Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32.142
Filter
1.
J Math Biol ; 89(3): 29, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39012511

ABSTRACT

The paper presents an approach for overcoming modeling problems of typical life science applications with partly unknown mechanisms and lacking quantitative data: A model family of reaction-diffusion equations is built up on a mesoscopic scale and uses classes of feasible functions for reaction and taxis terms. The classes are found by translating biological knowledge into mathematical conditions and the analysis of the models further constrains the classes. Numerical simulations allow comparing single models out of the model family with available qualitative information on the solutions from observations. The method provides insight into a hierarchical order of the mechanisms. The method is applied to the clinics for liver inflammation such as metabolic dysfunction-associated steatohepatitis or viral hepatitis where reasons for the chronification of disease are still unclear and time- and space-dependent data is unavailable.


Subject(s)
Computer Simulation , Models, Biological , Humans , Fatty Liver , Inflammation/immunology , Mathematical Concepts , Hepatitis, Viral, Human , Hepatitis
2.
ACS Appl Mater Interfaces ; 16(28): 36047-36062, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38978477

ABSTRACT

Sepsis, a life-threatening condition caused by a dysregulated immune response to infection, leads to systemic inflammation, immune dysfunction, and multiorgan damage. Various oxidoreductases play a very important role in balancing oxidative stress and modulating the immune response, but they are stored inconveniently, environmentally unstable, and expensive. Herein, we develop multifunctional artificial enzymes, CeO2 and Au/CeO2 nanozymes, exhibiting five distinct enzyme-like activities, namely, superoxide dismutase, catalase, glutathione peroxidase, peroxidase, and oxidase. These artificial enzymes have been used for the biocatalytic treatment of sepsis via inhibiting inflammation and modulating immune responses. These nanozymes significantly reduce reactive oxygen species and proinflammatory cytokines, achieving multiorgan protection. Notably, CeO2 and Au/CeO2 nanozymes with enzyme-mimicking activities can be particularly effective in restoring immunosuppression and maintaining homeostasis. The redox nanozyme offers a promising dual-protective strategy against sepsis-induced inflammation and organ dysfunction, paving the way for biocatalytic-based immunotherapies for sepsis and related inflammatory diseases.


Subject(s)
Cerium , Gold , Inflammation , Sepsis , Sepsis/drug therapy , Sepsis/immunology , Animals , Inflammation/drug therapy , Inflammation/immunology , Gold/chemistry , Cerium/chemistry , Cerium/therapeutic use , Mice , Humans , Reactive Oxygen Species/metabolism , Catalase/metabolism , Catalase/chemistry , Cytokines/metabolism
3.
Nat Commun ; 15(1): 5949, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009587

ABSTRACT

Bullous pemphigoid (BP) is a type 2 inflammation- and immunity-driven skin disease, yet a comprehensive understanding of the immune landscape, particularly immune-stromal crosstalk in BP, remains elusive. Herein, using single-cell RNA sequencing (scRNA-seq) and in vitro functional analyzes, we pinpoint Th2 cells, dendritic cells (DCs), and fibroblasts as crucial cell populations. The IL13-IL13RA1 ligand-receptor pair is identified as the most significant mediator of immune-stromal crosstalk in BP. Notably, fibroblasts and DCs expressing IL13RA1 respond to IL13-secreting Th2 cells, thereby amplifying Th2 cell-mediated cascade responses, which occurs through the specific upregulation of PLA2G2A in fibroblasts and CCL17 in myeloid cells, creating a positive feedback loop integral to immune-stromal crosstalk. Furthermore, PLA2G2A and CCL17 contribute to an increased titer of pathogenic anti-BP180-NC16A autoantibodies in BP patients. Our work provides a comprehensive insight into BP pathogenesis and shows a mechanism governing immune-stromal interactions, providing potential avenues for future therapeutic research.


Subject(s)
Chemokine CCL17 , Dendritic Cells , Fibroblasts , Pemphigoid, Bullous , Single-Cell Analysis , Th2 Cells , Humans , Pemphigoid, Bullous/immunology , Pemphigoid, Bullous/genetics , Single-Cell Analysis/methods , Fibroblasts/metabolism , Fibroblasts/immunology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Chemokine CCL17/genetics , Chemokine CCL17/metabolism , Th2 Cells/immunology , Autoantibodies/immunology , Transcriptome , Interleukin-13/metabolism , Interleukin-13/genetics , Interleukin-13/immunology , Non-Fibrillar Collagens/immunology , Non-Fibrillar Collagens/genetics , Non-Fibrillar Collagens/metabolism , Inflammation/immunology , Inflammation/genetics , Inflammation/metabolism , Gene Expression Profiling/methods , Male , Female , Autoantigens/immunology , Autoantigens/metabolism , Autoantigens/genetics , Collagen Type XVII , Myeloid Cells/metabolism , Myeloid Cells/immunology , Stromal Cells/metabolism , Stromal Cells/immunology
4.
Front Immunol ; 15: 1400956, 2024.
Article in English | MEDLINE | ID: mdl-39007134

ABSTRACT

Ginger (Zingiber officinale) is one of the most well-known spices and medicinal plants worldwide that has been used since ancient times to treat a plethora of diseases including cold, gastrointestinal complaints, nausea, and migraine. Beyond that, a growing body of literature demonstrates that ginger exhibits anti-inflammatory, antioxidant, anti-cancer and neuroprotective actions as well. The beneficial effects of ginger can be attributed to the biologically active compounds of its rhizome such as gingerols, shogaols, zingerone and paradols. Among these compounds, gingerols are the most abundant in fresh roots, and shogaols are the major phenolic compounds of dried ginger. Over the last two decades numerous in vitro and in vivo studies demonstrated that the major ginger phenolics are able to influence the function of various immune cells including macrophages, neutrophils, dendritic cells and T cells. Although the mechanism of action of these compounds is not fully elucidated yet, some studies provide a mechanistic insight into their anti-inflammatory effects by showing that ginger constituents are able to target multiple signaling pathways. In the first part of this review, we summarized the current literature about the immunomodulatory actions of the major ginger compounds, and in the second part, we focused on the possible molecular mechanisms that may underlie their anti-inflammatory effects.


Subject(s)
Anti-Inflammatory Agents , Zingiber officinale , Zingiber officinale/chemistry , Humans , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Animals , Plant Roots , Plant Extracts/pharmacology , Signal Transduction/drug effects , Inflammation/drug therapy , Inflammation/immunology
5.
Front Immunol ; 15: 1391355, 2024.
Article in English | MEDLINE | ID: mdl-39007141

ABSTRACT

Transient receptor potential melastatin 2 (TRPM2) is a non-selective cation channel that exhibits Ca2+ permeability. The TRPM2 channel is expressed in various tissues and cells and can be activated by multiple factors, including endogenous ligands, Ca2+, reactive oxygen species (ROS) and temperature. This article reviews the multiple roles of the TRPM2 channel in physiological and pathological processes, particularly on oxidative stress, inflammation and ischemia-reperfusion (I/R) injury. In oxidative stress, the excessive influx of Ca2+ caused by the activation of the TRPM2 channel may exacerbate cellular damage. However, under specific conditions, activating the TRPM2 channel can have a protective effect on cells. In inflammation, the activation of the TRPM2 channel may not only promote inflammatory response but also inhibit inflammation by regulating ROS production and bactericidal ability of macrophages and neutrophils. In I/R, the activation of the TRPM2 channel may worsen I/R injury to various organs, including the brain, heart, kidney and liver. However, activating the TRPM2 channel may protect the myocardium from I/R injury by regulating calcium influx and phosphorylating proline-rich tyrosine kinase 2 (Pyk2). A thorough investigation of the bidirectional role and regulatory mechanism of the TRPM2 channel in these physiological and pathological processes will aid in identifying new targets and strategies for treatment of related diseases.


Subject(s)
Inflammation , Oxidative Stress , Reperfusion Injury , TRPM Cation Channels , TRPM Cation Channels/metabolism , Humans , Reperfusion Injury/metabolism , Reperfusion Injury/immunology , Inflammation/metabolism , Inflammation/immunology , Animals , Reactive Oxygen Species/metabolism , Calcium/metabolism
6.
BMC Surg ; 24(1): 208, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39010005

ABSTRACT

BACKGROUND: SII, PNI, SIRI, AAPR, and LIPI are prognostic scores based on inflammation, nutrition, and immunity. The purpose of this study was to examine the prognostic value of the SII, PNI, SIRI, AAPR, and LIPI in patients with UTUC who underwent radical nephroureterectomy with bladder cuff excision. MATERIALS AND METHODS: Data of UTUC patients in Sichuan Provincial People's Hospital from January 2017 to December 2021 were collected. The optimal critical values of SII, PNI, SIRI, and AAPR were determined by ROC curve, and LIPI was stratified according to the dNLR and LDH. The Kaplan-Meier method was used to draw the survival curve, and Cox proportional hazard model was used to analyze the factors affecting the prognosis of UTUC patients. RESULTS: A total of 81 patients with UTUC were included in this study. The optimal truncation value of PNI, SII, SIRI and AAPR were determined to be 48.15, 596.4, 1.45 and 0.50, respectively. Univariate Cox proportional hazard regression showed that low PNI, high SII, high SIRI, low AAPR and poor LIPI group were effective predictors of postoperative prognosis of UTUC patients. Multivariate Cox proportional hazard regression showed that high SII was an independent risk factor for postoperative prognosis of UTUC patients. According to ROC curve, the prediction efficiency of fitting indexes of PNI, SII, SIRI, AAPR and LIPI is better than that of using them alone. CONCLUSIONS: The SII, PNI, SIRI, AAPR, and LIPI was a potential prognostic predictor in UTUC patients who underwent radical nephroureterectomy with bladder cuff excision.


Subject(s)
Inflammation , Nephroureterectomy , Humans , Retrospective Studies , Male , Female , Prognosis , Middle Aged , Inflammation/immunology , Aged , Carcinoma, Transitional Cell/surgery , Carcinoma, Transitional Cell/mortality , Nutritional Status , Nutrition Assessment , Preoperative Period , Immunity , Kidney Neoplasms/surgery , Kidney Neoplasms/immunology , Kidney Neoplasms/mortality
7.
Clin Sci (Lond) ; 138(14): 901-920, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38949825

ABSTRACT

We reported that salt-sensitive hypertension (SSHTN) is associated with increased pro-inflammatory immune cells, inflammation, and inflammation-associated lymphangiogenesis in the kidneys and gonads of male and female mice. However, it is unknown whether these adverse end organ effects result from increased blood pressure (BP), elevated levels of salt, or both. We hypothesized that pharmaceutically lowering BP would not fully alleviate the renal and gonadal immune cell accumulation, inflammation, and lymphangiogenesis associated with SSHTN. SSHTN was induced in male and female C57BL6/J mice by administering nitro-L-arginine methyl ester hydrochloride (L-NAME; 0.5 mg/ml) in their drinking water for 2 weeks, followed by a 2-week washout period. Subsequently, the mice received a 3-week 4% high salt diet (SSHTN). The treatment group underwent the same SSHTN induction protocol but received hydralazine (HYD; 250 mg/L) in their drinking water during the diet phase (SSHTN+HYD). Control mice received tap water and a standard diet for 7 weeks. In addition to decreasing systolic BP, HYD treatment generally decreased pro-inflammatory immune cells and inflammation in the kidneys and gonads of SSHTN mice. Furthermore, the decrease in BP partially alleviated elevated renal and gonadal lymphatics and improved renal and gonadal function in mice with SSHTN. These data demonstrate that high systemic pressure and salt differentially act on end organ immune cells, contributing to the broader understanding of how BP and salt intake collectively shape immune responses and highlight implications for targeted therapeutic interventions.


Subject(s)
Blood Pressure , Hypertension , Inflammation , Kidney , Mice, Inbred C57BL , Sodium Chloride, Dietary , Animals , Hypertension/immunology , Hypertension/physiopathology , Hypertension/drug therapy , Hypertension/chemically induced , Male , Female , Blood Pressure/drug effects , Sodium Chloride, Dietary/adverse effects , Kidney/immunology , Kidney/drug effects , Inflammation/immunology , Lymphangiogenesis/drug effects , Antihypertensive Agents/pharmacology , Mice , Hydralazine/pharmacology , NG-Nitroarginine Methyl Ester/pharmacology , Disease Models, Animal , Gonads/drug effects
9.
Front Immunol ; 15: 1419951, 2024.
Article in English | MEDLINE | ID: mdl-38947335

ABSTRACT

The Suppressor of Cytokine Signaling (SOCS) family proteins are important negative regulators of cytokine signaling. SOCS1 is the prototypical member of the SOCS family and functions in a classic negative-feedback loop to inhibit signaling in response to interferon, interleukin-12 and interleukin-2 family cytokines. These cytokines have a critical role in orchestrating our immune defence against viral pathogens and cancer. The ability of SOCS1 to limit cytokine signaling positions it as an important immune checkpoint, as evidenced by the detection of detrimental SOCS1 variants in patients with cytokine-driven inflammatory and autoimmune disease. SOCS1 has also emerged as a key checkpoint that restricts anti-tumor immunity, playing both a tumor intrinsic role and impacting the ability of various immune cells to mount an effective anti-tumor response. In this review, we describe the mechanism of SOCS1 action, focusing on the role of SOCS1 in autoimmunity and cancer, and discuss the potential for new SOCS1-directed cancer therapies that could be used to enhance adoptive immunotherapy and immune checkpoint blockade.


Subject(s)
Homeostasis , Inflammation , Neoplasms , Suppressor of Cytokine Signaling 1 Protein , Humans , Suppressor of Cytokine Signaling 1 Protein/metabolism , Suppressor of Cytokine Signaling 1 Protein/genetics , Neoplasms/immunology , Neoplasms/therapy , Homeostasis/immunology , Inflammation/immunology , Animals , Signal Transduction , Autoimmunity , Cytokines/metabolism , Cytokines/immunology
10.
Pediatr Ann ; 53(7): e264-e268, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38949876

ABSTRACT

During the coronavirus disease 2019 (COVID-19) pandemic, reports of individuals experiencing new-onset type 1 diabetes (T1D) began to appear in the literature. This spurred subsequent epidemiological studies that demonstrated an increase in new diagnosis of T1D compared to prepandemic. Development of T1D is characterized by the development of an inappropriate T cell response directed against pancreatic beta-cells, leading to eventual loss of insulin secretion. This T cell response occurs in genetically susceptible individuals and may be triggered by viral illnesses. Abnormal cytokine production is another element of the pathogenesis of T1D. Infection with severe acute respiratory syndrome related coronavirus 2 induces a profound increase in the production of inflammatory cytokines and causes significant T-cell dysregulation. These disruptions of the immune system may be linked to the development of T1D following COVID-19. [Pediatr Ann. 2024;53(7):e264-e268.].


Subject(s)
COVID-19 , Cytokines , Diabetes Mellitus, Type 1 , T-Lymphocytes , Child , Humans , COVID-19/immunology , Cytokines/metabolism , Diabetes Mellitus, Type 1/immunology , Inflammation/immunology , SARS-CoV-2 , T-Lymphocytes/immunology
11.
Front Endocrinol (Lausanne) ; 15: 1406793, 2024.
Article in English | MEDLINE | ID: mdl-38957443

ABSTRACT

Background: Limited research has been conducted to quantitatively assess the impact of systemic inflammation in metabolic dysfunction-associated fatty liver disease (MAFLD) and sub-clinical carotid atherosclerosis (SCAS). The systemic immune-inflammation index (SII), which integrates inflammatory cells, has emerged as a reliable measure of local immune response and systemic inflammation Therefore, this study aims to assess the mediating role of SII in the association between MAFLD and SCAS in type 2 diabetes mellitus (T2DM). Method: This study prospectively recruited 830 participants with T2DM from two centers. Unenhanced abdominal CT scans were conducted to evaluate MAFLD, while B-mode carotid ultrasonography was performed to assess SCAS. Weighted binomial logistic regression analysis and restricted cubic splines (RCS) analyses were employed to analyze the association between the SII and the risk of MAFLD and SCAS. Mediation analysis was further carried out to explore the potential mediating effect of the SII on the association between MAFLD and SCAS. Results: The prevalence of both MAFLD and SCAS significantly increased as the SII quartiles increased (P<0.05). MAFLD emerged as an independent factor for SCAS risk across three adjusted models, exhibiting odds ratios of 2.15 (95%CI: 1.31-3.53, P < 0.001). Additionally, increased SII quartiles and Ln (SII) displayed positive associations with the risk of MAFLD and SCAS (P < 0.05). Furthermore, a significant dose-response relationship was observed (P for trend <0.001). The RCS analyses revealed a linear correlation of Ln (SII) with SCAS and MAFLD risk (P for nonlinearity<0.05). Importantly, SII and ln (SII) acted as the mediators in the association between MAFLD and SCAS following adjustments for shared risk factors, demonstrating a proportion-mediated effect of 7.8% and 10.9%. Conclusion: SII was independently correlated with MAFLD and SCAS risk, while also acting as a mediator in the relationship between MAFLD and SCAS.


Subject(s)
Carotid Artery Diseases , Diabetes Mellitus, Type 2 , Inflammation , Mediation Analysis , Humans , Male , Female , Carotid Artery Diseases/diagnostic imaging , Carotid Artery Diseases/epidemiology , Carotid Artery Diseases/immunology , Carotid Artery Diseases/metabolism , Middle Aged , Inflammation/metabolism , Inflammation/immunology , Diabetes Mellitus, Type 2/immunology , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/complications , Prospective Studies , Aged , Risk Factors , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/immunology
12.
Immunity ; 57(7): 1443-1445, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38986436

ABSTRACT

RIPK1 is known as a driver of cell death and inflammation. In this issue of Immunity, Imai et al. and Mannion et al. find that these same processes are also induced by RIPK1 inactivation and highlight the therapeutic potential of RIPK1 elimination.


Subject(s)
Inflammation , Receptor-Interacting Protein Serine-Threonine Kinases , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Inflammation/immunology , Humans , Animals , Cell Death/immunology , Mice
13.
Nat Commun ; 15(1): 5766, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982052

ABSTRACT

Respiratory viruses are a major trigger of exacerbations in chronic obstructive pulmonary disease (COPD). Airway neutrophilia is a hallmark feature of stable and exacerbated COPD but roles played by neutrophil extracellular traps (NETS) in driving disease pathogenesis are unclear. Here, using human studies of experimentally-induced and naturally-occurring exacerbations we identify that rhinovirus infection induces airway NET formation which is amplified in COPD and correlates with magnitude of inflammation and clinical exacerbation severity. We show that inhibiting NETosis protects mice from immunopathology in a model of virus-exacerbated COPD. NETs drive inflammation during exacerbations through release of double stranded DNA (dsDNA) and administration of DNAse in mice has similar protective effects. Thus, NETosis, through release of dsDNA, has a functional role in the pathogenesis of COPD exacerbations. These studies open up the potential for therapeutic targeting of NETs or dsDNA as a strategy for treating virus-exacerbated COPD.


Subject(s)
Extracellular Traps , Neutrophils , Pulmonary Disease, Chronic Obstructive , Rhinovirus , Extracellular Traps/immunology , Pulmonary Disease, Chronic Obstructive/immunology , Pulmonary Disease, Chronic Obstructive/virology , Pulmonary Disease, Chronic Obstructive/pathology , Animals , Humans , Rhinovirus/immunology , Mice , Neutrophils/immunology , Male , Female , Picornaviridae Infections/immunology , Picornaviridae Infections/virology , Picornaviridae Infections/complications , Mice, Inbred C57BL , DNA/immunology , Disease Models, Animal , Middle Aged , Inflammation/immunology , Inflammation/virology , Aged
14.
Immunity ; 57(7): 1451-1453, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38986439

ABSTRACT

Skin inflammation is potentiated by coordinated epithelial and immune cell metabolism. In this issue of Immunity, Subudhi and Konieczny et al. delineate how HIF1α regulates epithelial cell glycolysis during psoriasis. In turn, lactate is a byproduct that augments type 17 γδ T cell responses to sustain inflammatory skin disease.


Subject(s)
Epithelial Cells , Glycolysis , Hypoxia-Inducible Factor 1, alpha Subunit , Psoriasis , Skin , Animals , Humans , Chronic Disease , Epithelial Cells/metabolism , Epithelial Cells/immunology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Inflammation/immunology , Inflammation/metabolism , Psoriasis/immunology , Psoriasis/metabolism , Skin/immunology , Skin/pathology , Skin/metabolism
15.
Front Immunol ; 15: 1411979, 2024.
Article in English | MEDLINE | ID: mdl-38989288

ABSTRACT

Background: Kawasaki disease (KD), an acute febrile illness and systemic vasculitis, is the leading cause of acquired heart disease in children in industrialized countries. KD leads to the development of coronary artery aneurysms (CAA) in affected children, which may persist for months and even years after the acute phase of the disease. There is an unmet need to characterize the immune and pathological mechanisms of the long-term complications of KD. Methods: We examined cardiovascular complications in the Lactobacillus casei cell wall extract (LCWE) mouse model of KD-like vasculitis over 4 months. The long-term immune, pathological, and functional changes occurring in cardiovascular lesions were characterized by histological examination, flow cytometric analysis, immunofluorescent staining of cardiovascular tissues, and transthoracic echocardiogram. Results: CAA and abdominal aorta dilations were detected up to 16 weeks following LCWE injection and initiation of acute vasculitis. We observed alterations in the composition of circulating immune cell profiles, such as increased monocyte frequencies in the acute phase of the disease and higher counts of neutrophils. We determined a positive correlation between circulating neutrophil and inflammatory monocyte counts and the severity of cardiovascular lesions early after LCWE injection. LCWE-induced KD-like vasculitis was associated with myocarditis and myocardial dysfunction, characterized by diminished ejection fraction and left ventricular remodeling, which worsened over time. We observed extensive fibrosis within the inflamed cardiac tissue early in the disease and myocardial fibrosis in later stages. Conclusion: Our findings indicate that increased circulating neutrophil counts in the acute phase are a reliable predictor of cardiovascular inflammation severity in LCWE-injected mice. Furthermore, long-term cardiac complications stemming from inflammatory cell infiltrations in the aortic root and coronary arteries, myocardial dysfunction, and myocardial fibrosis persist over long periods and are still detected up to 16 weeks after LCWE injection.


Subject(s)
Cell Wall , Disease Models, Animal , Fibrosis , Lacticaseibacillus casei , Mucocutaneous Lymph Node Syndrome , Vasculitis , Animals , Mice , Cell Wall/immunology , Vasculitis/immunology , Vasculitis/etiology , Vasculitis/pathology , Mucocutaneous Lymph Node Syndrome/immunology , Mucocutaneous Lymph Node Syndrome/complications , Male , Myocarditis/etiology , Myocarditis/pathology , Myocarditis/immunology , Inflammation/immunology
16.
Front Immunol ; 15: 1415565, 2024.
Article in English | MEDLINE | ID: mdl-38989285

ABSTRACT

How the microbiome regulates responses of systemic innate immune cells is unclear. In the present study, our purpose was to document a novel mechanism by which the microbiome mediates crosstalk with the systemic innate immune system. We have identified a family of microbiome Bacteroidota-derived lipopeptides-the serine-glycine (S/G) lipids, which are TLR2 ligands, access the systemic circulation, and regulate proinflammatory responses of splenic monocytes. To document the role of these lipids in regulating systemic immunity, we used oral gavage with an antibiotic to decrease the production of these lipids and administered exogenously purified lipids to increase the systemic level of these lipids. We found that decreasing systemic S/G lipids by decreasing microbiome Bacteroidota significantly enhanced splenic monocyte proinflammatory responses. Replenishing systemic levels of S/G lipids via exogenous administration returned splenic monocyte responses to control levels. Transcriptomic analysis demonstrated that S/G lipids regulate monocyte proinflammatory responses at the level of gene expression of a small set of upstream inhibitors of TLR and NF-κB pathways that include Trem2 and Irf4. Consistent with enhancement in proinflammatory cytokine responses, decreasing S/G lipids lowered gene expression of specific pathway inhibitors. Replenishing S/G lipids normalized gene expression of these inhibitors. In conclusion, our results suggest that microbiome-derived S/G lipids normally establish a level of buffered signaling activation necessary for well-regulated innate immune responses in systemic monocytes. By regulating gene expression of inflammatory pathway inhibitors such as Trem2, S/G lipids merit broader investigation into the potential dysfunction of other innate immune cells, such as microglia, in diseases such as Alzheimer's disease.


Subject(s)
Monocytes , Signal Transduction , Monocytes/immunology , Monocytes/metabolism , Monocytes/drug effects , Animals , Mice , Microbiota/immunology , Mice, Inbred C57BL , Immunity, Innate , Toll-Like Receptor 2/metabolism , Gene Expression Regulation/drug effects , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Lipopeptides/pharmacology , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , NF-kappa B/metabolism , Inflammation/immunology , Interferon Regulatory Factors/metabolism , Interferon Regulatory Factors/genetics , Male , Lipids , Spleen/immunology , Spleen/metabolism , Cytokines/metabolism , Female
17.
Int J Mol Sci ; 25(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39000211

ABSTRACT

Diabetes is associated with numerous comorbidities, one of which is increased vulnerability to infections. This review will focus on how diabetes mellitus (DM) affects the immune system and its various components, leading to the impaired proliferation of immune cells and the induction of senescence. We will explore how the pathology of diabetes-induced immune dysfunction may have similarities to the pathways of "inflammaging", a persistent low-grade inflammation common in the elderly. Inflammaging may increase the likelihood of conditions such as rheumatoid arthritis (RA) and periodontitis at a younger age. Diabetes affects bone marrow composition and cellular senescence, and in combination with advanced age also affects lymphopoiesis by increasing myeloid differentiation and reducing lymphoid differentiation. Consequently, this leads to a reduced immune system response in both the innate and adaptive phases, resulting in higher infection rates, reduced vaccine response, and increased immune cells' senescence in diabetics. We will also explore how some diabetes drugs induce immune senescence despite their benefits on glycemic control.


Subject(s)
Diabetes Mellitus , Humans , Diabetes Mellitus/immunology , Diabetes Mellitus/pathology , Animals , Cellular Senescence/immunology , Inflammation/immunology , Inflammation/pathology , Immune System/immunology
18.
Int J Mol Sci ; 25(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39000313

ABSTRACT

Protein tyrosine phosphatase 1B (PTP1B) is a non-receptor tyrosine phosphatase best known for its role in regulating insulin and leptin signalling. Recently, knowledge on the role of PTP1B as a major regulator of multiple signalling pathways involved in cell growth, proliferation, viability and metabolism has expanded, and PTP1B is recognised as a therapeutic target in several human disorders, including diabetes, obesity, cardiovascular diseases and hematopoietic malignancies. The function of PTP1B in the immune system was largely overlooked until it was discovered that PTP1B negatively regulates the Janus kinase-a signal transducer and activator of the transcription (JAK/STAT) signalling pathway, which plays a significant role in modulating immune responses. PTP1B is now known to determine the magnitude of many signalling pathways that drive immune cell activation and function. As such, PTP1B inhibitors are being developed and tested in the context of inflammation and autoimmune diseases. Here, we provide an up-to-date summary of the molecular role of PTP1B in regulating immune cell function and how targeting its expression and/or activity has the potential to change the outcomes of immune-mediated and inflammatory disorders.


Subject(s)
Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Signal Transduction , Humans , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 1/genetics , Animals , Inflammation/metabolism , Inflammation/immunology , Diabetes Mellitus/immunology , Diabetes Mellitus/metabolism
19.
Int J Mol Sci ; 25(13)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39000373

ABSTRACT

Atherosclerotic vascular disease disproportionately affects persons living with HIV (PLWH) compared to those without. The reasons for the excess risk include dysregulated immune response and inflammation related to HIV infection itself, comorbid conditions, and co-infections. Here, we review an updated understanding of immune and inflammatory pathways underlying atherosclerosis in PLWH, including effects of viral products, soluble mediators and chemokines, innate and adaptive immune cells, and important co-infections. We also present potential therapeutic targets which may reduce cardiovascular risk in PLWH.


Subject(s)
Atherosclerosis , HIV Infections , Inflammation , Humans , HIV Infections/immunology , HIV Infections/complications , Atherosclerosis/immunology , Inflammation/immunology , Cardiovascular Diseases/immunology , Cardiovascular Diseases/etiology , Animals , Immunity, Innate
20.
Autoimmunity ; 57(1): 2377098, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39004847

ABSTRACT

Animal models are an important tool in the research of chronic autoimmune diseases, like systemic lupus erythematosus (SLE). MRL-Faslpr mice are one of different lupus models that develop spontaneously an SLE-like disease with autoantibodies and immune complex deposition that leads into damage of different organs. In contrast to human SLE, both sexes of MRL-Faslpr mice develop a similar autoimmune disease. Due to the sex bias in human and the delayed disease progression in male MRL-Faslpr mice, the majority of studies have been performed in female mice. To determine the suitability of male MRL-Faslpr mice for SLE research, especially with regard to the 3 R-principle and animal welfare, analyses of phenotype, inflammation and damage with focus on kidney and spleen were performed in mice of both sexes. Female mice developed lymphadenopathy and skin lesions earlier as males. At an age of 3.5 month, more immune cells infiltrated kidney and spleen in females compared to males. At the age of 5 months, however, substantially less sex-specific differences were detected. Since other studies have shown differences between both sexes on other manifestations like autoimmune pancreatitis and Sjögren syndrome in MRL-Faslpr mice, the use of male mice as part of 3 R-principle and animal welfare must be carefully considered.


Subject(s)
Disease Models, Animal , Kidney , Lupus Erythematosus, Systemic , Mice, Inbred MRL lpr , Animals , Female , Male , Mice , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/pathology , Kidney/pathology , Kidney/immunology , Inflammation/immunology , Inflammation/pathology , Sex Factors , Spleen/immunology , Spleen/pathology , Humans , Sex Characteristics , Autoantibodies/immunology
SELECTION OF CITATIONS
SEARCH DETAIL