Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.681
1.
Sci Rep ; 14(1): 10551, 2024 05 08.
Article En | MEDLINE | ID: mdl-38719929

Our purpose was to elucidate the genotype and ophthalmological and audiological phenotype in TUBB4B-associated inherited retinal dystrophy (IRD) and sensorineural hearing loss (SNHL), and to model the effects of all possible amino acid substitutions at the hotspot codons Arg390 and Arg391. Six patients from five families with heterozygous missense variants in TUBB4B were included in this observational study. Ophthalmological testing included best-corrected visual acuity, fundus examination, optical coherence tomography, fundus autofluorescence imaging, and full-field electroretinography (ERG). Audiological examination included pure-tone and speech audiometry in adult patients and auditory brainstem response testing in a child. Genetic testing was performed by disease gene panel analysis based on genome sequencing. The molecular consequences of the substitutions of residues 390 and 391 on TUBB4B and its interaction with α-tubulin were predicted in silico on its three-dimensional structure obtained by homology modelling. Two independent patients had amino acid exchanges at position 391 (p.(Arg391His) or p.(Arg391Cys)) of the TUBB4B protein. Both had a distinct IRD phenotype with peripheral round yellowish lesions with pigmented spots and mild or moderate SNHL, respectively. Yet the phenotype was milder with a sectorial pattern of bone spicules in one patient, likely due to a genetically confirmed mosaicism for p.(Arg391His). Three patients were heterozygous for an amino acid exchange at position 390 (p.(Arg390Gln) or p.(Arg390Trp)) and presented with another distinct retinal phenotype with well demarcated pericentral retinitis pigmentosa. All showed SNHL ranging from mild to severe. One additional patient showed a variant distinct from codon 390 or 391 (p.(Tyr310His)), and presented with congenital profound hearing loss and reduced responses in ERG. Variants at codon positions 390 and 391 were predicted to decrease the structural stability of TUBB4B and its complex with α-tubulin, as well as the complex affinity. In conclusion, the twofold larger reduction in heterodimer affinity exhibited by Arg391 substitutions suggested an association with the more severe retinal phenotype, compared to the substitution at Arg390.


Codon , Hearing Loss, Sensorineural , Phenotype , Tubulin , Humans , Female , Tubulin/genetics , Tubulin/chemistry , Male , Adult , Hearing Loss, Sensorineural/genetics , Codon/genetics , Middle Aged , Mutation, Missense , Child , Pedigree , Adolescent , Amino Acid Substitution , Young Adult , Retinitis Pigmentosa/genetics
2.
Comput Biol Med ; 176: 108597, 2024 Jun.
Article En | MEDLINE | ID: mdl-38763069

BACKGROUND: Recessive GJB2 variants, the most common genetic cause of hearing loss, may contribute to progressive sensorineural hearing loss (SNHL). The aim of this study is to build a realistic predictive model for GJB2-related SNHL using machine learning to enable personalized medical planning for timely intervention. METHOD: Patients with SNHL with confirmed biallelic GJB2 variants in a nationwide cohort between 2005 and 2022 were included. Different data preprocessing protocols and computational algorithms were combined to construct a prediction model. We randomly divided the dataset into training, validation, and test sets at a ratio of 72:8:20, and repeated this process ten times to obtain an average result. The performance of the models was evaluated using the mean absolute error (MAE), which refers to the discrepancy between the predicted and actual hearing thresholds. RESULTS: We enrolled 449 patients with 2184 audiograms available for deep learning analysis. SNHL progression was identified in all models and was independent of age, sex, and genotype. The average hearing progression rate was 0.61 dB HL per year. The best MAE for linear regression, multilayer perceptron, long short-term memory, and attention model were 4.42, 4.38, 4.34, and 4.76 dB HL, respectively. The long short-term memory model performed best with an average MAE of 4.34 dB HL and acceptable accuracy for up to 4 years. CONCLUSIONS: We have developed a prognostic model that uses machine learning to approximate realistic hearing progression in GJB2-related SNHL, allowing for the design of individualized medical plans, such as recommending the optimal follow-up interval for this population.


Connexin 26 , Hearing Loss, Sensorineural , Machine Learning , Humans , Connexin 26/genetics , Hearing Loss, Sensorineural/genetics , Hearing Loss, Sensorineural/physiopathology , Female , Male , Adult , Child , Adolescent , Middle Aged , Child, Preschool
3.
FASEB J ; 38(10): e23651, 2024 May 31.
Article En | MEDLINE | ID: mdl-38752537

Singleton-Merten syndrome (SMS) is a rare immunogenetic disorder affecting multiple systems, characterized by dental dysplasia, aortic calcification, glaucoma, skeletal abnormalities, and psoriasis. Glaucoma, a key feature of both classical and atypical SMS, remains poorly understood in terms of its molecular mechanism caused by DDX58 mutation. This study presented a novel DDX58 variant (c.1649A>C [p.Asp550Ala]) in a family with childhood glaucoma. Functional analysis showed that DDX58 variant caused an increase in IFN-stimulated gene expression and high IFN-ß-based type-I IFN. As the trabecular meshwork (TM) is responsible for controlling intraocular pressure (IOP), we examine the effect of IFN-ß on TM cells. Our study is the first to demonstrate that IFN-ß significantly reduced TM cell viability and function by activating autophagy. In addition, anterior chamber injection of IFN-ß remarkably increased IOP level in mice, which can be attenuated by treatments with autophagy inhibitor chloroquine. To uncover the specific mechanism underlying IFN-ß-induced autophagy in TM cells, we performed microarray analysis in IFN-ß-treated and DDX58 p.Asp550Ala TM cells. It showed that RSAD2 is necessary for IFN-ß-induced autophagy. Knockdown of RSAD2 by siRNA significantly decreased autophagy flux induced by IFN-ß. Our findings suggest that DDX58 mutation leads to the overproduction of IFN-ß, which elevates IOP by modulating autophagy through RSAD2 in TM cells.


Autophagy , Interferon-beta , Intraocular Pressure , Trabecular Meshwork , Autophagy/drug effects , Trabecular Meshwork/metabolism , Trabecular Meshwork/drug effects , Humans , Animals , Mice , Intraocular Pressure/physiology , Interferon-beta/metabolism , Male , Female , Glaucoma/pathology , Glaucoma/metabolism , Glaucoma/genetics , Hearing Loss, Sensorineural/genetics , Hearing Loss, Sensorineural/pathology , Hearing Loss, Sensorineural/metabolism , DEAD Box Protein 58/metabolism , DEAD Box Protein 58/genetics , Mice, Inbred C57BL , Mutation , Optic Atrophy/genetics , Optic Atrophy/metabolism , Optic Atrophy/pathology , Pedigree , Odontodysplasia , Vascular Calcification , Dental Enamel Hypoplasia , Metacarpus/abnormalities , Osteoporosis , Muscular Diseases , Aortic Diseases , Receptors, Immunologic
4.
BMJ Case Rep ; 17(5)2024 May 13.
Article En | MEDLINE | ID: mdl-38740443

Alport syndrome and autosomal dominant polycystic kidney disease are monogenic causes of chronic kidney disease and end-stage kidney failure. We present a case of a man in his 60s with progressive chronic kidney disease, bilateral sensorineural hearing loss and multiple renal cysts. Genetic analysis revealed a heterozygous variant in COL4A3 (linked to Alport syndrome) and in the GANAB gene (associated with a milder form of autosomal dominant polycystic kidney disease). Although each variant confers a mild risk of developing end-stage kidney disease, the patient presented a pronounced and accelerated progression of chronic kidney disease, which goes beyond what would be predicted by adding up their individual effects. This suggests a potential synergic effect of both variants, which warrants further investigation.


Collagen Type IV , Nephritis, Hereditary , Polycystic Kidney, Autosomal Dominant , Humans , Nephritis, Hereditary/genetics , Nephritis, Hereditary/complications , Nephritis, Hereditary/diagnosis , Male , Polycystic Kidney, Autosomal Dominant/genetics , Polycystic Kidney, Autosomal Dominant/complications , Collagen Type IV/genetics , Middle Aged , Autoantigens/genetics , Disease Progression , Kidney Failure, Chronic/genetics , Kidney Failure, Chronic/etiology , Hearing Loss, Sensorineural/genetics , Hearing Loss, Sensorineural/diagnosis
5.
J Med Case Rep ; 18(1): 241, 2024 May 12.
Article En | MEDLINE | ID: mdl-38734626

BACKGROUND: Mutations in the GJB2 gene, which encodes the protein connexin 26 and is involved in inner ear homeostasis, are identified in approximately 50% of patients with autosomal recessive nonsyndromic hearing loss, making it one of the primary causes of prelingual nonsyndromic hearing loss in various populations. The 35delG mutation, one of the most common mutations of the GJB2 gene, usually causes prelingual, bilateral mild to profound, nonprogressive sensorineural hearing loss. CASE PRESENTATION: We present an unusual case of an 18-year-old Turkish female with heterozygous 35delG mutation and postlingual, profound-sloping, progressive and fluctuating unilateral sensorineural hearing loss. The phenotype is different from the usual findings. CONCLUSIONS: The 35delG mutation causing hearing loss may not always be reflected in the phenotype as expected and therefore may have different audiologic manifestations.


Connexin 26 , Connexins , Hearing Loss, Sensorineural , Phenotype , Humans , Female , Adolescent , Hearing Loss, Sensorineural/genetics , Connexin 26/genetics , Connexins/genetics , Mutation
6.
Genes (Basel) ; 15(5)2024 Apr 29.
Article En | MEDLINE | ID: mdl-38790200

Hearing loss (HL) is a common and multi-complex etiological deficit that can occur at any age and can be caused by genetic variants, aging, toxic drugs, noise, injury, viral infection, and other factors. Recently, a high incidence of genetic etiologies in congenital HL has been reported, and the usefulness of genetic testing has been widely accepted in congenital-onset or early-onset HL. In contrast, there have been few comprehensive reports on the relationship between late-onset HL and genetic causes. In this study, we performed next-generation sequencing analysis for 91 HL patients mainly consisting of late-onset HL patients. As a result, we identified 23 possibly disease-causing variants from 29 probands, affording a diagnostic rate for this study of 31.9%. The highest diagnostic rate was observed in the congenital/early-onset group (42.9%), followed by the juvenile/young adult-onset group (31.7%), and the middle-aged/aged-onset group (21.4%). The diagnostic ratio decreased with age; however, genetic etiologies were involved to a considerable degree even in late-onset HL. In particular, the responsible gene variants were found in 19 (55.9%) of 34 patients with a familial history and progressive HL. Therefore, this phenotype is considered to be a good candidate for genetic evaluation based on this diagnostic panel.


Age of Onset , Genetic Testing , Hearing Loss, Sensorineural , High-Throughput Nucleotide Sequencing , Humans , Female , Male , Hearing Loss, Sensorineural/genetics , Adult , Middle Aged , Genetic Testing/methods , Adolescent , Aged , Child , Young Adult , Child, Preschool , Mutation , Genetic Predisposition to Disease
8.
Sci Rep ; 14(1): 10596, 2024 05 08.
Article En | MEDLINE | ID: mdl-38720048

To investigate the association between hereditary hearing loss and vestibular function, we compared vestibular function and symptoms among patients with GJB2, SLC26A4, and CDH23 variants. Thirty-nine patients with sensory neural hearing loss (11 males and 28 females) with biallelic pathogenic variants in either GJB2, SLC26A4, or CDH23 were included in this study (13 GJB2, 15 SLC26A4, and 11 CDH23). The patients were examined using caloric testing and cervical and ocular vestibular-evoked myogenic potentials (cVEMP and oVEMP). We also compared vestibular function and symptoms between patients with these gene variants and 78 normal-hearing ears without vestibular symptoms as controls. The frequency of semicircular canal hypofunction in caloric testing was higher in patients with SLC26A4 variants (47%) than in those with GJB2 (0%) and CDH23 variants (27%). According to the cVEMP results, 69% of patients with GJB2 variants had saccular hypofunction, a significantly higher proportion than in those carrying other variants (SLC26A4, 20%; CDH23, 18%). In oVEMP, which reflects utricular function, no difference was observed in the frequency of hypofunction among the three genes (GJB2, 15%; SLC26A4, 40%; and CDH23, 36%). Hence, discernable trends indicate vestibular dysfunction associated with each gene.


Cadherin Related Proteins , Cadherins , Connexin 26 , Sulfate Transporters , Humans , Female , Male , Cadherins/genetics , Sulfate Transporters/genetics , Connexin 26/genetics , Adult , Adolescent , Middle Aged , Child , Young Adult , Vestibular Evoked Myogenic Potentials , Membrane Transport Proteins/genetics , Hearing Loss, Sensorineural/genetics , Hearing Loss, Sensorineural/physiopathology , Vestibular Function Tests , Child, Preschool , Vestibule, Labyrinth/physiopathology , Connexins/genetics
9.
J Pediatr Ophthalmol Strabismus ; 61(3): e23-e27, 2024.
Article En | MEDLINE | ID: mdl-38788144

A 6-month-old female infant with megalophthalmos was referred with the suspicion of congenital glaucoma. Refractive measurements obtained with handheld autorefractometry were -7.00 -2.00 × 90° in the right eye and -6.00 -2.00 × 100° in the left eye and ultrasonic axial lengths were 22.50 mm in both eyes. Intraocular pressures and vertical and horizontal corneal diameters of the proband were 11 mm Hg, 11 mm, and 11.50 mm in both eyes, respectively. She was diagnosed as having early-onset high myopia. Her father also had degenerative high myopia (-12.00 diopters) in the right eye, bilateral congenital lens opacities, and retinal detachment in the left eye. Her mother was emmetropic with normal eye examination results. Clinical exome sequencing analysis revealed a novel ENST00000380518.3 c.3528_3530 delins GACCATTAGCA (Chr12:48369813: GCA > TGCTAATGGTC) variant in the collagen type II alpha 1 chain (COL2A1) on chromosome 12q13 (OMIM 108300), consistent with the Stickler syndrome type 1. Subsequent segregation analysis revealed paternal inheritance. Although many pathogenic null variants have been described within the COL2A1 gene, there is currently no documented literature pertaining to this specific variant, making this the inaugural report of its manifestation in scientific discourse. [J Pediatr Ophthalmol Strabismus. 2024;61(3):e23-e27.].


Arthritis , Collagen Type II , Connective Tissue Diseases , Hearing Loss, Sensorineural , Pedigree , Humans , Female , Connective Tissue Diseases/genetics , Connective Tissue Diseases/diagnosis , Infant , Collagen Type II/genetics , Hearing Loss, Sensorineural/genetics , Hearing Loss, Sensorineural/diagnosis , Arthritis/genetics , Arthritis/diagnosis , Turkey , Mutation , Male , DNA/genetics , Retinal Detachment/genetics , Retinal Detachment/diagnosis , Exome Sequencing , Intraocular Pressure/physiology , DNA Mutational Analysis
10.
Medicine (Baltimore) ; 103(16): e37702, 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38640279

RATIONALE: Hereditary hearing loss is known to exhibit a significant degree of genetic heterogeneity. Herein, we present a case report of a novel mutation in the tenascin-C (TNC) gene in Chinese patients with nonsyndromic hearing loss (NSHL). PATIENT CONCERNS: This includes a young deaf couple and their 2-year-old baby. DIAGNOSES: Based on the clinical information, hearing test, metagenomic next-generation sequencing (mNGS), Sanger sequencing, protein function and structure analysis, and model prediction, in our case, the study results revealed 2 heterozygous mutations in the TNC gene (c.2852C>T, p.Thr951Ile) and the TBC1 domain family member 24 (TBC1D24) gene (c.1570C>T, p.Arg524Trp). These mutations may be responsible for the hearing loss observed in this family. Notably, the heterozygous mutations in the TNC gene (c.2852C>T, p.Thr951Ile) have not been previously reported in the literature. INTERVENTIONS: Avoid taking drugs that can cause deafness, wearing hearing AIDS, and cochlear implants. OUTCOMES: Regular follow-up of family members is ongoing. LESSONS: The genetic diagnosis of NSHL holds significant importance as it helps in making informed treatment decisions, providing prognostic information, and offering genetic counseling for the patient's family.


Deafness , Hearing Loss, Sensorineural , Hearing Loss , Tenascin , Child, Preschool , Humans , China , Deafness/genetics , GTPase-Activating Proteins/genetics , Hearing Loss/genetics , Hearing Loss, Sensorineural/genetics , Mutation , Pedigree , Tenascin/genetics
11.
Genes (Basel) ; 15(4)2024 Apr 12.
Article En | MEDLINE | ID: mdl-38674423

The PTPRQ gene has been identified as one of the genes responsible for non-syndromic sensorineural hearing loss (SNHL), and assigned as DFNA73 and DFNB84. To date, about 30 causative PTPRQ variants have been reported to cause SNHL. However, the detailed clinical features of PTPRQ-associated hearing loss (HL) remain unclear. In this study, 15,684 patients with SNHL were enrolled and genetic analysis was performed using massively parallel DNA sequencing (MPS) for 63 target deafness genes. We identified 17 possibly disease-causing PTPRQ variants in 13 Japanese patients, with 15 of the 17 variants regarded as novel. The majority of variants identified in this study were loss of function. Patients with PTPRQ-associated HL mostly showed congenital or childhood onset. Their hearing levels at high frequency deteriorated earlier than that at low frequency. The severity of HL progressed from moderate to severe or profound HL. Five patients with profound or severe HL received cochlear implantation, and the postoperative sound field threshold levels and discrimination scores were favorable. These findings will contribute to a greater understanding of the clinical features of PTPRQ-associated HL and may be relevant in clinical practice.


Hearing Loss, Sensorineural , Receptor-Like Protein Tyrosine Phosphatases, Class 3 , Humans , Male , Female , Receptor-Like Protein Tyrosine Phosphatases, Class 3/genetics , Child , Child, Preschool , Hearing Loss, Sensorineural/genetics , Hearing Loss, Sensorineural/pathology , Adult , Japan , Adolescent , Mutation , Infant , High-Throughput Nucleotide Sequencing , Cohort Studies , Middle Aged , East Asian People
14.
Acta otorrinolaringol. esp ; 75(2): 83-93, Mar-Abr. 2024. tab, graf
Article Es | IBECS | ID: ibc-231380

Introducción: La hipoacusia neurosensorial (HNS) congénita o de inicio precoz es una de las enfermedades hereditarias más frecuentes en nuestro medio y es la deficiencia sensorial más frecuente. Es importante realizar un estudio etiológico de la hipoacusia y el estudio genético mediante la secuenciación de nueva generación (NGS) es la prueba con mayor rendimiento diagnóstico. Nuestro estudio muestra los resultados genéticos obtenidos en una serie de pacientes con HNS congénita/de inicio precoz bilateral. Material y método: Se incluyeron 105 niños diagnosticados de HNS bilateral a los que se les realizó un estudio genético entre los años 2019 y 2022. El estudio genético consistió en una secuenciación masiva del exoma completo, filtrando el análisis para los genes incluidos en un panel virtual de hipoacusia con 244 genes. Resultados: Se obtuvo un diagnóstico genético en 48% (50/105) de los pacientes. Se detectaron variantes patogénicas y probablemente patogénicas en 26 genes diferentes, siendo los genes más frecuentemente afectados el gen GJB2, USH2A y STRC. De las variantes detectadas 52% (26/50) se asociaron a una hipoacusia no sindrómica, 40% (20/50) una hipoacusia sindrómica y 8% restante (4/50) se podían asociar tanto a una hipoacusia sindrómica como no sindrómica. Conclusiones: El estudio genético constituye una parte fundamental del diagnóstico etiológico de la HNS bilateral. Nuestra serie muestra que el estudio genético de la hipoacusia mediante NGS tiene un alto rendimiento diagnóstico y nos proporciona información de gran utilidad en la práctica clínica.(AU)


Introduction: Congenital/early-onset sensorineural hearing loss (SNHL) is one of the most common hereditary disorders in our environment. There is increasing awareness of the importance of an etiologic diagnosis, and genetic testing with next-generation sequencing (NGS) has the highest diagnostic yield. Our study shows the genetic results obtained in a cohort of patients with bilateral congenital/early-onset SNHL. Materials and methods: We included 105 children with bilateral SNHL that received genetic testing between 2019 and 2022. Genetic tests were performed with whole exome sequencing, analyzing genes related to hearing loss (virtual panel with 244 genes). Results: 48% (50/105) of patients were genetically diagnosed. We identified pathogenic and likely pathogenic variants in 26 different genes, and the most frequently mutated genes were GJB2, USH2A and STRC. 52% (26/50) of variants identified produced non-syndromic hearing loss, 40% (20/50) produced syndromic hearing loss, and the resting 8% (4/50) could produce both non-syndromic and syndromic hearing loss. Conclusions: Genetic testing plays a vital role in the etiologic diagnosis of bilateral SNHL. Our cohort shows that genetic testing with NGS has a high diagnostic yield and can provide useful information for the clinical workup of patients.(AU)


Humans , Male , Female , Child , Hearing Loss, Sensorineural/diagnosis , Hearing Loss, Sensorineural/genetics , Hearing Loss, Sensorineural/etiology , Preimplantation Diagnosis , Otolaryngology , High-Throughput Nucleotide Sequencing
15.
Zool Res ; 45(2): 284-291, 2024 Mar 18.
Article En | MEDLINE | ID: mdl-38485498

Hereditary hearing loss (HHL), a genetic disorder that impairs auditory function, significantly affects quality of life and incurs substantial economic losses for society. To investigate the underlying causes of HHL and evaluate therapeutic outcomes, appropriate animal models are necessary. Pigs have been extensively used as valuable large animal models in biomedical research. In this review, we highlight the advantages of pig models in terms of ear anatomy, inner ear morphology, and electrophysiological characteristics, as well as recent advancements in the development of distinct genetically modified porcine models of hearing loss. Additionally, we discuss the prospects, challenges, and recommendations regarding the use pig models in HHL research. Overall, this review provides insights and perspectives for future studies on HHL using porcine models.


Ear, Inner , Hearing Loss, Sensorineural , Hearing Loss , Swine Diseases , Animals , Swine/genetics , Quality of Life , Hearing Loss, Sensorineural/genetics , Hearing Loss, Sensorineural/veterinary , Hearing Loss/genetics , Hearing Loss/therapy , Hearing Loss/veterinary , Models, Animal
16.
J Psychosom Res ; 179: 111641, 2024 Apr.
Article En | MEDLINE | ID: mdl-38461621

OBJECTIVE: This study employed bidirectional two-sample Mendelian randomization (MR) to investigate the causal links between psychiatric disorders and sensorineural hearing loss (SNHL). METHODS: Instrumental variables were chosen from genome-wide association studies of schizophrenia (SCH, N = 127,906), bipolar disorder (BD, N = 51,710), major depressive disorder (MDD, N = 500,199), and SNHL (N = 212,544). In the univariable MR analysis, the inverse-variance weighted method (IVW) was conducted as the primary analysis, complemented by various sensitivity analyses to ensure result robustness. RESULTS: SCH exhibited a decreased the risk of SNHL (OR = 0.949, P = 0.005), whereas BD showed an increased incidence of SNHL (OR = 1.145, P = 0.005). No causal association was found for MDD on SNHL (OR = 1.088, P = 0.246). Multivariable MR validated these results. In the reverse direction, genetically predicted SNHL was linked to a decreased risk of SCH with suggestive significance (OR = 0.912, P = 0.023). No reverse causal relationships were observed for SNHL influencing BD or MDD. These findings remained consistent across various MR methods and sensitivity analyses. CONCLUSION: This study demonstrated that the causal relationships between diverse psychiatric disorders with SNHL were heterogeneous. Specifically, SCH was inversely associated with SNHL susceptibility, and similarly, a reduced risk of SNHL was observed in schizophrenia patients. In contrast, BD exhibited an increased incidence of SNHL, although SNHL did not influence the prevalence of BD. No causal association between MDD and SNHL was found.


Depressive Disorder, Major , Hearing Loss, Sensorineural , Mental Disorders , Humans , Mendelian Randomization Analysis , Depressive Disorder, Major/complications , Depressive Disorder, Major/epidemiology , Depressive Disorder, Major/genetics , Genome-Wide Association Study , Hearing Loss, Sensorineural/epidemiology , Hearing Loss, Sensorineural/genetics
17.
Cereb Cortex ; 34(3)2024 03 01.
Article En | MEDLINE | ID: mdl-38494888

INTRODUCTION: Previous studies have suggested a correlation between hearing loss (HL) and cortical alterations, but the specific brain regions that may be affected are unknown. METHODS: Genome-wide association study (GWAS) data for 3 subtypes of HL phenotypes, sensorineural hearing loss (SNHL), conductive hearing loss, and mixed hearing loss, were selected as exposures, and GWAS data for brain structure-related traits were selected as outcomes. The inverse variance weighted method was used as the main estimation method. RESULTS: Negative associations were identified between genetically predicted SNHL and brain morphometric indicators (cortical surface area, cortical thickness, or volume of subcortical structures) in specific brain regions, including the bankssts (ß = -0.006 mm, P = 0.016), entorhinal cortex (ß = -4.856 mm2, P = 0.029), and hippocampus (ß = -24.819 cm3, P = 0.045), as well as in brain regions functionally associated with visual perception, including the pericalcarine (ß = -10.009 cm3, P = 0.013). CONCLUSION: Adaptive changes and functional remodeling of brain structures occur in patients with genetically predicted HL. Brain regions functionally associated with auditory perception, visual perception, and memory function are the main brain regions vulnerable in HL.


Deafness , Hearing Loss, Sensorineural , Hearing Loss , Humans , Genome-Wide Association Study , Mendelian Randomization Analysis , Hearing Loss, Sensorineural/diagnostic imaging , Hearing Loss, Sensorineural/genetics
18.
Hum Genet ; 143(3): 311-329, 2024 Mar.
Article En | MEDLINE | ID: mdl-38459354

Identification of genes associated with nonsyndromic hearing loss is a crucial endeavor given the substantial number of individuals who remain without a diagnosis after even the most advanced genetic testing. PKHD1L1 was established as necessary for the formation of the cochlear hair-cell stereociliary coat and causes hearing loss in mice and zebrafish when mutated. We sought to determine if biallelic variants in PKHD1L1 also cause hearing loss in humans. Exome sequencing was performed on DNA of four families segregating autosomal recessive nonsyndromic sensorineural hearing loss. Compound heterozygous p.[(Gly129Ser)];p.[(Gly1314Val)] and p.[(Gly605Arg)];p[(Leu2818TyrfsTer5)], homozygous missense p.(His2479Gln) and nonsense p.(Arg3381Ter) variants were identified in PKHD1L1 that were predicted to be damaging using in silico pathogenicity prediction methods. In vitro functional analysis of two missense variants was performed using purified recombinant PKHD1L1 protein fragments. We then evaluated protein thermodynamic stability with and without the missense variants found in one of the families and performed a minigene splicing assay for another variant. In silico molecular modeling using AlphaFold2 and protein sequence alignment analysis were carried out to further explore potential variant effects on structure. In vitro functional assessment indicated that both engineered PKHD1L1 p.(Gly129Ser) and p.(Gly1314Val) mutant constructs significantly reduced the folding and structural stabilities of the expressed protein fragments, providing further evidence to support pathogenicity of these variants. Minigene assay of the c.1813G>A p.(Gly605Arg) variant, located at the boundary of exon 17, revealed exon skipping leading to an in-frame deletion of 48 amino acids. In silico molecular modeling exposed key structural features that might suggest PKHD1L1 protein destabilization. Multiple lines of evidence collectively associate PKHD1L1 with nonsyndromic mild-moderate to severe sensorineural hearing loss. PKHD1L1 testing in individuals with mild-moderate hearing loss may identify further affected families.


Deafness , Mutation, Missense , Pedigree , Receptors, Cell Surface , Stereocilia , Animals , Female , Humans , Male , Deafness/genetics , Exome Sequencing , Genes, Recessive , Hearing Loss, Sensorineural/genetics , Hearing Loss, Sensorineural/pathology , Models, Molecular , Receptors, Cell Surface/genetics , Stereocilia/metabolism , Stereocilia/pathology , Stereocilia/genetics
19.
Hum Genet ; 143(3): 279-291, 2024 Mar.
Article En | MEDLINE | ID: mdl-38451290

Biallelic pathogenic variants in MAP3K20, which encodes a mitogen-activated protein kinase, are a rare cause of split-hand foot malformation (SHFM), hearing loss, and nail abnormalities or congenital myopathy. However, heterozygous variants in this gene have not been definitively associated with a phenotype. Here, we describe the phenotypic spectrum associated with heterozygous de novo variants in the linker region between the kinase domain and leucine zipper domain of MAP3K20. We report five individuals with diverse clinical features, including craniosynostosis, limb anomalies, sensorineural hearing loss, and ectodermal dysplasia-like phenotypes who have heterozygous de novo variants in this specific region of the gene. These individuals exhibit both shared and unique clinical manifestations, highlighting the complexity and variability of the disorder. We propose that the involvement of MAP3K20 in endothelial-mesenchymal transition provides a plausible etiology of these features. Together, these findings characterize a disorder that both expands the phenotypic spectrum associated with MAP3K20 and highlights the need for further studies on its role in early human development.


Craniosynostoses , Ectodermal Dysplasia , Hearing Loss, Sensorineural , Heterozygote , Humans , Ectodermal Dysplasia/genetics , Ectodermal Dysplasia/pathology , Hearing Loss, Sensorineural/genetics , Hearing Loss, Sensorineural/pathology , Male , Female , Craniosynostoses/genetics , Phenotype , Child, Preschool , Limb Deformities, Congenital/genetics , Child , Mutation , Infant , MAP Kinase Kinase Kinases/genetics
20.
BMJ Case Rep ; 17(3)2024 Mar 29.
Article En | MEDLINE | ID: mdl-38553020

A female, term neonate, born via vaginal delivery to a G5P1D1A3 hypothyroid mother with a history of an elder sibling being homozygous for HSD17B4 mutation, diagnosed while working up his progressive neurological disorder and succumbing to the same. The family screening revealed that both parents were heterozygous carriers of the same mutation in the gene HSD17B4 After genetic counselling, amniocentesis revealed the fetus to be having homozygosity for the same mutation. In view of precious pregnancy, normal antenatal scans and investigations, the pregnancy was continued, and baby was born with a birth weight of 2.65 kg and had a smooth perinatal transition. Parents were counselled regarding the course of the illness, possible complications and the need for regular follow-up. Ultrasound of the abdomen, pelvis and head was normal in the neonatal period. She was vaccinated as per the national schedule and gaining weight normally.


Gonadal Dysgenesis, 46,XX , Hearing Loss, Sensorineural , Infant, Newborn , Humans , Female , Pregnancy , Aged , Genetic Counseling , Hearing Loss, Sensorineural/genetics , Gonadal Dysgenesis, 46,XX/genetics , Mutation
...