establish the structural regiochemical features of PHEGs, we employed hydrophilic interaction liquid chromatography (HILIC). Following separation, the isolated band of PHEGs was analyzed using MS techniques. This included multistage tandem MS experiments, performed in both positive and negative electrospray ionization modes at low and high resolution. RESULTS: By comparing MS/MS and MS3 spectra acquired in negative ion mode, the regiochemical rules for PHEG identification were established. The most abundant PHEG species in kombu seaweed, from both Laminaria ochroleuca (European Atlantic) and Laminaria longissima (Japan), was identified as PHEG 20:4/20:4. Less abundant species included PHEG 20:4/20:5 and hydroxylated forms of both PHEG 20:4/20:4 (i.e. 40:8;O) and 20:4/20:5 (40:9;O). The presence of a lyso PHEG 20:4 was consistently detected but at very low levels. CONCLUSIONS: This study employed MS analysis to elucidate the regiochemical patterns of PHEGs in kombu seaweed. We identified PHEG 20:4/20:4 as the dominant species, along with several less abundant variants, including hydroxylated forms. These findings provide valuable insights into the potential roles and metabolism of PHEGs in brown algae, paving the way for further investigation into their biological functions.


Subject(s)
Tandem Mass Spectrometry , Tandem Mass Spectrometry/methods , Seaweed/chemistry , Phospholipids/chemistry , Phospholipids/analysis , Glycine/analogs & derivatives , Glycine/chemistry , Glycine/analysis , Phaeophyceae/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Laminaria/chemistry , Chromatography, Liquid/methods , Edible Seaweeds
16.
Spectrochim Acta A Mol Biomol Spectrosc ; 319: 124561, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38833884

ABSTRACT

To satisfy the public's urgent demand for food safety and protect the ecological environment, sensitive detection of glyphosate holds paramount importance. Here, we discovered that glyphosate can engage in specific interactions with iron organic frameworks (Fe-MOFs) nanozymes, enabling a selective detection of glyphosate. Based on this principle, an innovative colorimetric and fluorescent dual-mode detection approach was devised. Specifically, Fe-MOFs were synthesized at room temperature, exhibiting remarkable peroxidase-mimic activity. These nanozymes catalyze the conversion of colorless and fluorescent 3,3',5,5'-Tetramethylbenzidine (TMB) into blue oxidized and nonfluorescent TMB (oxTMB) in the presence of H2O2. However, the introduction of glyphosate disrupts this process by interacting with Fe-MOFs, significantly inhibiting the catalytic activity of Fe-MOFs through both physical (electrostatic and hydrogen bonding) and chemical interactions. This suppression further hindered the conversion of TMB to oxTMB, resulting in a reduction in absorbance and a corresponding enhancement in fluorescence. The method offers a colorimetric and fluorescence dual-mode detection capability with enhanced applicability. Notably, our approach avoids complex material modifications and is more stable and cost-effective than the traditional enzyme inhibition methods. This innovative detection technique holds immense potential for practical applications and provides a fresh perspective for the detection of pesticide residues.


Subject(s)
Colorimetry , Glycine , Glyphosate , Iron , Metal-Organic Frameworks , Spectrometry, Fluorescence , Glycine/analogs & derivatives , Glycine/analysis , Glycine/chemistry , Iron/chemistry , Iron/analysis , Metal-Organic Frameworks/chemistry , Colorimetry/methods , Spectrometry, Fluorescence/methods , Benzidines/chemistry , Hydrogen Peroxide/analysis , Hydrogen Peroxide/chemistry , Catalysis , Herbicides/analysis , Nanostructures/chemistry
17.
Langmuir ; 40(26): 13583-13595, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38907731

ABSTRACT

The growing reliance on pesticides for pest management in agriculture highlights the need for new analytical methods to detect these substances in food and water. Our research introduces a SPRWG-(C18H37) lipopeptide (LP) as a functional analog of acetylcholinesterase (AChE) for glyphosate detection in environmental samples using phosphatidylcholine (PC) monolayers. This LP, containing hydrophilic amino acids linked to an 18-carbon aliphatic chain, alters lipid assembly properties, leading to a more flexible system. Changes included reduced molecular area and peak pressure in Langmuir adsorption isotherms. Small angle X-ray scattering (SAXS) and atomic force microscopy (AFM) analyses provided insights into the LP's structural organization within the membrane and its interaction with glyphosate (PNG). Structural and geometric parameters, as derived from in silico molecular dynamics simulations (MD), substantiated the impact of LP on the monolayer structure and the interaction with PNG. Notably, the presence of the LP and glyphosate increased charge transfer resistance, indicating strong adherence of the monolayer to the indium tin oxide (ITO) surface and effective pesticide interaction. A calibration curve for glyphosate concentration adjustment revealed a detection limit (LOD) of 24 nmol L-1, showcasing the high sensitivity of this electrochemical biosensor. This LOD is significantly lower than that of a similar colorimetric biosensor in aqueous media with a detection limit of approximately 0.3 µmol L-1. Such an improvement in sensitivity likely stems from adding a polar residue to the amino acid chain of the LP.


Subject(s)
1,2-Dipalmitoylphosphatidylcholine , Glycine , Glyphosate , Lipopeptides , Molecular Dynamics Simulation , Glycine/chemistry , Glycine/analogs & derivatives , Glycine/analysis , 1,2-Dipalmitoylphosphatidylcholine/chemistry , Lipopeptides/chemistry , Lipopeptides/analysis , Water/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Surface Properties
18.
Biosens Bioelectron ; 261: 116487, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38870829

ABSTRACT

A new di-recognition nitrogen-doped carbon dot nanosurface aptamer molecularly imprinted polymer (CDNAg@MIPApt) nanocatalytic di-functional probe was prepared by microwave irradiation. The probe was utilized nitrogen-doped silver carbon dots (CDNAg) as the matrix, glyphosate (Gly) as the template molecule, α-methyl acrylate as the monomer, ethylene glycol dimethacrylate as the cross-linker, and aptamer as the biorecognition element. It could not only recognize Gly but also exhibits catalytic amplification function. It was found that CDNAg@MIPApt catalyzed the redox reaction of polyethylene glycol 400 (PEG400)-AgNO3 to generate silver nanoparticles (AgNPs). The AgNPs indicator component exhibit the effects of surface-enhanced Raman scattering (SERS), resonance Rayleigh scattering (RRS) and surface plasmon resonance absorption (Abs). In the presence of Gly, it binds to the surface imprinted site of CDNAg@MIPApt, to reduce AgNPs generation due to the catalytic activity of CDNAg@MIPApt decreasing. Thus, the SERS/RRS/Abs signal values decreased linearly. The linear ranges of SERS/RRS/Abs assay were 0.1-2.5 nM, 0.25-2.75 nM and 0.5-5 nM respectively. The detection limits were 0.034 nM, 0.071 nM and 0.18 nM Gly.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Glycine , Glyphosate , Limit of Detection , Metal Nanoparticles , Molecularly Imprinted Polymers , Silver , Spectrum Analysis, Raman , Glycine/chemistry , Glycine/analogs & derivatives , Silver/chemistry , Molecularly Imprinted Polymers/chemistry , Aptamers, Nucleotide/chemistry , Metal Nanoparticles/chemistry , Biosensing Techniques/methods , Surface Plasmon Resonance/methods , Herbicides/analysis , Herbicides/chemistry , Carbon/chemistry
19.
J Phys Chem B ; 128(25): 6217-6231, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38877893

ABSTRACT

Molecular dynamics (MD) is a great tool for elucidating conformational dynamics of proteins and peptides in water at the atomistic level that often surpasses the level of detail available experimentally. Structure predictions, however, are limited by the accuracy of the underlying MD force field. This limitation is particularly stark in the case of intrinsically disordered peptides and proteins, which are characterized by solvent-accessible and disordered peptide regions and domains. Recent studies show that most additive MD force fields, including CHARMM36m, do not reproduce the intrinsic conformational distributions of guest amino acid residues x in cationic GxG peptides in water in line with experimental data. Positing that a lack of polarizability in additive MD force fields may be the culprit for the reported discrepancies, we here examine the conformational dynamics of guest glycine and alanine residues in cationic GxG peptides in water using two polarizable MD force fields, CHARMM Drude and AMOEBA. Our results indicate that while AMOEBA captures the experimental data better than CHARMM Drude, neither of the two polarizable force fields offers an improvement of the Ramachandran distributions of glycine and alanine residues in cationic GGG and GAG peptides, respectively, over CHARMM36m.


Subject(s)
Alanine , Glycine , Molecular Dynamics Simulation , Glycine/chemistry , Alanine/chemistry , Water/chemistry , Protein Conformation , Peptides/chemistry
20.
Methods Enzymol ; 698: 1-26, 2024.
Article in English | MEDLINE | ID: mdl-38886028

ABSTRACT

N-alkylated glycine residues are the main constituent of peptoids and peptoid-peptide hybrids that are employed across the biomedical and materials sciences. While the impact of backbone N-alkylation on peptide conformation has been extensively studied, less is known about the effect of N-amination on the secondary structure propensity of glycine. Here, we describe a convenient protocol for the incorporation of N-aminoglycine into host peptides on solid support. Amide-to-hydrazide substitution also affords a nucleophilic handle for further derivatization of the backbone. To demonstrate the utility of late-stage hydrazide modification, we synthesized and evaluated the stability of polyproline II helix and ß-hairpin model systems harboring N-aminoglycine derivatives. The described procedures provide facile entry into peptidomimetic libraries for conformational scanning.


Subject(s)
Peptides , Peptides/chemistry , Glycine/chemistry , Glycine/analogs & derivatives , Solid-Phase Synthesis Techniques/methods , Peptoids/chemistry , Peptoids/chemical synthesis , Protein Conformation , Protein Structure, Secondary , Alkylation
SELECTION OF CITATIONS
SEARCH DETAIL