Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21.610
Filter
1.
Int J Mol Sci ; 25(15)2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39126029

ABSTRACT

During photosynthesis, reactive oxygen species (ROS) are formed, including hydrogen peroxide (H2O2) and singlet oxygen (1O2), which have putative roles in signalling, but their involvement in photosynthetic acclimation is unclear. Due to extreme reactivity and a short lifetime, 1O2 signalling occurs via its reaction products, such as oxidised poly-unsaturated fatty acids in thylakoid membranes. The resulting lipid peroxides decay to various aldehydes and reactive electrophile species (RES). Here, we investigated the role of ROS in the signal transduction of high light (HL), focusing on GreenCut2 genes unique to photosynthetic organisms. Using RNA seq. data, the transcriptional responses of Chlamydomonas reinhardtii to 2 h HL were compared with responses under low light to exogenous RES (acrolein; 4-hydroxynonenal), ß-cyclocitral, a ß-carotene oxidation product, as well as Rose Bengal, a 1O2-producing photosensitiser, and H2O2. HL induced significant (p < 0.05) up- and down-regulation of 108 and 23 GreenCut2 genes, respectively. Of all HL up-regulated genes, over half were also up-regulated by RES, including RBCS1 (ribulose bisphosphate carboxylase small subunit), NPQ-related PSBS1 and LHCSR1. Furthermore, 96% of the genes down-regulated by HL were also down-regulated by 1O2 or RES, including CAO1 (chlorophyllide-a oxygnease), MDH2 (NADP-malate dehydrogenase) and PGM4 (phosphoglycerate mutase) for glycolysis. In comparison, only 0-4% of HL-affected GreenCut2 genes were similarly affected by H2O2 or ß-cyclocitral. Overall, 1O2 plays a significant role in signalling during the initial acclimation of C. reinhardtii to HL by up-regulating photo-protection and carbon assimilation and down-regulating specific primary metabolic pathways. Our data support that this pathway involves RES.


Subject(s)
Chlamydomonas reinhardtii , Photosynthesis , Signal Transduction , Singlet Oxygen , Singlet Oxygen/metabolism , Photosynthesis/genetics , Chlamydomonas reinhardtii/genetics , Chlamydomonas reinhardtii/metabolism , Gene Expression Regulation, Plant , Hydrogen Peroxide/metabolism , Light , Reactive Oxygen Species/metabolism
2.
Int J Mol Sci ; 25(15)2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39125641

ABSTRACT

Age-related macular degeneration (AMD) and diabetic retinopathy (DR) are common retinal diseases responsible for most blindness in working-age and elderly populations. Oxidative stress and mitochondrial dysfunction play roles in these pathogenesis, and new therapies counteracting these contributors could be of great interest. Some molecules, like coenzyme Q10 (CoQ10), are considered beneficial to maintain mitochondrial homeostasis and contribute to the prevention of cellular apoptosis. We investigated the impact of adding CoQ10 (Q) to a nutritional antioxidant complex (Nutrof Total®; N) on the mitochondrial status and apoptosis in an in vitro hydrogen peroxide (H2O2)-induced oxidative stress model in human retinal pigment epithelium (RPE) cells. H2O2 significantly increased 8-OHdG levels (p < 0.05), caspase-3 (p < 0.0001) and TUNEL intensity (p < 0.01), and RANTES (p < 0.05), caspase-1 (p < 0.05), superoxide (p < 0.05), and DRP-1 (p < 0.05) levels, and also decreased IL1ß, SOD2, and CAT gene expression (p < 0.05) vs. control. Remarkably, Q showed a significant recovery in IL1ß gene expression, TUNEL, TNFα, caspase-1, and JC-1 (p < 0.05) vs. H2O2, and NQ showed a synergist effect in caspase-3 (p < 0.01), TUNEL (p < 0.0001), mtDNA, and DRP-1 (p < 0.05). Our results showed that CoQ10 supplementation is effective in restoring/preventing apoptosis and mitochondrial stress-related damage, suggesting that it could be a valid strategy in degenerative processes such as AMD or DR.


Subject(s)
Apoptosis , Hydrogen Peroxide , Oxidative Stress , Retinal Pigment Epithelium , Ubiquinone , Humans , Ubiquinone/analogs & derivatives , Ubiquinone/pharmacology , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/drug effects , Oxidative Stress/drug effects , Apoptosis/drug effects , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/pharmacology , Mitochondria/metabolism , Mitochondria/drug effects , Antioxidants/pharmacology , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Cell Line , Dietary Supplements
3.
Int J Mol Sci ; 25(15)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39125678

ABSTRACT

Moringa oleifera is widely grown throughout the tropics and increasingly used for its therapeutic and nutraceutical properties. These properties are attributed to potent antioxidant and metabolism regulators, including glucosinolates/isothiocyanates as well as flavonoids, polyphenols, and phenolic acids. Research to date largely consists of geographically limited studies that only examine material available locally. These practices make it unclear as to whether moringa samples from one area are superior to another, which would require identifying superior variants and distributing them globally. Alternatively, the finding that globally cultivated moringa material is essentially functionally equivalent means that users can easily sample material available locally. We brought together accessions of Moringa oleifera from four continents and nine countries and grew them together in a common garden. We performed a metabolomic analysis of leaf extracts (MOLE) using an LC-MSMS ZenoTOF 7600 mass spectrometry system. The antioxidant capacity of leaf samples evaluated using the Total Antioxidant Capacity assay did not show any significant difference between extracts. MOLE samples were then tested for their antioxidant activity on C2C12 myotubes challenged with an oxidative insult. Hydrogen peroxide (H2O2) was added to the myotubes after pretreatment with different extracts. H2O2 exposure caused an increase in cell death that was diminished in all samples pretreated with moringa extracts. Our results show that Moringa oleifera leaf extract is effective in reducing the damaging effect of H2O2 in C2C12 myotubes irrespective of geographical origin. These results are encouraging because they suggest that the use of moringa for its therapeutic benefits can proceed without the need for the lengthy and complex global exchange of materials between regions.


Subject(s)
Antioxidants , Metabolomics , Moringa oleifera , Muscle Fibers, Skeletal , Plant Extracts , Plant Leaves , Moringa oleifera/chemistry , Moringa oleifera/metabolism , Plant Leaves/chemistry , Plant Leaves/metabolism , Antioxidants/pharmacology , Antioxidants/metabolism , Plant Extracts/pharmacology , Plant Extracts/chemistry , Metabolomics/methods , Animals , Mice , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/drug effects , Cell Line , Hydrogen Peroxide/metabolism , Oxidative Stress/drug effects , Metabolome/drug effects
4.
Int J Mol Sci ; 25(15)2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39125721

ABSTRACT

Para-hydroxycinnamic acid (pHCA) is one of the most abundant naturally occurring hydroxycinnamic acids, a class of chemistries known for their antioxidant properties. In this study, we evaluated the impact of pHCA on different parameters of skin aging in in vitro skin models after H2O2 and UV exposure. These parameters include keratinocyte senescence and differentiation, inflammation, and energy metabolism, as well as the underlying molecular mechanisms. Here we demonstrate that pHCA prevents oxidative stress-induced premature senescence of human primary keratinocytes in both 2D and 3D skin models, while improving clonogenicity in 2D. As aging is linked to inflammation, referred to as inflammaging, we analyzed the release of IL-6, IL-8, and PGE2, known to be associated with senescence. All of them were downregulated by pHCA in both normal and oxidative stress conditions. Mechanistically, DNA damage induced by oxidative stress is prevented by pHCA, while pHCA also exerts a positive effect on the mitochondrial and glycolytic functions under stress. Altogether, these results highlight the protective effects of pHCA against inflammaging, and importantly, help to elucidate its potential mechanisms of action.


Subject(s)
Cellular Senescence , Coumaric Acids , Keratinocytes , Oxidative Stress , Skin Aging , Skin , Humans , Coumaric Acids/pharmacology , Cellular Senescence/drug effects , Keratinocytes/drug effects , Keratinocytes/metabolism , Oxidative Stress/drug effects , Skin/metabolism , Skin/drug effects , Skin Aging/drug effects , Inflammation/metabolism , DNA Damage/drug effects , Hydrogen Peroxide/metabolism , Ultraviolet Rays/adverse effects , Antioxidants/pharmacology , Cells, Cultured , Interleukin-8/metabolism , Interleukin-6/metabolism
5.
Int J Mol Sci ; 25(15)2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39125927

ABSTRACT

During the development of animal organs, various adverse stimuli or toxic environments can induce oxidative stress and delay ovarian development. Paeoniflorin (PF), the main active ingredient of the traditional Chinese herb Paeonia lactiflora Pall., has protective effects on various diseases by preventing oxidative stress. However, the mechanism by which PF attenuates oxidative damage in mouse ovaries remains unclear. We evaluated the protective effects of PF on ovaries in an H2O2-induced mouse oxidative stress model. The H2O2-induced mouse ovarian oxidative stress model was used to explore the protective effect of PF on ovarian development. Histology and follicular development were observed. We then detected related indicators of cell apoptosis, oxidative stress, and autophagy in mouse ovaries. We found that PF inhibited H2O2-induced ovarian cell apoptosis and ferroptosis and promoted granulosa cell proliferation. PF prevented oxidative stress by increasing nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) expression levels. In addition, the autophagic flux of ovarian cells was activated and was accompanied by increased lysosomal biogenesis. Moreover, PF-mediated autophagy was involved in clearing mitochondria damaged by H2O2. Importantly, PF administration significantly increased the number of primordial follicles, primary follicles, secondary follicles, and antral follicles. PF administration improved ovarian sizes compared with the H2O2 group. The present study suggested that PF administration reversed H2O2-induced ovarian developmental delay and promoted follicle development. PF-activated mitophagy is crucial for preventing oxidative stress and improving mitochondrial quality.


Subject(s)
Glucosides , Hydrogen Peroxide , Mitophagy , Ovary , Oxidative Stress , Animals , Female , Oxidative Stress/drug effects , Glucosides/pharmacology , Mice , Ovary/drug effects , Ovary/metabolism , Mitophagy/drug effects , Hydrogen Peroxide/metabolism , Monoterpenes/pharmacology , Apoptosis/drug effects , Autophagy/drug effects , Heme Oxygenase-1/metabolism , Cell Proliferation/drug effects , NF-E2-Related Factor 2/metabolism , Granulosa Cells/drug effects , Granulosa Cells/metabolism
6.
Int J Mol Sci ; 25(15)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39125952

ABSTRACT

Peroxiporins are a specialized subset of aquaporins, which are integral membrane proteins primarily known for facilitating water transport across cell membranes. In addition to the classical water transport function, peroxiporins have the unique capability to transport hydrogen peroxide (H2O2), a reactive oxygen species involved in various cellular signaling pathways and regulation of oxidative stress responses. The regulation of H2O2 levels is crucial for maintaining cellular homeostasis, and peroxiporins play a significant role in this process by modulating its intracellular and extracellular concentrations. This ability to facilitate the passage of H2O2 positions peroxiporins as key players in redox biology and cellular signaling, with implications for understanding and treating various diseases linked to oxidative stress and inflammation. This review provides updated information on the physiological roles of peroxiporins and their implications in disease, emphasizing their potential as novel biomarkers and drug targets in conditions where they are dysregulated, such as inflammation and cancer.


Subject(s)
Aquaporins , Inflammation , Neoplasms , Oxidative Stress , Humans , Inflammation/metabolism , Neoplasms/metabolism , Animals , Aquaporins/metabolism , Hydrogen Peroxide/metabolism , Signal Transduction , Oxidation-Reduction , Reactive Oxygen Species/metabolism
7.
Mol Med ; 30(1): 123, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39138434

ABSTRACT

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory lung disease associated with high morbidity and mortality worldwide. Oxidative injury and mitochondrial dysfunction in the airway epithelium are major events in COPD progression. METHODS AND RESULTS: The therapeutic effects of Progesterone (P4) were investigated in vivo and in vitro in this study. In vivo, in a cigarette smoke (CS) exposure-induced COPD mouse model, P4 treatment significantly ameliorated CS exposure-induced physiological and pathological characteristics, including inflammatory cell infiltration and oxidative injury, in a dose-dependent manner. The c-MYC/SIRT1/PGC-1α pathway is involved in the protective function of P4 against CS-induced COPD. In vitro, P4 co-treatment significantly ameliorated H2O2-induced oxidative injury and mitochondrial dysfunctions by promoting cell proliferation, increasing mitochondrial membrane potential, decreasing ROS levels and apoptosis, and increasing ATP content. Moreover, P4 co-treatment partially attenuated H2O2-caused inhibition in Nrf1, Tfam, Mfn1, PGR-B, c-MYC, SIRT1, and PGC-1α levels. In BEAS-2B and ASM cells, the c-MYC/SIRT1 axis regulated P4's protective effects against H2O2-induced oxidative injury and mitochondrial dysfunctions. CONCLUSION: P4 activates the c-MYC/SIRT1 axis, ameliorating CS-induced COPD and protecting both airway epithelial cells and smooth muscle cells against H2O2-induced oxidative damage. PGC-1α and downstream mitochondrial signaling pathways might be involved.


Subject(s)
Disease Models, Animal , Hydrogen Peroxide , Oxidative Stress , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Progesterone , Pulmonary Disease, Chronic Obstructive , Sirtuin 1 , Pulmonary Disease, Chronic Obstructive/etiology , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/drug therapy , Animals , Progesterone/pharmacology , Mice , Sirtuin 1/metabolism , Oxidative Stress/drug effects , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Hydrogen Peroxide/metabolism , Humans , Mitochondria/metabolism , Mitochondria/drug effects , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , Signal Transduction/drug effects , Apoptosis/drug effects , Cell Line , Cigarette Smoking/adverse effects , Mice, Inbred C57BL , Reactive Oxygen Species/metabolism , Smoke/adverse effects , Membrane Potential, Mitochondrial/drug effects , Male , Cell Proliferation/drug effects
8.
Nat Commun ; 15(1): 6918, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39134555

ABSTRACT

Salivary proteins of insect herbivores can suppress plant defenses, but the roles of many remain elusive. One such protein is glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from the saliva of the Recilia dorsalis (RdGAPDH) leafhopper, which is known to transmit rice gall dwarf virus (RGDV). Here we show that RdGAPDH was loaded into exosomes and released from salivary glands into the rice phloem through an exosomal pathway as R. dorsalis fed. In infected salivary glands of R. dorsalis, the virus upregulated the accumulation and subsequent release of exosomal RdGAPDH into the phloem. Once released, RdGAPDH consumed H2O2 in rice plants owing to its -SH groups reacting with H2O2. This reduction in H2O2 of rice plant facilitated R. dorsalis feeding and consequently promoted RGDV transmission. However, overoxidation of RdGAPDH could cause potential irreversible cytotoxicity to rice plants. In response, rice launched emergency defense by utilizing glutathione to S-glutathionylate the oxidization products of RdGAPDH. This process counteracts the potential cellular damage from RdGAPDH overoxidation, helping plant to maintain a normal phenotype. Additionally, salivary GAPDHs from other hemipterans vectors similarly suppressed H2O2 burst in plants. We propose a strategy by which plant viruses exploit insect salivary proteins to modulate plant defenses, thus enabling sustainable insect feeding and facilitating viral transmission.


Subject(s)
Hemiptera , Hydrogen Peroxide , Oryza , Plant Diseases , Saliva , Animals , Hemiptera/virology , Hydrogen Peroxide/metabolism , Oryza/virology , Oryza/metabolism , Plant Diseases/virology , Saliva/metabolism , Saliva/virology , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , Salivary Glands/virology , Salivary Glands/metabolism , Insect Proteins/metabolism , Insect Proteins/genetics , Insect Vectors/virology , Phloem/virology , Phloem/metabolism , Reoviridae/physiology , Glutathione/metabolism , Salivary Proteins and Peptides/metabolism , Plant Viruses/physiology , Plant Defense Against Herbivory
9.
Nat Commun ; 15(1): 6888, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39134525

ABSTRACT

Constructing atom-pair engineering and improving the activity of metal single-atom nanozyme (SAzyme) is significant but challenging. Herein, we design the atom-pair engineering of Zn-SA/CNCl SAzyme by simultaneously constructing Zn-N4 sites as catalytic sites and Zn-N4Cl1 sites as catalytic regulator. The Zn-N4Cl1 catalytic regulators effectively boost the peroxidase-like activities of Zn-N4 catalytic sites, resulting in a 346-fold, 1496-fold, and 133-fold increase in the maximal reaction velocity, the catalytic constant and the catalytic efficiency, compared to Zn-SA/CN SAzyme without the Zn-N4Cl1 catalytic regulator. The Zn-SA/CNCl SAzyme with excellent peroxidase-like activity effectively inhibits tumor cell growth in vitro and in vivo. The density functional theory (DFT) calculations reveal that the Zn-N4Cl1 catalytic regulators facilitate the adsorption of *H2O2 and re-exposure of Zn-N4 catalytic sites, and thus improve the reaction rate. This work provides a rational and effective strategy for improving the peroxidase-like activity of metal SAzyme by atom-pair engineering.


Subject(s)
Peroxidase , Zinc , Humans , Catalysis , Peroxidase/metabolism , Peroxidase/chemistry , Zinc/chemistry , Zinc/metabolism , Animals , Catalytic Domain , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/metabolism , Mice , Cell Line, Tumor , Density Functional Theory
10.
Mediators Inflamm ; 2024: 5273198, 2024.
Article in English | MEDLINE | ID: mdl-39108992

ABSTRACT

Tendinopathy is one of the most frequent musculoskeletal disorders characterized by sustained tissue inflammation and oxidative stress, accompanied by extracellular matrix remodeling. Patients suffering from this pathology frequently experience pain, swelling, stiffness, and muscle weakness. Current pharmacological interventions are based on nonsteroidal anti-inflammatory drugs; however, the effectiveness of these strategies remains ambiguous. Accumulating evidence supports that oral supplementation of natural compounds can provide preventive, and possibly curative, effects. Vitamin C (Vit C), collagen peptides (Coll), resveratrol (Res), and astaxanthin (Asx) were reported to be endowed with potential beneficial effects based on their anti-inflammatory and antioxidant activities. Here, we analyzed the efficacy of a novel combination of these compounds (Mix) in counteracting proinflammatory (IL-1ß) and prooxidant (H2O2) stimuli in human tenocytes. We demonstrated that Mix significantly impairs IL-6-induced IL-1ß secretion, NF-κB nuclear translocation, and MMP-2 production; notably, a synergistic effect of Mix over the single compounds could be observed. Moreover, Mix was able to significantly counteract H2O2-triggered ROS production. Together, these results point out that Mix, a novel combination of Vit C, Coll, Resv, and Asx, significantly impairs proinflammatory and prooxidant stimuli in tenocytes, mechanisms that contribute to the onset of tendinopathies.


Subject(s)
Anti-Inflammatory Agents , Antioxidants , Ascorbic Acid , Collagen , Resveratrol , Tendinopathy , Tenocytes , Xanthophylls , Humans , Ascorbic Acid/pharmacology , Ascorbic Acid/therapeutic use , Resveratrol/pharmacology , Antioxidants/pharmacology , Xanthophylls/pharmacology , Xanthophylls/therapeutic use , Tendinopathy/drug therapy , Tendinopathy/metabolism , Collagen/metabolism , Anti-Inflammatory Agents/pharmacology , Tenocytes/metabolism , Tenocytes/drug effects , Interleukin-1beta/metabolism , Peptides/chemistry , Peptides/pharmacology , Hydrogen Peroxide/metabolism , Stilbenes/pharmacology , Stilbenes/therapeutic use , Reactive Oxygen Species/metabolism , NF-kappa B/metabolism , Cells, Cultured , Oxidative Stress/drug effects
11.
PLoS One ; 19(8): e0306259, 2024.
Article in English | MEDLINE | ID: mdl-39141636

ABSTRACT

The antibacterial oxidative response, which relies on the production of hydrogen peroxide (H2O2) and hypothiocyanite (OSCN-), is a major line of defense protecting the human airway epithelium (HAE) from lesions when infected. The in vitro studies of the oxidative responses are performed mainly by one-shot H2O2 exposure that does not recapitulate the complex H2O2/LPO/SCN- system releasing the reactive oxygen species in airway secretions. A cell-free in vitro assay mimicking this system has been described but was not fully characterized. Here, we comprehensively characterized the hourly H2O2/OSCN- concentrations produced within this in vitro assay and assessed the resistance of Pseudomonas aeruginosa and Staphylococcus aureus clinical strains to the HAE oxidative response. We found that H2O2/OSCN- were steadily produced from 7h and up to 25h, but OSCN- was detoxified in 15 minutes by bacteria upon exposure. Preliminary tests on PA14 showed survival rates at 1-hour post-exposure (hpe) to H2O2 of roughly 50% for 105 and 107 colony-forming unit (CFU)/mL inocula, while 102 and 104 CFU/mL inocula were cleared after one hpe. Thirteen clinical strains were then exposed, highlighting that conversely to P. aeruginosa, S. aureus showed resistance to oxidative stress independently of its antibiotic resistance phenotype. Our results demonstrated how this in vitro assay can be helpful in assessing whether pathogens can resist the antibacterial oxidative HAE response. We anticipate these findings as a starting point for more sophisticated in vitro models that could serve as high-throughput screening for molecules targeting the bacterial antioxidant response.


Subject(s)
Hydrogen Peroxide , Oxidative Stress , Pseudomonas aeruginosa , Staphylococcus aureus , Pseudomonas aeruginosa/metabolism , Pseudomonas aeruginosa/drug effects , Staphylococcus aureus/metabolism , Humans , Hydrogen Peroxide/metabolism , Respiratory Mucosa/microbiology , Respiratory Mucosa/metabolism , Oxidation-Reduction , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Pseudomonas Infections/microbiology , Pseudomonas Infections/metabolism , Thiocyanates
12.
Cell Mol Biol (Noisy-le-grand) ; 70(7): 38-48, 2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39097896

ABSTRACT

The study included 40 patients of both genders who underwent skin transplantation after a hand injury. The study aims to evaluate the oxidative stress parameters in patients' blood and serum levels of galectin-3 in order to investigate gender differences pre- and post- skin transplantation. The results of the study suggest a significant increase in superoxide anion radical levels, catalase activity, and reduced glutathione levels in females before skin transplantation. The surgical treatment caused significant increase in superoxide anion radical and hydrogen peroxide levels as prooxidants in males, while superoxide dismutase and catalase activity were also increased 7 days after the procedure. In females, superoxide anion radical and TBARS levels increased after surgical procedure as well as the activity of catalase. Regarding galectin-3 levels, a significant interaction between gender and time was observed (gender×time; p=0.000). Correlation analysis of different oxidative stress markers with gal-3 revealed the existence of a significant negative correlation of superoxide anion radical, catalase, and reduced glutathione with gal-3, but only in female patients. It can be concluded that OS as well as galectin-3 play important roles at least in the first 7 days of the postoperative period.


Subject(s)
Catalase , Galectin 3 , Glutathione , Hand Injuries , Oxidative Stress , Skin Transplantation , Adult , Female , Humans , Male , Middle Aged , Young Adult , Blood Proteins , Catalase/blood , Catalase/metabolism , Galectin 3/blood , Galectin 3/metabolism , Galectins , Glutathione/blood , Glutathione/metabolism , Hand Injuries/surgery , Hand Injuries/blood , Hand Injuries/metabolism , Hydrogen Peroxide/blood , Hydrogen Peroxide/metabolism , Sex Characteristics , Sex Factors , Superoxide Dismutase/blood , Superoxide Dismutase/metabolism , Superoxides/metabolism , Superoxides/blood , Thiobarbituric Acid Reactive Substances/metabolism
13.
Front Immunol ; 15: 1392259, 2024.
Article in English | MEDLINE | ID: mdl-39086491

ABSTRACT

The treatment of wound inflammation is intricately linked to the concentration of reactive oxygen species (ROS) in the wound microenvironment. Among these ROS, H2O2 serves as a critical signaling molecule and second messenger, necessitating the urgent need for its rapid real-time quantitative detection, as well as effective clearance, in the pursuit of effective wound inflammation treatment. Here, we exploited a sophisticated 3D Cu2- x Se/GO nanostructure-based nanonzymatic H2O2 electrochemical sensor, which is further decorated with evenly distributed Pt nanoparticles (Pt NPs) through electrodeposition. The obtained Cu2- x Se/GO@Pt/SPCE sensing electrode possesses a remarkable increase in specific surface derived from the three-dimensional surface constructed by GO nanosheets. Moreover, the localized surface plasma effect of the Cu2- x Se nanospheres enhances the separation of photogenerated electron-hole pairs between the interface of the Cu2- x Se NPs and the Pt NPs. This innovation enables near-infrared light-enhanced catalysis, significantly reducing the detection limit of the Cu2- x Se/GO@Pt/SPCE sensing electrode for H2O2 (from 1.45 µM to 0.53µM) under NIR light. Furthermore, this biosensor electrode enables in-situ real-time monitoring of H2O2 released by cells. The NIR-enhanced Cu2- x Se/GO@Pt/SPCE sensing electrode provide a simple-yet-effective method to achieve a detection of ROS (H2O2、-OH) with high sensitivity and efficiency. This innovation promises to revolutionize the field of wound inflammation treatment by providing clinicians with a powerful tool for accurate and rapid assessment of ROS levels, ultimately leading to improved patient outcomes.


Subject(s)
Copper , Hydrogen Peroxide , Inflammation , Metal Nanoparticles , Platinum , Hydrogen Peroxide/metabolism , Platinum/chemistry , Copper/chemistry , Metal Nanoparticles/chemistry , Inflammation/metabolism , Animals , Mice , Nanostructures/chemistry , Biosensing Techniques/methods , Selenium/chemistry , Humans , Infrared Rays , Reactive Oxygen Species/metabolism , RAW 264.7 Cells
14.
Physiol Plant ; 176(4): e14453, 2024.
Article in English | MEDLINE | ID: mdl-39091124

ABSTRACT

Although used in in vitro culture to boost secondary metabolite production, UV-B radiation can seriously affect plant growth if not properly dosed. Rosemary callus can be used as an important source of effective ingredients in the food and medicine industry. To balance the positive and negative effects of UV-B on rosmary callus, this study investigated the effects of melatonin on rosemary callus under UV-B radiation. The results showed that melatonin improved rosemary callus growth, with fresh weight and dry weight increased by 15.81% and 8.30%, respectively. The addition of 100 µM melatonin increased antioxidant enzyme activity and NO content in rosemary callus. At the same time, melatonin also significantly reduced membrane lipid damage and H2O2 accumulation in rosemary callus under UV-B stress, with malondialdehyde (MDA) and H2O2 contents reduced by 13.03% and 14.55%, respectively. In addition, melatonin increased the total phenol and rosmarinic acid contents in rosemary callus by 19% and 54%, respectively. Melatonin significantly improved the antioxidant activity of the extracts from rosemary callus. These results suggest that exogenous melatonin can alleviate the adverse effects of UV-B stress on rosemary callus by promoting NO accumulation while further enhancing phenolic accumulation and biological activity.


Subject(s)
Antioxidants , Hydrogen Peroxide , Melatonin , Phenols , Rosmarinus , Ultraviolet Rays , Melatonin/pharmacology , Melatonin/metabolism , Rosmarinus/metabolism , Rosmarinus/drug effects , Rosmarinus/radiation effects , Antioxidants/metabolism , Phenols/metabolism , Hydrogen Peroxide/metabolism , Malondialdehyde/metabolism , Stress, Physiological/radiation effects , Stress, Physiological/drug effects , Rosmarinic Acid , Cinnamates/metabolism , Cinnamates/pharmacology , Depsides/metabolism
15.
Sci Adv ; 10(31): eado5555, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39093965

ABSTRACT

Because of the decreasing supply of new antibiotics, recent outbreaks of infectious diseases, and the emergence of antibiotic-resistant microorganisms, it is imperative to develop new effective strategies for deactivating a broad spectrum of microorganisms and viruses. We have implemented electrically polarized nanoscale metallic (ENM) coatings that deactivate a wide range of microorganisms including Gram-negative and Gram-positive bacteria with greater than 6-log reduction in less than 10 minutes of treatment. The electrically polarized devices were also effective in deactivating lentivirus and Candida albicans. The key to the high deactivation effectiveness of ENM devices is electrochemical production of micromolar cuprous ions, which mediated reduction of oxygen to hydrogen peroxide. Formation of highly damaging species, hydroxyl radicals and hypochlorous acid, from hydrogen peroxide contributed to antimicrobial properties of the ENM devices. The electric polarization of nanoscale coatings represents an unconventional tool for deactivating a broad spectrum of microorganisms through in situ production of reactive oxygenated and chlorinated species.


Subject(s)
Hydrogen Peroxide , Hydrogen Peroxide/metabolism , Oxygen/metabolism , Oxygen/chemistry , Candida albicans/drug effects , Candida albicans/metabolism , Surface Properties , Reactive Oxygen Species/metabolism , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Oxidation-Reduction
16.
Nat Commun ; 15(1): 6783, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39117634

ABSTRACT

Although nanocatalytic medicine has demonstrated its advantages in tumor therapy, the outcomes heavily relie on substrate concentration and the metabolic pathways are still indistinct. We discover that violet phosphorus quantum dots (VPQDs) can catalyze the production of reactive oxygen species (ROS) without requiring external stimuli and the catalytic substrates are confirmed to be oxygen (O2) and hydrogen peroxide (H2O2) through the computational simulation and experiments. Considering the short of O2 and H2O2 at the tumor site, we utilize calcium peroxide (CaO2) to supply catalytic substrates for VPQDs and construct nanoparticles together with them, named VPCaNPs. VPCaNPs can induce oxidative stress in tumor cells, particularly characterized by a significant increase in hydroxyl radicals and superoxide radicals, which cause substantial damage to the structure and function of cells, ultimately leading to cell apoptosis. Intriguingly, O2 provided by CaO2 can degrade VPQDs slowly, and the degradation product, phosphate, as well as CaO2-generated calcium ions, can promote tumor calcification. Antitumor immune activation and less metastasis are also observed in VPCaNPs administrated animals. In conclusion, our study unveils the anti-tumor activity of VPQDs as catalysts for generating cytotoxic ROS and the degradation products can promote tumor calcification, providing a promising strategy for treating tumors.


Subject(s)
Apoptosis , Hydrogen Peroxide , Oxidative Stress , Phosphorus , Quantum Dots , Reactive Oxygen Species , Phosphorus/metabolism , Phosphorus/chemistry , Animals , Humans , Quantum Dots/chemistry , Catalysis , Reactive Oxygen Species/metabolism , Mice , Cell Line, Tumor , Apoptosis/drug effects , Hydrogen Peroxide/metabolism , Oxidative Stress/drug effects , Peroxides/metabolism , Peroxides/chemistry , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Nanoparticles/chemistry , Oxygen/metabolism , Oxygen/chemistry , Calcium Compounds/chemistry , Calcium Compounds/metabolism , Female , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry
17.
Nat Commun ; 15(1): 6630, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103337

ABSTRACT

Unfavourable conditions, such as prolonged drought and high salinity, pose a threat to the survival and agricultural yield of plants. The phytohormone ABA plays a key role in the regulation of plant stress adaptation and is often maintained at high levels for extended periods. While much is known about ABA signal perception and activation in the early signalling stage, the molecular mechanism underlying desensitization of ABA signalling remains largely unknown. Here we demonstrate that in the endoplasmic reticulum (ER)-Golgi network, the key regulators of ABA signalling, SnRK2.2/2.3, undergo N-glycosylation, which promotes their redistribution from the nucleus to the peroxisomes in Arabidopsis roots and influences the transcriptional response in the nucleus during prolonged ABA signalling. On the peroxisomal membrane, SnRK2s can interact with glucose-6-phosphate (G6P)/phosphate translocator 1 (GPT1) to maintain NADPH homeostasis through increased activity of the peroxisomal oxidative pentose phosphate pathway (OPPP). The resulting maintenance of NADPH is essential for the modulation of hydrogen peroxide (H2O2) accumulation, thereby relieving ABA-induced root growth inhibition. The subcellular dynamics of SnRK2s, mediated by N-glycosylation suggest that ABA responses transition from transcriptional regulation in the nucleus to metabolic processes in the peroxisomes, aiding plants in adapting to long-term environmental stress.


Subject(s)
Abscisic Acid , Arabidopsis Proteins , Arabidopsis , Gene Expression Regulation, Plant , NADP , Peroxisomes , Protein Serine-Threonine Kinases , Signal Transduction , Arabidopsis/metabolism , Arabidopsis/genetics , Peroxisomes/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Glycosylation , Abscisic Acid/metabolism , NADP/metabolism , Hydrogen Peroxide/metabolism , Endoplasmic Reticulum/metabolism , Plant Roots/metabolism , Plant Roots/growth & development , Cell Nucleus/metabolism , Golgi Apparatus/metabolism , Pentose Phosphate Pathway , Plant Growth Regulators/metabolism
18.
PLoS One ; 19(8): e0307735, 2024.
Article in English | MEDLINE | ID: mdl-39106233

ABSTRACT

Ginkgo biloba extracts (GBE) have been shown to effectively improve cognitive function in patients with Alzheimer's disease (AD). One potential therapeutic strategy for AD is to prevent loss of adult hippocampal neurons. While recent studies have reported that GBE protects against oxidative stress in neurons, the underlying mechanisms remain unclear. In this study, an AD-like rat model was established via bidirectional injection of amyloid beta 25-35 (Aß25-35; 20 µg) in the hippocampal CA1 region. Learning and memory abilities of experimental rats were AD assessed in response to oral administration of 7.5 g/L or 15 g/L Ginkgo biloba extract 50 (GBE50) solution and the peroxidation phenomenon of hippocampal mitochondria determined via analysis of mitochondrial H2O2 and several related enzymes. Levels of the oxidative stress-related signaling factor cytochrome C (Cyto C), apoptosis-related proteins (Bax, Bcl-2 and caspase-3) and caspase-activated DNase (CAD) were further detected via western blot. 8-Hydroxydeoxyguanosine (8-OHdG), the major product of DNA oxidative stress, was evaluated to analyze DNA status. Our results showed elevated H2O2 levels and monoamine oxidase (MAO) activity, and conversely, a decrease in the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in the hippocampus of AD rats. Administration of GBE50 regulated the activities of these three enzymes and induced a decrease in H2O2. GBE50 exerted regulatory effects on abnormally expressed apoptotic proteins in the AD rat hippocampus, enhancing the expression of Bcl-2, inhibiting release of Cyto C from mitochondria, and suppressing the level of caspase-3 (excluding cleaved caspase-3). Furthermore, GBE50 inhibited DNA damage by lowering the generation of 8-OHdG rather than influencing expression of CAD. The collective findings support a protective role of GBE50 in hippocampal neurons of AD-like animals against mitochondrial oxidative stress.


Subject(s)
Alzheimer Disease , Disease Models, Animal , Ginkgo biloba , Hippocampus , Mitochondria , Neurons , Oxidative Stress , Plant Extracts , Animals , Ginkgo biloba/chemistry , Oxidative Stress/drug effects , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Plant Extracts/pharmacology , Mitochondria/drug effects , Mitochondria/metabolism , Rats , Neurons/drug effects , Neurons/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Male , Amyloid beta-Peptides/metabolism , Hydrogen Peroxide/metabolism , Rats, Sprague-Dawley , Apoptosis/drug effects , Ginkgo Extract , Peptide Fragments
19.
J Nanobiotechnology ; 22(1): 436, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39044240

ABSTRACT

Cisplatin (DDP) is a prevalent chemotherapeutic agent used in tumor therapy, yet DDP-induced acute kidney injury (AKI) severely limits its clinical application. Antioxidants as reactive oxygen species (ROS) scavengers can circumvent this adverse effect while leading to the decrease of efficacy to tumor. Herein, we report ultrasmall ruthenium nanoparticles (URNPs) as switchable ROS scavengers/generators to alleviate DDP-induced AKI and improve its therapeutic efficacy. In the physiological environment of the kidney, URNPs mimic multi-enzyme activities, such as superoxide dismutase and catalase, effectively protecting the renal cell and tissue by down-regulating the increased ROS level caused by DDP and alleviating AKI. Specifically, URNPs are oxidized by high levels of H2O2 in the tumor microenvironment (TME), resulting in the generation of oxygen vacancies and Ru3+/Ru4+ ions. This unique structure transformation endows URNPs to generate singlet oxygen (1O2) under laser irradiation and hydroxyl radicals (∙OH) through a Fenton-like reaction in tumor cell and tissue. The simultaneous generation of multifarious ROS effectively improves the efficacy of DDP in vitro and in vivo. This TME-responsive ROS scavenger/generator acts as an adjuvant therapeutic agent to minimize side effects and improve the efficacy of chemotherapy drugs, providing a new avenue to chemotherapy and facilitating clinical tumor therapy.


Subject(s)
Acute Kidney Injury , Antineoplastic Agents , Cisplatin , Kidney , Reactive Oxygen Species , Ruthenium , Cisplatin/pharmacology , Animals , Acute Kidney Injury/drug therapy , Acute Kidney Injury/chemically induced , Reactive Oxygen Species/metabolism , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Kidney/drug effects , Kidney/metabolism , Humans , Ruthenium/chemistry , Ruthenium/pharmacology , Metal Nanoparticles/chemistry , Metal Nanoparticles/therapeutic use , Tumor Microenvironment/drug effects , Cell Line, Tumor , Hydrogen Peroxide/metabolism , Mice, Inbred BALB C , Neoplasms/drug therapy , Male , Antioxidants/pharmacology , Antioxidants/chemistry
20.
BMC Plant Biol ; 24(1): 687, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39026164

ABSTRACT

BACKGROUND: The effect of azelaic acid (Aza) on the response of tomato plants to Alternaria solani was investigated in this study. After being treated with Aza, tomato plants were infected with A. solani, and their antioxidant, biochemical, and molecular responses were analyzed. RESULTS: The results demonstrated that H2O2 and MDA accumulation increased in control plants after pathogen infection. Aza-treated plants exhibited a remarkable rise in peroxidase (POD) and catalase (CAT) activities during the initial stages of A. solani infection. Gene expression analysis revealed that both Aza treatment and pathogen infection altered the expression patterns of the SlNPR1, SlERF2, SlPR1, and SlPDF1.2 genes. The expression of SlPDF1.2, a marker gene for the jasmonic acid/ethylene (JA/ET) signaling pathway, showed a remarkable increase of 4.2-fold upon pathogen infection. In contrast, for the SlNPR1, a key gene in salicylic acid (SA) pathway, this increased expression was recorded with a delay at 96 hpi. Also, the phytohormone analysis showed significantly increased SA accumulation in plant tissues with disease development. It was also revealed that tissue accumulation of JA in Aza-treated plants was increased following pathogen infection, while it was not increased in plants without pathogen inoculation. CONCLUSION: The results suggest that the resistance induced by Aza is mainly a result of modulations in both SA and JA pathways following complex antioxidant and molecular defense responses in tomato plants during A. solani infection. These findings provide novel information regarding inducing mechanisms of azelaic acid which would add to the current body of knowledge of SAR induction in plants as result of Aza application.


Subject(s)
Alternaria , Cyclopentanes , Dicarboxylic Acids , Disease Resistance , Plant Diseases , Solanum lycopersicum , Solanum lycopersicum/microbiology , Solanum lycopersicum/genetics , Solanum lycopersicum/immunology , Alternaria/physiology , Dicarboxylic Acids/metabolism , Plant Diseases/microbiology , Plant Diseases/immunology , Disease Resistance/genetics , Cyclopentanes/metabolism , Oxylipins/metabolism , Gene Expression Regulation, Plant , Salicylic Acid/metabolism , Hydrogen Peroxide/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Growth Regulators/metabolism , Antioxidants/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL