Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 13.372
Filter
1.
Elife ; 132024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949655

ABSTRACT

Secreted chemokines form concentration gradients in target tissues to control migratory directions and patterns of immune cells in response to inflammatory stimulation; however, how the gradients are formed is much debated. Heparan sulfate (HS) binds to chemokines and modulates their activities. In this study, we investigated the roles of HS in the gradient formation and chemoattractant activity of CCL5 that is known to bind to HS. CCL5 and heparin underwent liquid-liquid phase separation and formed gradient, which was confirmed using CCL5 immobilized on heparin-beads. The biological implication of HS in CCL5 gradient formation was established in CHO-K1 (wild-type) and CHO-677 (lacking HS) cells by Transwell assay. The effect of HS on CCL5 chemoattractant activity was further proved by Transwell assay of human peripheral blood cells. Finally, peritoneal injection of the chemokines into mice showed reduced recruitment of inflammatory cells either by mutant CCL5 (lacking heparin-binding sequence) or by addition of heparin to wild-type CCL5. Our experimental data propose that co-phase separation of CCL5 with HS establishes a specific chemokine concentration gradient to trigger directional cell migration. The results warrant further investigation on other heparin-binding chemokines and allows for a more elaborate insight into disease process and new treatment strategies.


Subject(s)
Chemokine CCL5 , Chemotaxis , Cricetulus , Heparitin Sulfate , Chemokine CCL5/metabolism , Chemokine CCL5/genetics , Animals , Heparitin Sulfate/metabolism , Humans , CHO Cells , Mice , Heparin/metabolism , Heparin/pharmacology , Phase Separation
2.
Bull Exp Biol Med ; 177(1): 1-9, 2024 May.
Article in English | MEDLINE | ID: mdl-38954296

ABSTRACT

In sexually mature male Wistar rats with modeled post-traumatic stress disorder, personalized characteristics of neurobiological reactions in the population of predator-induced stress-resilient and stress-susceptible heparinized animals were determined. Characteristics of the systemic response of immune mechanisms, hypothalamic-pituitary-adrenal axis, behavioral manifestations, as well as basic properties of the CNS (excitation/inhibition) are presented. The study demonstrated encouraging positive results of the course administration of unfractionated heparin at a dose below the therapeutic and prophylactic doses. The inclusion of heparin drugs into the clinical practice for the treatment of post-traumatic stress disorder will not require large-scale clinical trials, because many effects of heparin as a nonspecific adaptogen are well studied. Moreover, these properties were confirmed at a higher technological level during the COVID-19 pandemic.


Subject(s)
Heparin , Hypothalamo-Hypophyseal System , Pituitary-Adrenal System , Rats, Wistar , Stress Disorders, Post-Traumatic , Animals , Stress Disorders, Post-Traumatic/drug therapy , Male , Heparin/therapeutic use , Heparin/pharmacology , Rats , Hypothalamo-Hypophyseal System/drug effects , Pituitary-Adrenal System/drug effects , Disease Models, Animal , COVID-19/virology , Behavior, Animal/drug effects , SARS-CoV-2/drug effects
3.
Clin Lab ; 70(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38965954

ABSTRACT

BACKGROUND: BNP is a sensitive and widely used biomarker for an early diagnosis of heart failure. Currently, most commercial BNP detection products use EDTA plasma samples. The aim of this study was to evaluate the clinical performance of the BNP test by using whole blood samples compared to plasma samples, and to evaluate the effect of the anticoagulant type on the BNP test result. METHODS: In total, 106 patients with different BNP levels from the Dahua Hospital volunteered for this study. Clinically homogenous samples, including EDTA anticoagulant plasma, EDTA whole blood, and heparin anticoagulant plasma, were collected and analyzed by using i-Reader S automatic immuno-analyzer and its supporting reagent kits. Pearson's correlation and weighted least squares linear regression analysis, Bland-Altman plotting, and Kappa test were used for statistical analysis. RESULTS: Correlation analysis showed that BNP concentrations, measured from EDTA anticoagulated plasma samples, had a good linear regression relationship with BNP from whole blood samples, with a slope of 0.9477, r = 0.9978, p < 0.05. A similar correlation was observed between EDTA anticoagulated plasma samples and heparin anticoagulant plasma, with a slope of 0.8413, r = 0.9793, p < 0.05. The BNP concentration measured from the heparin plasma samples were lower than of the EDTA plasma samples. Bland-Altman analysis for assessing BNP concentration agreement showed there was no outlier ratio between EDTA whole blood and EDTA plasma within the range of the detection system, as well as no outlier between EDTA anticoagulated and heparin anticoagulant plasma. Kappa coefficient of BNP concentration between homologous EDTA anticoagulated and heparin anticoagulant plasma was 0.8553 (p < 0.001), and for EDTA anticoagulated plasma and homologous whole blood it was 0.8941 (p < 0.001). CONCLUSIONS: The diagnostic performance of EDTA anticoagulated whole blood samples did not differ significantly from EDTA anticoagulated plasma samples for the BNP test. This study showed no big significant difference between EDTA anticoagulated and heparin anticoagulated plasma measurements within 2 hours. The type of anticoagulant should be carefully chosen when performing the BNP test if BNP samples were in vitro for a long time.


Subject(s)
Anticoagulants , Edetic Acid , Heparin , Natriuretic Peptide, Brain , Humans , Natriuretic Peptide, Brain/blood , Anticoagulants/pharmacology , Anticoagulants/blood , Heparin/pharmacology , Edetic Acid/pharmacology , Female , Male , Middle Aged , Aged , Blood Specimen Collection/methods , Biomarkers/blood , Linear Models , Heart Failure/blood , Heart Failure/diagnosis , Reproducibility of Results
4.
ACS Appl Mater Interfaces ; 16(24): 30929-30957, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38832934

ABSTRACT

Bioengineered composite hydrogel platforms made of a supramolecular coassembly have recently garnered significant attention as promising biomaterial-based healthcare therapeutics. The mechanical durability of amyloids, in conjunction with the structured charged framework rendered by biologically abundant key ECM component glycosaminoglycan, enables us to design minimalistic customized biomaterial suited for stimuli responsive therapy. In this study, by harnessing the heparin sulfate-binding aptitude of amyloid fibrils, we have constructed a pH-responsive extracellular matrix (ECM) mimicking hydrogel matrix. This effective biocompatible platform comprising heparin sulfate-amyloid coassembled hydrogel embedded with polyphenol functionalized silver nanoparticles not only provide a native skin ECM-like conductive environment but also provide wound-microenvironment responsive on-demand superior antibacterial efficacy for effective diabetic wound healing. Interestingly, both the cytocompatibility and antibacterial properties of this bioinspired matrix can be fine-tuned by controlling the mutual ratio of heparin sulfate-amyloid and incubated silver nanoparticle components, respectively. The designed biomaterial platform exhibits notable effectiveness in the treatment of chronic hyperglycemic wounds infected with multidrug-resistant bacteria, because of the integration of pH-responsive release characteristics of the incubated functionalized AgNP and the antibacterial amyloid fibrils. In addition to this, the aforementioned assemblage shows exceptional hemocompatibility with significant antibiofilm and antioxidant characteristics. Histological evidence of the incised skin tissue sections indicates that the fabricated composite hydrogel is also effective in controlling pro-inflammatory cytokines such as IL6 and TNFα expressions at the wound vicinity with significant upregulation of angiogenesis markers like CD31 and α-SMA.


Subject(s)
Amyloid , Anti-Bacterial Agents , Extracellular Matrix , Heparin , Hydrogels , Metal Nanoparticles , Silver , Wound Healing , Wound Healing/drug effects , Hydrogels/chemistry , Hydrogels/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Heparin/chemistry , Heparin/pharmacology , Silver/chemistry , Silver/pharmacology , Extracellular Matrix/chemistry , Extracellular Matrix/metabolism , Extracellular Matrix/drug effects , Metal Nanoparticles/chemistry , Amyloid/chemistry , Amyloid/metabolism , Animals , Humans , Staphylococcus aureus/drug effects , Escherichia coli/drug effects , Mice , Microbial Sensitivity Tests , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology
5.
ACS Appl Mater Interfaces ; 16(24): 30715-30727, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38833722

ABSTRACT

Pulp and periapical diseases can lead to the cessation of tooth development, resulting in compromised tooth structure and functions. Despite numerous efforts to induce pulp regeneration, effective strategies are still lacking. Growth factors (GFs) hold considerable promise in pulp regeneration due to their diverse cellular regulatory properties. However, the limited half-lives and susceptibility to degradation of exogenous GFs necessitate the administration of supra-physiological doses, leading to undesirable side effects. In this research, a heparin-functionalized bioactive glass (CaO-P2O5-SiO2-Heparin, abbreviated as PSC-Heparin) with strong bioactivity and a stable neutral pH is developed as a promising candidate to addressing challenges in pulp regeneration. Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and thermogravimetric analysis reveal the successful synthesis of PSC-Heparin. Scanning electron microscopy and X-ray diffraction show the hydroxyapatite formation can be observed on the surface of PSC-Heparin after soaking in simulated body fluid for 12 h. PSC-Heparin is capable of harvesting various endogenous GFs and sustainably releasing them over an extended duration by the enzyme-linked immunosorbent assay. Cytological experiments show that developed PSC-Heparin can facilitate the adhesion, migration, proliferation, and odontogenic differentiation of stem cells from apical papillae. Notably, the histological analysis of subcutaneous implantation in nude mice demonstrates PSC-Heparin is capable of promoting the odontoblast-like layers and pulp-dentin complex formation without the addition of exogenous GFs, which is vital for clinical applications. This work highlights an effective strategy of harvesting endogenous GFs and avoiding the involvement of exogenous GFs to achieve pulp-dentin complex regeneration, which may open a new horizon for regenerative endodontic therapy.


Subject(s)
Dental Pulp , Heparin , Regeneration , Heparin/chemistry , Heparin/pharmacology , Dental Pulp/drug effects , Dental Pulp/cytology , Dental Pulp/metabolism , Animals , Regeneration/drug effects , Mice , Glass/chemistry , Humans , Mice, Nude , Intercellular Signaling Peptides and Proteins/pharmacology , Intercellular Signaling Peptides and Proteins/chemistry , Stem Cells/drug effects , Stem Cells/cytology , Stem Cells/metabolism , Cell Differentiation/drug effects , Cell Proliferation/drug effects
6.
Virol J ; 21(1): 128, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840203

ABSTRACT

The envelope (E) protein of the Japanese encephalitis virus (JEV) is a key protein for virus infection and adsorption of host cells, which determines the virulence of the virus and regulates the intensity of inflammatory response. The mutation of multiple aa residues in the E protein plays a critical role in the attenuated strain of JEV. This study demonstrated that the Asp to Gly, Ser, and His mutation of the E389 site, respectively, the replication ability of the viruses in cells was significantly reduced, and the viral neuroinvasiveness was attenuated to different degrees. Among them, the mutation at E389 site enhanced the E protein flexibility contributed to the attenuation of neuroinvasiveness. In contrast, less flexibility of E protein enhanced the neuroinvasiveness of the strain. Our results indicate that the mechanism of attenuation of E389 aa mutation attenuates neuroinvasiveness is related to increased flexibility of the E protein. In addition, the increased flexibility of E protein enhanced the viral sensitivity to heparin inhibition in vitro, which may lead to a decrease in the viral load entering brain. These results suggest that E389 residue is a potential site affecting JEV virulence, and the flexibility of the E protein of aa at this site plays an important role in the determination of neuroinvasiveness.


Subject(s)
Encephalitis Virus, Japanese , Viral Envelope Proteins , Encephalitis Virus, Japanese/genetics , Encephalitis Virus, Japanese/physiology , Encephalitis Virus, Japanese/drug effects , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism , Viral Envelope Proteins/chemistry , Animals , Cell Line , Virulence , Virus Replication , Encephalitis, Japanese/virology , Humans , Heparin/pharmacology , Amino Acid Substitution , Mutation, Missense , Mice , Mutation , Virulence Factors/genetics , Membrane Glycoproteins
7.
Antimicrob Resist Infect Control ; 13(1): 53, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38764050

ABSTRACT

BACKGROUND: Stenotrophomonas maltophilia is a gram-negative bacterium that can cause hospital infections and outbreaks within hospitals. This study aimed to evaluate an outbreak of Stenotrophomonas maltophilia, caused by ready-to-use commercial syringes containing liquid lithium and heparin for arterial blood gas collection in a university hospital. METHODS: Upon detecting an increase in Stenotrophomonas maltophilia growth in blood cultures between 15.09.2021 and 19.11.2021, an outbreak analysis and a case-control study (52 patients for the case group, 56 patients for the control group) were performed considering risk factors for bacteremia. Samples from possible foci for bacteremia were also cultured. Growing bacteria were identified by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. The genetic linkage and clonal relationship isolates were investigated with pulsed-field gel electrophoresis (PFGE) in the reference laboratory. RESULTS: In the case-control study, the odds ratio for the central venous catheter [3.38 (95% confidence interval [CI]: 1.444, 8.705 ; p = 0.006)], for surgery [3.387 (95% confidence interval [CI]: 1.370, 8.373 ; p = 0.008)] and for arterial blood gas collection history [18.584 (95% confidence interval [CI]:4.086, 84.197; p < 0.001)] were identified as significant risk factors. Stenotrophomonas maltophilia growth was found in ready-to-use commercial syringes used for arterial blood gas collection. Molecular analysis showed that the growths in the samples taken from commercial syringes and the growths from blood cultures were the same. It was decided that the epidemic occurred because the method for sterilization of heparinized liquid preparations were not suitable. After discontinuing the use of the kits with this lot number, the outbreak was brought under control. CONCLUSIONS: According to our results, disposable or sterile medical equipment should be included as a risk factor in outbreak analyses. The method by which injectors containing liquids, such as heparin, are sterilized should be reviewed. Our study also revealed the importance of the cooperation of the infection control team with the microbiology laboratory.


Subject(s)
Cross Infection , Disease Outbreaks , Gram-Negative Bacterial Infections , Stenotrophomonas maltophilia , Stenotrophomonas maltophilia/isolation & purification , Humans , Case-Control Studies , Gram-Negative Bacterial Infections/epidemiology , Gram-Negative Bacterial Infections/microbiology , Male , Female , Cross Infection/epidemiology , Cross Infection/microbiology , Middle Aged , Aged , Adult , Risk Factors , Bacteremia/epidemiology , Bacteremia/microbiology , Hospitals, University , Syringes/microbiology , Electrophoresis, Gel, Pulsed-Field , Aged, 80 and over , Heparin/pharmacology
8.
Mar Drugs ; 22(5)2024 May 20.
Article in English | MEDLINE | ID: mdl-38786623

ABSTRACT

Mycoplasma pneumoniae, a notable pathogen behind respiratory infections, employs specialized proteins to adhere to the respiratory epithelium, an essential process for initiating infection. The role of glycosaminoglycans, especially heparan sulfate, is critical in facilitating pathogen-host interactions, presenting a strategic target for therapeutic intervention. In this study, we assembled a glycan library comprising heparin, its oligosaccharide derivatives, and a variety of marine-derived sulfated glycans to screen the potential inhibitors for the pathogen-host interactions. By using Surface Plasmon Resonance spectroscopy, we evaluated the library's efficacy in inhibiting the interaction between M. pneumoniae adhesion proteins and heparin. Our findings offer a promising avenue for developing novel therapeutic strategies against M. pneumoniae infections.


Subject(s)
Heparin , Mycoplasma pneumoniae , Polysaccharides , Mycoplasma pneumoniae/drug effects , Heparin/pharmacology , Heparin/chemistry , Polysaccharides/pharmacology , Polysaccharides/chemistry , Aquatic Organisms , Humans , Adhesins, Bacterial/metabolism , Adhesins, Bacterial/drug effects , Bacterial Adhesion/drug effects , Pneumonia, Mycoplasma/drug therapy , Pneumonia, Mycoplasma/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Animals , Host-Pathogen Interactions , Sulfates/chemistry , Sulfates/pharmacology
9.
Int J Biol Macromol ; 270(Pt 2): 132181, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38740155

ABSTRACT

Nowadays, developing vascular grafts (e.g., vascular patches and tubular grafts) is challenging. Bacterial cellulose (BC) with 3D fibrous network has been widely investigated for vascular applications. In this work, different from BC vascular patch cultured with the routine culture medium, dopamine (DA)-containing culture medium is employed to in situ synthesize dense BC fibrous structure with significantly increased fiber diameter and density. Simultaneously, BC fibers are modified by DA during in situ synthesis process. Then DA on BC fibers can self-polymerize into polydopamine (PDA) accompanied with the removal of bacteria in NaOH solution, obtaining PDA-modified dense BC (PDBC) vascular patch. Heparin (Hep) is subsequently covalently immobilized on PDBC fibers to form Hep-immobilized PDBC (Hep@PDBC) vascular patch. The obtained results indicate that Hep@PDBC vascular patch exhibits remarkable tensile and burst strength due to its dense fibrous structure. More importantly, compared with BC and PDBC vascular patches, Hep@PDBC vascular patch not only displays reduced platelet adhesion and improved anticoagulation activity, but also promotes the proliferation, adhesion, spreading, and protein expression of human umbilical vein endothelial cells, contributing to the endothelialization process. The combined strategy of in situ densification and Hep immobilization provides a feasible guidance for the construction of BC-based vascular patches.


Subject(s)
Blood Vessel Prosthesis , Cellulose , Heparin , Human Umbilical Vein Endothelial Cells , Cellulose/chemistry , Heparin/chemistry , Heparin/pharmacology , Humans , Platelet Adhesiveness/drug effects , Cell Proliferation/drug effects , Polymers/chemistry , Polymers/pharmacology , Indoles/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology
10.
Soft Matter ; 20(23): 4561-4566, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38775063

ABSTRACT

Blood is a highly complex fluid with rheological properties that have a significant impact on various flow phenomena. In particular, it exhibits a non-Newtonian elongational viscosity that is comparable to polymer solutions. In this study, we investigate the effect of three different anticoagulants, namely EDTA (ethylene diamine tetraacetic acid), heparin, and citrate, on the elongational properties of both human and swine blood. We observe a unique two stage thinning process and a strong dependency of the characteristic relaxation time on the chosen anticoagulant, with the longest relaxation time and thus the highest elongational viscosity being found for the case of citrate. Our findings for the latter are consistent with the physiological values obtained from a dripping droplet of human blood without any anticoagulant. Furthermore, our study resolves the discrepancy found in the literature regarding the reported range of characteristic relaxation times, confirming that the elongational viscosity must be taken into account for a full rheological characterization of blood. These results have important implications for understanding blood flow in various physiological, pathological and technological conditions.


Subject(s)
Anticoagulants , Anticoagulants/pharmacology , Anticoagulants/chemistry , Humans , Swine , Animals , Blood Viscosity/drug effects , Edetic Acid/chemistry , Edetic Acid/pharmacology , Heparin/pharmacology , Heparin/chemistry , Viscosity , Citric Acid/chemistry , Blood/drug effects , Rheology
11.
Am J Ther ; 31(4): e398-e409, 2024.
Article in English | MEDLINE | ID: mdl-38710029

ABSTRACT

BACKGROUND: Chronic kidney disease can lead to end-stage renal disease, and the prevalence is increasing. Many patients starting hemodialysis require central venous catheters (CVCs). Catheter-related bloodstream infections (CRBSIs) are a common complication and lead to significant morbidity and mortality. Interventions to prevent CRBSI include antimicrobial lock therapy but concern for the development of antimicrobial resistance and adverse effects. Nonantimicrobial antiseptics as catheter lock solutions have also been used. Taurolidine and heparin catheter lock solution is first approved by the Food and Drug Administration for the prevention of CRBSI in patients on hemodialysis. Taurolidine has a unique mechanism of action and favorable safety profile. MECHANISM OF ACTION, PHARMACODYNAMICS, AND PHARMACOKINETICS: Taurolidine and heparin catheter lock solution have both antimicrobial and anticoagulant properties. Taurolidine is derivative of the amino acid taurine, and heparin is derived from porcine intestinal mucosa. Taurolidine not only damages microbial cell walls but also prevents the adherence of microorganisms to biological surfaces, preventing biofilm formation. Taurolidine and heparin catheter lock solution is intended to be used intraluminally within the catheter and should be aspirated. Because it is used locally, limited pharmacokinetic and pharmacodynamic data are available. CLINICAL TRIALS: The LOCK-IT-100 trial is a randomized, double-blind, phase 3 study, which included 795 end-stage renal disease patients on hemodialysis with CVC. Taurolidine and heparin was compared with the control heparin alone. The results of the study showed a 71% risk reduction in CRBSI for taurolidine and heparin arm (95% confident interval, 38%-86%, P = 0.0006). Other studies have also shown that taurolidine lock solution leads to decreased CRBSI episodes. Several systematic reviews and meta-analysis consisted of taurolidine in adult, and pediatric populations also showed reduction in the incidence of CRBSIs. THERAPEUTIC ADVANCE: Taurolidine and heparin lock solution represents a novel preventive strategy for those undergoing hemodialysis through a CVC by reducing the risk of CRBSI. This is significant progress because there are no other similar options available for patients for whom catheters are the only options for their life-saving treatment.


Subject(s)
Anticoagulants , Catheter-Related Infections , Central Venous Catheters , Heparin , Renal Dialysis , Taurine , Thiadiazines , Taurine/analogs & derivatives , Taurine/pharmacology , Taurine/administration & dosage , Humans , Heparin/administration & dosage , Heparin/pharmacology , Renal Dialysis/instrumentation , Renal Dialysis/methods , Renal Dialysis/adverse effects , Thiadiazines/pharmacology , Thiadiazines/administration & dosage , Central Venous Catheters/adverse effects , Catheter-Related Infections/prevention & control , Anticoagulants/administration & dosage , Anticoagulants/pharmacology , Catheterization, Central Venous/adverse effects , Randomized Controlled Trials as Topic , Kidney Failure, Chronic/therapy , Anti-Infective Agents, Local/administration & dosage , Anti-Infective Agents, Local/pharmacology
12.
Clin Appl Thromb Hemost ; 30: 10760296241252838, 2024.
Article in English | MEDLINE | ID: mdl-38711321

ABSTRACT

In unfractionated heparin (UFH) monitoring during extracorporeal circulation, the traditional measures of activated clotting time (ACT) or activated partial thromboplastin time (APTT) may diverge, confounding anticoagulant adjustments. We aimed to explore the factors explaining this discrepancy in children and young adults. This retrospective observational study, conducted at an urban regional tertiary hospital, included consecutive pediatric patients who received UFH during extracorporeal circulation (continuous kidney replacement therapy or extracorporeal membrane oxygenation) between April 2017 and March 2021. After patients whose ACT and APTT were not measured simultaneously or who were also taking other anticoagulants were excluded, we analyzed 94 samples from 23 patients. To explain the discrepancy between ACT and APTT, regression equations were created using a generalized linear model (family = gamma, link = logarithmic) with ACT as the response variable. Other explanatory variables included age, platelet count, and antithrombin. Compared to APTT alone as an explanatory variable, the Akaike information criterion and pseudo-coefficient of determination improved from 855 to 625 and from 0.01 to 0.42, respectively, when these explanatory variables were used. In conclusion, we identified several factors that may explain some of the discrepancy between ACT and APTT in the routinely measured tests. Evaluation of these factors may aid in appropriate adjustments in anticoagulation therapy.


Subject(s)
Extracorporeal Circulation , Heparin , Humans , Heparin/pharmacology , Heparin/therapeutic use , Female , Male , Child , Retrospective Studies , Extracorporeal Circulation/methods , Adolescent , Partial Thromboplastin Time/methods , Child, Preschool , Young Adult , Adult , Infant , Anticoagulants/therapeutic use , Anticoagulants/pharmacology , Blood Coagulation/drug effects , Whole Blood Coagulation Time/methods
13.
Biomed Pharmacother ; 175: 116668, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38701565

ABSTRACT

The combination of radiation treatment and chemotherapy is currently the standard for management of cancer patients. However, safe doses do not often provide effective therapy, then pre-treated patients are forced to repeat treatment with often already increased tumor resistance to drugs and irradiation. One of the solutions we suggest is to improve primary course of radiation treatment via enhancing radiosensitivity of tumors by magnetic-guided iron oxide nanoparticles (magnetite). We obtained spherical heparinized iron oxide nanoparticles (hIONPs, ∼20 nm), characterized it by TEM, Infrared spectroscopy and DLS. Then hIONPs cytotoxicity was assessed for colon cancer cells (XTT assay) and cellular uptake of nanoparticles was analyzed with X-ray fluorescence. Combination of ionizing radiation (IR) and hIONPs in vitro caused an increase of G2/M arrest of cell cycle, mitotic errors and decrease in survival (compared with samples exposed to IR and hIONPs separately). The promising results were shown for magnetic-guided hIONPs in CT26-grafted BALB/C mice: the combination of intravenously administrated hIONPs and IR showed 20,8% T/C ratio (related to non-treated mice), while single radiation had no shown significant decrease in tumor growth (72,4%). Non-guided by magnets hIONPs with IR showed 57,9% of T/C. This indicates that ultra-small size and biocompatible molecule are not the key to successful nano-drug design, in each case, delivery technologies need to be improved when transferred to in vivo model.


Subject(s)
Colonic Neoplasms , Heparin , Magnetic Iron Oxide Nanoparticles , Mice, Inbred BALB C , Radiation-Sensitizing Agents , Animals , Colonic Neoplasms/drug therapy , Colonic Neoplasms/pathology , Colonic Neoplasms/radiotherapy , Magnetic Iron Oxide Nanoparticles/chemistry , Radiation-Sensitizing Agents/pharmacology , Radiation-Sensitizing Agents/chemistry , Radiation-Sensitizing Agents/administration & dosage , Humans , Mice , Cell Line, Tumor , Heparin/chemistry , Heparin/pharmacology , Magnetite Nanoparticles/chemistry , Xenograft Model Antitumor Assays , Cell Survival/drug effects
14.
Front Immunol ; 15: 1373255, 2024.
Article in English | MEDLINE | ID: mdl-38585266

ABSTRACT

Acting through a combination of direct and indirect pathogen clearance mechanisms, blood-derived antimicrobial compounds (AMCs) play a pivotal role in innate immunity, safeguarding the host against invading microorganisms. Besides their antimicrobial activity, some AMCs can neutralize endotoxins, preventing their interaction with immune cells and avoiding an excessive inflammatory response. In this study, we aimed to investigate the influence of unfractionated heparin, a polyanionic drug clinically used as anticoagulant, on the endotoxin-neutralizing and antibacterial activity of blood-derived AMCs. Serum samples from healthy donors were pre-incubated with increasing concentrations of heparin for different time periods and tested against pathogenic bacteria (Acinetobacter baumannii, Enterococcus faecium, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus) and endotoxins from E. coli, K. pneumoniae, and P. aeruginosa. Heparin dose-dependently decreased the activity of blood-derived AMCs. Consequently, pre-incubation with heparin led to increased activity of LPS and higher values of the pro-inflammatory cytokines tumor necrosis factor α (TNF-α) and interleukin 6 (IL-6). Accordingly, higher concentrations of A. baumannii, E. coli, K. pneumoniae, and P. aeruginosa were observed as well. These findings underscore the neutralizing effect of unfractionated heparin on blood-derived AMCs in vitro and may lead to alternative affinity techniques for isolating and characterizing novel AMCs with the potential for clinical translation.


Subject(s)
Anti-Infective Agents , Heparin , Heparin/pharmacology , Escherichia coli , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Endotoxins/pharmacology , Klebsiella pneumoniae
15.
Glycoconj J ; 41(2): 163-174, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38642280

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a worldwide COVID-19 pandemic, leading to 6.8 million deaths. Numerous variants have emerged since its outbreak, resulting in its significantly enhanced ability to spread among humans. As with many other viruses, SARS­CoV­2 utilizes heparan sulfate (HS) glycosaminoglycan (GAG) on the surface of host cells to facilitate viral attachment and initiate cellular entry through the ACE2 receptor. Therefore, interfering with virion-HS interactions represents a promising target to develop broad-spectrum antiviral therapeutics. Sulfated glycans derived from marine organisms have been proven to be exceptional reservoirs of naturally existing HS mimetics, which exhibit remarkable therapeutic properties encompassing antiviral/microbial, antitumor, anticoagulant, and anti-inflammatory activities. In the current study, the interactions between the receptor-binding domain (RBD) of S-protein of SARS-CoV-2 (both WT and XBB.1.5 variants) and heparin were applied to assess the inhibitory activity of 10 marine-sourced glycans including three sulfated fucans, three fucosylated chondroitin sulfates and two fucoidans derived from sea cucumbers, sea urchin and seaweed Saccharina japonica, respectively. The inhibitory activity of these marine derived sulfated glycans on the interactions between RBD of S-protein and heparin was evaluated using Surface Plasmon Resonance (SPR). The RBDs of S-proteins from both Omicrion XBB.1.5 and wild-type (WT) were found to bind to heparin, which is a highly sulfated form of HS. All the tested marine-sourced sulfated glycans exhibited strong inhibition of WT and XBB.1.5 S-protein binding to heparin. We believe the study on the molecular interactions between S-proteins and host cell glycosaminoglycans provides valuable insight for the development of marine-sourced, glycan-based inhibitors as potential anti-SARS-CoV-2 agents.


Subject(s)
Heparin , Polysaccharides , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism , Heparin/pharmacology , Heparin/chemistry , Heparin/metabolism , Polysaccharides/chemistry , Polysaccharides/pharmacology , Polysaccharides/metabolism , Humans , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , COVID-19/virology , COVID-19/metabolism , Protein Binding , Animals , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Heparitin Sulfate/metabolism , Heparitin Sulfate/chemistry
16.
Int J Biol Macromol ; 269(Pt 1): 131849, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38670202

ABSTRACT

Long-term patency and ability for revascularization remain challenges for small-caliber blood vessel grafts to treat cardiovascular diseases clinically. Here, a gelatin/heparin coated bio-inspired polyurethane composite fibers-based artificial blood vessel with continuous release of NO and biopeptides to regulate vascular tissue repair and maintain long-term patency is fabricated. A biodegradable polyurethane elastomer that can catalyze S-nitrosothiols in the blood to release NO is synthesized (NPU). Then, the NPU core-shell structured nanofiber grafts with requisite mechanical properties and biopeptide release for inflammation manipulation are fabricated by electrospinning and lyophilization. Finally, the surface of tubular NPU nanofiber grafts is coated with heparin/gelatin and crosslinked with glutaraldehyde to obtain small-caliber artificial blood vessels (ABVs) with the ability of vascular revascularization. We demonstrate that artificial blood vessel grafts promote the growth of endothelial cells but inhibit the growth of smooth muscle cells by the continuous release of NO; vascular grafts can regulate inflammatory balance for vascular tissue remodel without excessive collagen deposition through the release of biological peptides. Vascular grafts prevent thrombus and vascular stenosis to obtain long-term patency. Hence, our work paves a new way to develop small-caliber artificial blood vessel grafts that can maintain long-term patency in vivo and remodel vascular tissue successfully.


Subject(s)
Blood Vessel Prosthesis , Gelatin , Heparin , Polyurethanes , Polyurethanes/chemistry , Gelatin/chemistry , Heparin/chemistry , Heparin/pharmacology , Humans , Nanofibers/chemistry , Animals , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Nitric Oxide/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/metabolism
17.
Sci Rep ; 14(1): 8572, 2024 04 13.
Article in English | MEDLINE | ID: mdl-38609431

ABSTRACT

Unfractionated heparin (UFH) is an effective antithrombotic during surgery but has known adverse effects, in particular on platelets. A marked increase in platelet responsiveness has previously been observed in patients within minutes of receiving UFH, despite adequate inhibition by aspirin prior to heparin. We studied this phenomenon in patients undergoing cardiac artery bypass grafting (n = 17) to determine whether the effects of heparin were systemic or platelet-specific. All patients' platelets were fully inhibited by aspirin prior to surgery, but within 3 min of receiving heparin spontaneous aggregation and responses to arachidonic acid (AA) and ADP increased significantly (p ≥ 0.0002), and activated platelets were found in the circulation. While there was no rise in thromboxane in the plasma following heparin, levels of the major platelet 12-lipoxygenase product, 12-HETE, rose significantly. Mixing experiments demonstrated that the changes caused by heparin resided primarily in the platelets, while addition of AA pathway inhibitors, and analysis of oxylipins provided evidence that, following heparin, aggregating platelets regained their ability to synthesise thromboxane. These findings highlight potentially unrecognised pro-thrombotic and pro-inflammatory changes during CABG surgery, and provide further evidence of adverse effects associated with UFH.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Heparin , Humans , Heparin/pharmacology , Arachidonic Acid , Aspirin/pharmacology , Coronary Artery Bypass , Thromboxanes
18.
Perfusion ; 39(1_suppl): 77S-80S, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38651576

ABSTRACT

PURPOSE: We aimed at assessing the correlation between TEG reaction time (TEG-R) in citrated and fresh blood samples with TEG5000 and TEG 6S during heparin administration in patients with and without ECMO support. MATERIALS AND METHODS: Paired TEG5000 (fresh and citrated whole blood, kaolin and kaolin-heparinase) and TEG6S (citrated whole blood) samples were obtained, together with standard coagulation laboratory tests. Bland-Altman analysis and Lin's concordance correlation coefficient were used to assess agreement. RESULTS: Thirteen consecutive ECMO patients and eight consecutive non-ECMO patients were enrolled and TEG was performed for a total of 84 paired samples. ECMO patients received 19.2 (12.6-25.8) U/kg/h of heparin. Five of the non-ECMO patients did not receive heparin, two of them received a very low prophylactic dose (1.6 and 2.9 IU/kg/h, respectively), and one of them 13.1 U/kg/h of heparin. Using TEG®5000, TEG-R was 21.0 (-23.4; 65.5) min longer on fresh compared to citrated blood in patients receiving heparin while only 1.58 (-5.5; 8.7) min longer in patients not-receiving heparin. These differences were reverted by heparinase. CONCLUSIONS: Using citrated-recalcified blood to perform TEG might lead to underestimation of the effect of heparin.


Subject(s)
Extracorporeal Membrane Oxygenation , Thrombelastography , Humans , Thrombelastography/methods , Extracorporeal Membrane Oxygenation/methods , Male , Female , Middle Aged , Heparin/administration & dosage , Heparin/pharmacology , Adult , Aged
19.
Int J Mol Sci ; 25(7)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38612796

ABSTRACT

The development of novel anticoagulants requires a comprehensive investigational approach that is capable of characterizing different aspects of antithrombotic activity. The necessary experiments include both in vitro assays and studies on animal models. The required in vivo approaches include the assessment of pharmacokinetic and pharmacodynamic profiles and studies of hemorrhagic and antithrombotic effects. Comparison of anticoagulants with different mechanisms of action and administration types requires unification of the experiment scheme and its adaptation to existing laboratory conditions. The rodent thrombosis models in combination with the assessment of hemostasis parameters and hematological analysis are the classic methods for conducting preclinical studies. We report an approach for the comparative study of the activity of different anticoagulants in vivo, including the investigation of pharmacodynamics and the assessment of hemorrhagic effects (tail-cut bleeding model) and pathological thrombus formation (inferior vena cava stenosis model of venous thrombosis). The reproducibility and uniformity of our set of experiments were illustrated on unfractionated heparin and dabigatran etexilate (the most common pharmaceuticals in antithrombic therapy) as comparator drugs and an experimental drug variegin from the tick Amblyomma variegatum. Variegin is notorious since it is a potential analogue of bivalirudin (Angiomax, Novartis AG, Basel, Switzerland), which is now being actively introduced into antithrombotic therapy.


Subject(s)
Anticoagulants , Heparin , Animals , Pharmaceutical Preparations , Anticoagulants/pharmacology , Anticoagulants/therapeutic use , Heparin/pharmacology , Heparin/therapeutic use , Fibrinolytic Agents/pharmacology , Fibrinolytic Agents/therapeutic use , Reproducibility of Results
20.
Clin Appl Thromb Hemost ; 30: 10760296241247558, 2024.
Article in English | MEDLINE | ID: mdl-38656136

ABSTRACT

INTRODUCTION: Andexanet alfa (AA) - zhzo, recombinant coagulation factor Xa, is an approved antidote for oral Xa inhibitors (apixaban and rivaroxaban). Unfractionated heparin (UFH) is commonly used for therapeutic, interventional, and surgical indications. Protamine sulfate (PrSO4) is frequently used to neutralize UFH. This study aimed to investigate the comparative neutralization profiles of AA and PrSO4 for heparins of bovine, ovine, and porcine origin. MATERIALS AND METHODS: The neutralization effect of PrSO4 at 25 µg/ml and AA at 100 µg/ml was studied on an approximate surgical/interventional concentration of heparin by supplementing whole blood with each of the heparins at 25 µg/ml. For the clotting profile (activated partial thromboplastin time: aPTT), amidolytic (anti-Xa and anti-IIa), and thrombin generation assay each of the heparin were supplemented from -10-0.62 µg/ml. RESULTS: In the whole blood ACT studies, all three heparins produced strong anti-coagulant effects (400-450 seconds) compared to saline (130-150 seconds). Both AA and PrSO4 almost fully neutralized the anti-coagulant effects of heparins (140-160 seconds). Both antidotes completely reversed the anticoagulant effects of all three heparins in the aPTT and thrombin generation assay. However, PrSO4 was more effective in neutralizing the anti-Xa, and anti-IIa effects than AA, which only partially neutralized these effects. CONCLUSION: Andexanet alfa at 100 µg/ml effectively neutralizes the therapeutic and surgical/interventional concentrations of heparins in in-vitro settings. While differences in the anti-Xa, and anti-IIa effects between heparins were noted, anti-coagulant effect of these agents in the aPTT assay were comparable. A similar neutralization profile was observed in the ACT and thrombin generation assays by both agents.


Subject(s)
Factor Xa , Heparin Antagonists , Heparin , Protamines , Recombinant Proteins , Recombinant Proteins/pharmacology , Factor Xa/pharmacology , Cattle , Sheep , Swine , Animals , Anticoagulants/pharmacology , Heparin/pharmacology , Protamines/pharmacology , Heparin Antagonists/pharmacology , Blood Coagulation/drug effects , Thrombin Time
SELECTION OF CITATIONS
SEARCH DETAIL