Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 316
Filter
1.
Cells ; 13(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38727308

ABSTRACT

Bisindole alkaloids are a source of inspiration for the design and discovery of new-generation anticancer agents. In this study, we investigated the cytotoxic and antiproliferative activities of three spirobisindole alkaloids from the traditional anticancer Philippine medicinal plant Voacanga globosa, along with their mechanisms of action. Thus, the alkaloids globospiramine (1), deoxyvobtusine (2), and vobtusine lactone (3) showed in vitro cytotoxicity and antiproliferative activities against the tested cell lines (L929, KB3.1, A431, MCF-7, A549, PC-3, and SKOV-3) using MTT and CellTiter-Blue assays. Globospiramine (1) was also screened against a panel of breast cancer cell lines using the sulforhodamine B (SRB) assay and showed moderate cytotoxicity. It also promoted the activation of apoptotic effector caspases 3 and 7 using Caspase-Glo 3/7 and CellEvent-3/7 apoptosis assays. Increased expressions of cleaved caspase 3 and PARP in A549 cells treated with 1 were also observed. Apoptotic activity was also confirmed when globospiramine (1) failed to promote the rapid loss of membrane integrity according to the HeLa cell membrane permeability assay. Network pharmacology analysis, molecular docking, and molecular dynamics simulations identified MAPK14 (p38α), a pharmacological target leading to cancer cell apoptosis, as a putative target. Low toxicity risks and favorable drug-likeness were also predicted for 1. Overall, our study demonstrated the anticancer potentials and apoptotic mechanisms of globospiramine (1), validating the traditional medicinal use of Voacanga globosa.


Subject(s)
Apoptosis , Cell Proliferation , Indole Alkaloids , Mitogen-Activated Protein Kinase 14 , Molecular Docking Simulation , Humans , A549 Cells , Apoptosis/drug effects , Caspases/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Indole Alkaloids/pharmacology , Indole Alkaloids/chemistry , Molecular Dynamics Simulation , Mitogen-Activated Protein Kinase 14/antagonists & inhibitors , Mitogen-Activated Protein Kinase 14/metabolism
2.
J Clin Invest ; 134(10)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38512415

ABSTRACT

Fibrosis following tissue injury is distinguished from normal repair by the accumulation of pathogenic and apoptosis-resistant myofibroblasts (MFs), which arise primarily by differentiation from resident fibroblasts. Endogenous molecular brakes that promote MF dedifferentiation and clearance during spontaneous resolution of experimental lung fibrosis may provide insights that could inform and improve the treatment of progressive pulmonary fibrosis in patients. MAPK phosphatase 1 (MKP1) influences the cellular phenotype and fate through precise and timely regulation of MAPK activity within various cell types and tissues, yet its role in lung fibroblasts and pulmonary fibrosis has not been explored. Using gain- and loss-of-function studies, we found that MKP1 promoted lung MF dedifferentiation and restored the sensitivity of these cells to apoptosis - effects determined to be mainly dependent on MKP1's dephosphorylation of p38α MAPK (p38α). Fibroblast-specific deletion of MKP1 following peak bleomycin-induced lung fibrosis largely abrogated its subsequent spontaneous resolution. Such resolution was restored by treating these transgenic mice with the p38α inhibitor VX-702. We conclude that MKP1 is a critical antifibrotic brake whose inhibition of pathogenic p38α in lung fibroblasts is necessary for fibrosis resolution following lung injury.


Subject(s)
Dual Specificity Phosphatase 1 , Lung , Mitogen-Activated Protein Kinase 14 , Myofibroblasts , Pulmonary Fibrosis , Animals , Mice , Dual Specificity Phosphatase 1/metabolism , Dual Specificity Phosphatase 1/genetics , Myofibroblasts/pathology , Myofibroblasts/metabolism , Myofibroblasts/enzymology , Mitogen-Activated Protein Kinase 14/metabolism , Mitogen-Activated Protein Kinase 14/genetics , Mitogen-Activated Protein Kinase 14/antagonists & inhibitors , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/enzymology , Pulmonary Fibrosis/chemically induced , Lung/pathology , Lung/metabolism , Bleomycin/toxicity , Humans , Mice, Knockout , Mice, Transgenic , Apoptosis
3.
Nat Commun ; 13(1): 5308, 2022 09 21.
Article in English | MEDLINE | ID: mdl-36130946

ABSTRACT

The endosome-associated GTPase Rab5 is a central player in the molecular mechanisms leading to degeneration of basal forebrain cholinergic neurons (BFCN), a long-standing target for drug development. As p38α is a Rab5 activator, we hypothesized that inhibition of this kinase holds potential as an approach to treat diseases associated with BFCN loss. Herein, we report that neflamapimod (oral small molecule p38α inhibitor) reduces Rab5 activity, reverses endosomal pathology, and restores the numbers and morphology of BFCNs in a mouse model that develops BFCN degeneration. We also report on the results of an exploratory (hypothesis-generating) phase 2a randomized double-blind 16-week placebo-controlled clinical trial (Clinical trial registration: NCT04001517/EudraCT #2019-001566-15) of neflamapimod in mild-to-moderate dementia with Lewy bodies (DLB), a disease in which BFCN degeneration is an important driver of disease expression. A total of 91 participants, all receiving background cholinesterase inhibitor therapy, were randomized 1:1 between neflamapimod 40 mg or matching placebo capsules (taken orally twice-daily if weight <80 kg or thrice-daily if weight >80 kg). Neflamapimod does not show an effect in the clinical study on the primary endpoint, a cognitive-test battery. On two secondary endpoints, a measure of functional mobility and a dementia rating-scale, improvements were seen that are consistent with an effect on BFCN function. Neflamapimod treatment is well-tolerated with no study drug associated treatment discontinuations. The combined preclinical and clinical observations inform on the validity of the Rab5-based pathogenic model of cholinergic degeneration and provide a foundation for confirmatory (hypothesis-testing) clinical evaluation of neflamapimod in DLB.


Subject(s)
Alzheimer Disease , Basal Forebrain , Alzheimer Disease/metabolism , Animals , Basal Forebrain/metabolism , Cholinergic Neurons/metabolism , Cholinesterase Inhibitors/metabolism , Double-Blind Method , GTP Phosphohydrolases/metabolism , Humans , Mice , Mitogen-Activated Protein Kinase 14/antagonists & inhibitors , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use
4.
J Med Chem ; 65(10): 7170-7192, 2022 05 26.
Article in English | MEDLINE | ID: mdl-35546685

ABSTRACT

The identification of novel inhaled p38α/ß mitogen-activated protein kinases (MAPK) (MAPK14/11) inhibitors suitable for the treatment of pulmonary inflammatory conditions has been described. A rational drug design approach started from the identification of a novel tetrahydronaphthalene series, characterized by nanomolar inhibition of p38α with selectivity over p38γ and p38δ isoforms. SAR optimization of 1c is outlined, where improvements in potency against p38α and ligand-enzyme dissociation kinetics led to several compounds showing pronounced anti-inflammatory effects in vitro (inhibition of TNFα release). Targeting of the defined physicochemical properties allowed the identification of compounds 3h, 4e, and 4f, which showed, upon intratracheal instillation, low plasma levels, prolonged lung retention, and anti-inflammatory effects in a rat acute model of a bacterial endotoxin-induced pulmonary inflammation. Compound 4e, in particular, displayed remarkable efficacy and duration of action and was selected for progression in disease models of asthma and chronic obstructive pulmonary disease (COPD).


Subject(s)
Mitogen-Activated Protein Kinase 14 , Pneumonia , Protein Kinase Inhibitors , p38 Mitogen-Activated Protein Kinases , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Drug Design , Mitogen-Activated Protein Kinase 14/antagonists & inhibitors , Phosphorylation , Pneumonia/drug therapy , Pneumonia/enzymology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Rats , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors
5.
Nat Commun ; 13(1): 569, 2022 01 28.
Article in English | MEDLINE | ID: mdl-35091547

ABSTRACT

Target residence time plays a crucial role in the pharmacological activity of small molecule inhibitors. Little is known, however, about the underlying causes of inhibitor residence time at the molecular level, which complicates drug optimization processes. Here, we employ all-atom molecular dynamics simulations (~400 µs in total) to gain insight into the binding modes of two structurally similar p38α MAPK inhibitors (type I and type I½) with short and long residence times that otherwise show nearly identical inhibitory activities in the low nanomolar IC50 range. Our results highlight the importance of protein conformational stability and solvent exposure, buried surface area of the ligand and binding site resolvation energy for residence time. These findings are further confirmed by simulations with a structurally diverse short residence time inhibitor SB203580. In summary, our data provide guidance in compound design when aiming for inhibitors with improved target residence time.


Subject(s)
Enzyme Inhibitors/chemistry , Mitogen-Activated Protein Kinase 14/chemistry , Molecular Dynamics Simulation , Protein Conformation , Water/chemistry , Binding Sites , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , Humans , Hydrogen Bonding , Imidazoles/chemistry , Imidazoles/metabolism , Imidazoles/pharmacology , Kinetics , Mitogen-Activated Protein Kinase 14/antagonists & inhibitors , Mitogen-Activated Protein Kinase 14/metabolism , Molecular Structure , Protein Binding , Protein Stability , Pyridines/chemistry , Pyridines/metabolism , Pyridines/pharmacology , Thermodynamics , Water/metabolism
6.
Arch Pharm (Weinheim) ; 355(2): e2100302, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34796536

ABSTRACT

Novel series of pyrazolo[3,4-b]pyridines 9a-j and 14a-f were prepared via a one-pot three-component reaction. Compounds 9a-j were synthesized by the reaction of 3-(4-chlorophenyl)-1-phenyl-1H-pyrazol-5-amine (4) with benzoyl acetonitriles 3a,b and aldehydes 5a-e, whereas the spiro derivatives 14a-f were synthesized by the reaction of pyrazole derivative 4 with 3a-c and indoline-2,3-diones 10a,b. Screening of the antiproliferative activity of 9a-j and 14a-f revealed that 14a and 14d were the most potent analogues against HepG2 and HeLa cells, with IC50 = 4.2 and 5.9 µM, respectively. Moreover, compounds 9c and 14a could promote cell cycle disturbance and apoptosis in HepG2 cells, as evidenced by DNA flow cytometry and Annexin V-FITC/PI assays. Cell cycle analysis of 9c and 14a indicated a reduction in HepG2 cells in the G1 phase, with arrest in the S phase and the G2/M phase, respectively. Also, 9c and 14a are good apoptotic inducers in the HepG2 cell line. Furthermore, compounds 9h and 14d stood out as the most efficient antiproliferative agents in the NCI 60-cell line panel screening, with mean GI % equal to 60.3% and 55.4%, respectively. Additionally, 9c, 9h, 14a, and 14d showed good inhibitory action against the cellular pathway regulator p38α kinase, with IC50 = 0.42, 0.41, 0.13, and 0.64 µM, respectively. A docking study was carried out on the p38α kinase active site, showing a binding mode comparable to that of reported p38 mitogen-activated protein kinase inhibitors. These newly discovered pyrazolo[3,4-b]pyridines could be considered as potential candidates for the development of newly targeted anticancer agents.


Subject(s)
Antineoplastic Agents/pharmacology , Mitogen-Activated Protein Kinase 14/antagonists & inhibitors , Pyrazoles/pharmacology , Pyridines/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , HeLa Cells , Hep G2 Cells , Humans , Inhibitory Concentration 50 , Molecular Docking Simulation , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Pyridines/chemical synthesis , Pyridines/chemistry , Structure-Activity Relationship
7.
Int J Mol Sci ; 22(22)2021 Nov 22.
Article in English | MEDLINE | ID: mdl-34830455

ABSTRACT

Chronic myeloid leukemia (CML) is a hematopoietic malignancy characterized by the presence of the BCR-ABL oncogene. Therapeutic regimens with tyrosine kinase inhibitors (TKIs) specifically targeting BCR-ABL have greatly improved overall survival of CML. However, drug intolerance and related toxicity remain. Combined therapy is effective in reducing drug magnitude while increasing therapeutic efficacy and, thus, lowers undesired adverse side effects. The p38 MAPK activity is critically linked to the pathogenesis of a number of diseases including hematopoietic diseases; however, the role of each isozyme in CML and TKI-mediated effects is still elusive. In this study, we used specific gene knockdown to clearly demonstrate that the deficiency of p38α greatly enhanced the therapeutic efficacy in growth suppression and cytotoxicity of TKIs, first-generation imatinib, and second generation dasatinib by approximately 2.5-3.0-fold in BCR-ABL-positive CML-derived leukemia K562 and KMB5 cells. Knockdown of p38ß, which displays the most sequence similarity to p38α, exerted distinct and opposite effects on the TKI-mediated therapeutic efficacy. These results show the importance of isotype-specific intervention in enhancing the therapeutic efficacy of TKI. A highly specific p38α inhibitor, TAK715, also significantly enhanced the imatinib- and dasatinib-mediated therapeutic efficacy, supporting the feasibility of p38α deficiency in future clinic application. Taken together, our results demonstrated that p38α is a promising target for combined therapy with BCR-ABL-targeting tyrosine kinase inhibitors for future application to increase therapeutic efficacy.


Subject(s)
Cell Proliferation/drug effects , Fusion Proteins, bcr-abl/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Mitogen-Activated Protein Kinase 14/genetics , Combined Modality Therapy , Dasatinib/pharmacology , Drug Resistance, Neoplasm/genetics , Fusion Proteins, bcr-abl/antagonists & inhibitors , Gene Knockdown Techniques , Genetic Therapy , Humans , Imatinib Mesylate/pharmacology , K562 Cells , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Mitogen-Activated Protein Kinase 14/antagonists & inhibitors , Mitogen-Activated Protein Kinase 14/deficiency , Protein Kinase Inhibitors/pharmacology
8.
J Med Chem ; 64(21): 15651-15670, 2021 11 11.
Article in English | MEDLINE | ID: mdl-34699203

ABSTRACT

A series of diarylurea inhibitors of the cardiac-specific kinase TNNI3K were developed to elucidate the biological function of TNNI3K and evaluate TNNI3K as a therapeutic target for the treatment of cardiovascular diseases. Utilizing a structure-based design, enhancements in kinase selectivity were engineered into the series, capitalizing on the established X-ray crystal structures of TNNI3K, VEGFR2, p38α, and B-Raf. Our efforts culminated in the discovery of an in vivo tool compound 47 (GSK329), which exhibited desirable TNNI3K potency and rat pharmacokinetic properties as well as promising kinase selectivity against VEGFR2 (40-fold), p38α (80-fold), and B-Raf (>200-fold). Compound 47 demonstrated positive cardioprotective outcomes in a mouse model of ischemia/reperfusion cardiac injury, indicating that optimized exemplars from this series, such as 47, are favorable leads for discovering novel medicines for cardiac diseases.


Subject(s)
Mitogen-Activated Protein Kinase 14/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Urea/pharmacology , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Crystallography, X-Ray , Dose-Response Relationship, Drug , Drug Design , Humans , Mitogen-Activated Protein Kinase 14/metabolism , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins B-raf/metabolism , Structure-Activity Relationship , Urea/analogs & derivatives , Urea/chemistry , Vascular Endothelial Growth Factor Receptor-2/metabolism
9.
Mol Cell Biochem ; 476(12): 4217-4229, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34346000

ABSTRACT

Acute lung injury (ALI) is a fatal inflammatory response syndrome. LncRNA XIST (XIST) is a lung cancer-related gene and participates in pneumonia. However, whether XIST participates in lipopolysaccharides (LPS)-induced ALI remains unclear. LPS-induced inflammation model was constructed in vitro, then cell viability, cytokines, cell apoptosis, protein, and mRNA expressions were individually detected by cell counting kit-8, enzyme-linked immunosorbent assay and flow cytometry, Western blot, and qRT-PCR. A dual-luciferase reporter assay confirmed the relationships among XIST, miR-132-3p, and MAPK14. Furthermore, inflammation and conditions after knockdown of XIST were assessed by hematoxylin and eosin staining, lung wet-to-dry weight ratio, PaO2/FiO2 ratio, and malondialdehyde (MDA) contents using LPS-induced in vivo model. Our findings indicated that the LPS challenge decreased cell viability, increased cell apoptosis, and caused secretions of pro-inflammatory cytokines. Noticeably, LPS significantly upregulated XIST, MAPK14, and downregulated miR-132-3p. Mechanistically, XIST acted as a molecular sponge to suppress miR-132-3p, and MAPK14 was identified as a target of miR-132-3p. Functional analyses demonstrated that XIST silencing remarkably increased cell survival and alleviated cell death and lung injury through decreasing TNF-α, IL-1ß, IL-6, accumulation of inflammatory cells, alveolar hemorrhage, MDA release, and increased PaO2/FiO2 ratio, as well as upregulating Bcl-2, and downregulating Bax, MAPK14, and p-extracellular signal-regulated kinases ½. In contrast, inhibition of the miR-132-3p antagonized the effects of XIST silencing. In conclusion, inhibition of XIST exhibited a protective role in LPS-induced ALI through modulating the miR-132-3p/MAPK14 axis.


Subject(s)
Acute Lung Injury/prevention & control , Epithelial Cells/immunology , Lipopolysaccharides/toxicity , Lung/immunology , MicroRNAs/antagonists & inhibitors , Mitogen-Activated Protein Kinase 14/antagonists & inhibitors , RNA, Long Noncoding/antagonists & inhibitors , Acute Lung Injury/genetics , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Animals , Cell Survival , Disease Models, Animal , Epithelial Cells/cytology , Epithelial Cells/metabolism , Inflammation/genetics , Inflammation/immunology , Inflammation/pathology , Inflammation/prevention & control , Lung/drug effects , Lung/metabolism , Lung/pathology , Male , Mice , Mice, Inbred BALB C , MicroRNAs/genetics , Mitogen-Activated Protein Kinase 14/genetics , Mitogen-Activated Protein Kinase 14/metabolism , RNA, Long Noncoding/genetics , Signal Transduction
10.
Eur J Med Chem ; 216: 113311, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33677350

ABSTRACT

Drugs of targeting both activin receptor-like kinase 5 (ALK5) and p38α have therapeutic advantages, making them attractive treatment options for tumors. Two series of 4-(1H-indazol-5-yl)-5-(6-methylpyridin-2-yl)-1H-imidazoles 13a-g and 4-(1-methyl-1H-indazol-5-yl)-5-(6-methylpyridin-2-yl)-1H-imidazoles 20a-g were synthesized and evaluated for ALK5 and p38α mitogen-activated protein kinase inhibitory activity. The most potent compound, 13c (J-1090), inhibited ALK5- and p38α-mediated phosphorylation with half-maximal inhibitor concentrations of 0.004 µM and 0.004 µM, respectively, in the enzymatic assay. In this study, the effectiveness of 13c in transforming growth factor (TGF-ß)-exposed U87MG cells was investigated using western blotting, immunofluorescence assays, cell migration assay, invasion assay, and RT-PCR analysis. 13c inhibited the protein expression of Slug and the protein and RNA expression of the mesenchymal-related proteins N-cadherin and vimentin. Furthermore, 13c markedly suppressed TGF-ß-induced epithelial-to-mesenchymal transition (EMT), migration, and invasion in U87MG cells. These results suggest that 13c is a novel inhibitor of ALK5 with potential utility in the treatment of human glioma.


Subject(s)
Imidazoles/chemistry , Indazoles/chemistry , Mitogen-Activated Protein Kinase 14/antagonists & inhibitors , Protein Kinase Inhibitors/chemical synthesis , Receptor, Transforming Growth Factor-beta Type I/antagonists & inhibitors , Binding Sites , Cadherins/genetics , Cadherins/metabolism , Catalytic Domain , Cell Line, Tumor , Cell Movement/drug effects , Epithelial-Mesenchymal Transition/drug effects , Humans , Imidazoles/metabolism , Imidazoles/pharmacology , Mitogen-Activated Protein Kinase 14/metabolism , Molecular Docking Simulation , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/pharmacology , Receptor, Transforming Growth Factor-beta Type I/metabolism , Structure-Activity Relationship , Transforming Growth Factor beta/pharmacology , Vimentin/genetics , Vimentin/metabolism
11.
Eur J Med Chem ; 215: 113277, 2021 Apr 05.
Article in English | MEDLINE | ID: mdl-33601311

ABSTRACT

The synergistic effect of dual inhibition of serine/threonine protein kinases that are involved in the same signalling pathway of the diseases can exert superior biological benefits for treatment of these diseases. In the present work, a new series of (imidazol-5-yl)pyrimidine was designed and synthesized as dual inhibitors of BRAFV600E and p38α kinases which are considered as key regulators in mitogen-activated protein kinase (MAPK) signalling pathway. The target compounds were evaluated for dual kinase inhibitory activity. The tested compounds exhibited nanomolar scale IC50 values against BRAFV600E and low to sub-micromolar IC50 range against p38α. Compound 20h was identified as the most potent dual BRAFV600E/p38α inhibitor with IC50 values of 2.49 and 85 nM, respectively. Further deep investigation revealed that compound 20h possesses inhibitory activity of TNF-α production in lipopolysaccharide-induced RAW 264.7 macrophages with IC50 value of 96.3 nM. Additionally, the target compounds efficiently frustrated the proliferation of LOX-IMVI melanoma cell line. Compound 20h showed a satisfactory antiproliferative activity with IC50 value of 13 µM, while, compound 18f exhibited the highest cytotoxicity potency with IC50 value of 0.9 µM. Compound 18f is 11.11-fold more selective toward LOX-IMVI melanoma cells than IOSE-80PC normal cells. The newly reported compounds represent therapeutically promising candidates for further development of BRAFV600E/p38α inhibitors in an attempt to overcome the acquired resistance of BRAF mutant melanoma.


Subject(s)
Imidazoles/pharmacology , Mitogen-Activated Protein Kinase 14/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Pyrimidines/pharmacology , Animals , Catalytic Domain , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Design , Drug Screening Assays, Antitumor , Humans , Imidazoles/chemical synthesis , Imidazoles/metabolism , Mice , Mitogen-Activated Protein Kinase 14/metabolism , Molecular Docking Simulation , Molecular Structure , Mutation , Protein Binding , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/metabolism , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Pyrimidines/chemical synthesis , Pyrimidines/metabolism , Structure-Activity Relationship
12.
Eur J Med Chem ; 213: 113216, 2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33524689

ABSTRACT

P38α (which is also named MAPK14) plays a pivotal role in initiating different disease states such as inflammatory disorders, neurodegenerative diseases, cardiovascular cases, and cancer. Inhibitors of p38α can be utilized for treatment of these diseases. In this article, we reviewed the structural and biological characteristics of p38α, its relationship to the fore-mentioned disease states, as well as the recently reported inhibitors and classified them according to their chemical structures. We focused on the articles published in the literature during the last decade (2011-2020).


Subject(s)
Mitogen-Activated Protein Kinase 14/antagonists & inhibitors , Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Animals , Heart Diseases/drug therapy , Heart Diseases/metabolism , Humans , Inflammation/drug therapy , Inflammation/metabolism , Mitogen-Activated Protein Kinase 14/chemistry , Mitogen-Activated Protein Kinase 14/metabolism , Molecular Structure , Neoplasms/metabolism , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/metabolism , Protein Kinase Inhibitors/chemistry
13.
Bioorg Med Chem ; 31: 115969, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33422910

ABSTRACT

P38α/MAPK14 is intracellular signalling regulator involved in biosynthesis of inflammatory mediator cytokines (TNF-α, IL-1, IL-6, and IL-1b), which induce the production of inflammatory proteins (iNOS, NF-kB, and COX-2). In this study, drug repurposing strategies were followed to repositioning of a series of B-RAF V600E imidazol-5-yl pyridine inhibitors to inhibit P38α kinase. A group 25 reported P38α kinase inhibitors were used to build a pharmacophore model for mapping the target compounds and proving their affinity for binding in P38α active site. Target compounds were evaluated for their potency against P38α kinase, compounds 11a and 11d were the most potent inhibitors (IC50 = 47 nM and 45 nM, respectively). In addition, compound 11d effectively inhibited the production of proinflammatory cytokinesTNF-α, 1L-6, and 1L-1ß in LPS-induced RAW 264.7 macrophages with IC50 values of 78.03 nM, 17.6 µM and 82.15 nM, respectively. The target compounds were tested for their anti-inflammatory activity by detecting the reduction of Nitric oxide (NO) and prostaglandin (PGE2) production in LPS-stimulated RAW 264.7 macrophages. Compound 11d exhibited satisfied inhibitory activity of the production of PGE2 and NO with IC50 values of 0.29 µM and 0.61 µM, respectively. Molecular dynamics simulations of the most potent inhibitor 11d were carried out to illustrate its conformational stability in the binding site of P38α kinase.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Drug Design , Imidazoles/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyridines/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Dose-Response Relationship, Drug , Humans , Imidazoles/chemical synthesis , Imidazoles/chemistry , Mitogen-Activated Protein Kinase 14/antagonists & inhibitors , Mitogen-Activated Protein Kinase 14/metabolism , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyridines/chemical synthesis , Pyridines/chemistry , Structure-Activity Relationship , THP-1 Cells , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , p38 Mitogen-Activated Protein Kinases/metabolism
14.
Pigment Cell Melanoma Res ; 34(2): 150-162, 2021 03.
Article in English | MEDLINE | ID: mdl-32910840

ABSTRACT

Oncogenic BRAF and NRAS mutations drive human melanoma initiation. We used transgenic zebrafish to model NRAS-mutant melanoma, and the rapid tumor onset allowed us to study candidate tumor suppressors. We identified P38α-MAPK14 as a potential tumor suppressor in The Cancer Genome Atlas melanoma cohort of NRAS-mutant melanomas, and overexpression significantly increased the time to tumor onset in transgenic zebrafish with NRAS-driven melanoma. Pharmacological activation of P38α-MAPK14 using anisomycin reduced in vitro viability of melanoma cultures, which we confirmed by stable overexpression of p38α. We observed that the viability of MEK inhibitor resistant melanoma cells could be reduced by combined treatment of anisomycin and MEK inhibition. Our study demonstrates that activating the p38α-MAPK14 pathway in the presence of oncogenic NRAS abrogates melanoma in vitro and in vivo. SIGNIFICANCE: The significance of our study is in the accountability of NRAS mutations in melanoma. We demonstrate here that activation of p38α-MAPK14 pathway can abrogate NRAS-mutant melanoma which is contrary to the previously published role of p38α-MAPK14 pathway in BRAF mutant melanoma. These results implicate that BRAF and NRAS-mutant melanoma may not be identical biologically. We also demonstrate the translational benefit of our study by using a small molecule compound-anisomycin (already in use for other diseases in clinical trials) to activate p38α-MAPK14 pathway.


Subject(s)
GTP Phosphohydrolases/genetics , Gene Expression Regulation, Neoplastic/drug effects , Melanoma/prevention & control , Membrane Proteins/genetics , Mitogen-Activated Protein Kinase 14/metabolism , Mutation , Animals , Anisomycin/pharmacology , Apoptosis , Cell Proliferation , Humans , Melanoma/genetics , Melanoma/metabolism , Melanoma/pathology , Mitogen-Activated Protein Kinase 14/antagonists & inhibitors , Mitogen-Activated Protein Kinase 14/genetics , Protein Kinase Inhibitors/pharmacology , Protein Synthesis Inhibitors/pharmacology , Tumor Cells, Cultured , Zebrafish
15.
PLoS One ; 15(12): e0233073, 2020.
Article in English | MEDLINE | ID: mdl-33275615

ABSTRACT

There is unmet need for effective stroke therapies. Numerous neuroprotection attempts for acute cerebral ischemia have failed and as a result there is growing interest in developing therapies to promote functional recovery through increasing synaptic plasticity. For this research study, we hypothesized that in addition to its previously reported role in mediating cell death during the acute phase, the alpha isoform of p38 mitogen-activated protein kinase, p38α, may also contribute to interleukin-1ß-mediated impairment of functional recovery during the subacute phase after acute ischemic stroke. Accordingly, an oral, brain-penetrant, small molecule p38α inhibitor, neflamapimod, was evaluated as a subacute phase stroke treatment to promote functional recovery. Neflamapimod administration to rats after transient middle cerebral artery occlusion at two dose levels was initiated outside of the previously characterized therapeutic window for neuroprotection of less than 24 hours for p38α inhibitors. Six-week administration of neflamapimod, starting at 48 hours after reperfusion, significantly improved behavioral outcomes assessed by the modified neurological severity score at Week 4 and at Week 6 post stroke in a dose-dependent manner. Neflamapimod demonstrated beneficial effects on additional measures of sensory and motor function. It also resulted in a dose-related increase in brain-derived neurotrophic factor (BDNF) protein levels, a previously reported potential marker of synaptic plasticity that was measured in brain homogenates at sacrifice. Taken together with literature evidence on the role of p38α-dependent suppression by interleukin-1ß of BDNF-mediated synaptic plasticity and BDNF production, our findings support a mechanistic model in which inhibition of p38α promotes functional recovery after ischemic stroke by blocking the deleterious effects of interleukin-1ß on synaptic plasticity. The dose-related in vivo efficacy of neflamapimod offers the possibility of having a therapy for stroke that could be initiated outside the short time window for neuroprotection and for improving recovery after a completed stroke.


Subject(s)
Brain Ischemia/drug therapy , Pyridazines/pharmacology , Pyrimidines/pharmacology , Stroke/drug therapy , Animals , Brain/metabolism , Brain Ischemia/complications , Brain Ischemia/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Disease Models, Animal , Dose-Response Relationship, Drug , Infarction, Middle Cerebral Artery/complications , Ischemia/complications , Male , Mitogen-Activated Protein Kinase 14/antagonists & inhibitors , Mitogen-Activated Protein Kinase 14/metabolism , Pyridazines/metabolism , Pyrimidines/metabolism , Rats , Rats, Sprague-Dawley , Recovery of Function/drug effects , Recovery of Function/physiology , Stroke/complications , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , p38 Mitogen-Activated Protein Kinases/metabolism
16.
Theranostics ; 10(26): 12223-12240, 2020.
Article in English | MEDLINE | ID: mdl-33204339

ABSTRACT

Rationale: Many viral infections are known to activate the p38 mitogen-activated protein kinase (MAPK) signaling pathway. However, the role of p38 activation in viral infection and the underlying mechanism remain unclear. The role of virus-hijacked p38 MAPK activation in viral infection was investigated in this study. Methods: The correlation of hepatitis C virus (HCV) infection and p38 activation was studied in patient tissues and primary human hepatocytes (PHHs) by immunohistochemistry and western blotting. Coimmunoprecipitation, GST pulldown and confocal microscopy were used to investigate the interaction of p38α and the HCV core protein. In vitro kinase assays and mass spectrometry were used to analyze the phosphorylation of the HCV core protein. Plaque assays, quantitative real time PCR (qRT-PCR), western blotting, siRNA and CRISPR/Cas9 were used to determine the effect of p38 activation on viral replication. Results: HCV infection was associated with p38 activation in clinical samples. HCV infection increased p38 phosphorylation by triggering the interaction of p38α and TGF-ß activated kinase 1 (MAP3K7) binding protein 1 (TAB1). TAB1-mediated p38α activation facilitated HCV replication, and pharmaceutical inhibition of p38α activation by SB203580 suppressed HCV infection at the viral assembly step. Activated p38α interacted with the N-terminal region of the HCV core protein and subsequently phosphorylated the HCV core protein, which promoted HCV core protein oligomerization, an essential step for viral assembly. As expected, SB203580 or the HCV core protein N-terminal peptide (CN-peptide) disrupted the p38α-HCV core protein interaction, efficiently impaired HCV assembly and impeded normal HCV replication in both cultured cells and primary human hepatocytes. Similarly, severe fever with thrombocytopenia syndrome virus (SFTSV), herpes simplex virus type 1 (HSV-1) or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection also activated p38 MAPK. Most importantly, pharmacological blockage of p38 activation by SB203580 effectively inhibited SFTSV, HSV-1 and SARS-CoV-2. Conclusion: Our study shows that virus-hijacked p38 activation is a key event for viral replication and that pharmacological blockage of p38 activation is an antiviral strategy.


Subject(s)
COVID-19/metabolism , Hepacivirus/metabolism , Hepatitis C/metabolism , Mitogen-Activated Protein Kinase 14/metabolism , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , A549 Cells , Adaptor Proteins, Signal Transducing/metabolism , Animals , COVID-19/virology , Chlorocebus aethiops , Enzyme Activation , HEK293 Cells , Hepatitis C/pathology , Hepatitis C/virology , Hepatocytes/metabolism , Humans , Imidazoles/pharmacology , MAP Kinase Kinase Kinases/metabolism , MAP Kinase Signaling System/drug effects , Mitogen-Activated Protein Kinase 14/antagonists & inhibitors , Phosphorylation , Pyridines/pharmacology , Vero Cells , Viral Core Proteins/metabolism , Virus Replication/drug effects
17.
Mol Oncol ; 14(12): 3083-3099, 2020 12.
Article in English | MEDLINE | ID: mdl-33021050

ABSTRACT

The concept of polypharmacology involves the interaction of drug molecules with multiple molecular targets. It provides a unique opportunity for the repurposing of already-approved drugs to target key factors involved in human diseases. Herein, we used an in silico target prediction algorithm to investigate the mechanism of action of mebendazole, an antihelminthic drug, currently repurposed in the treatment of brain tumors. First, we confirmed that mebendazole decreased the viability of glioblastoma cells in vitro (IC50 values ranging from 288 nm to 2.1 µm). Our in silico approach unveiled 21 putative molecular targets for mebendazole, including 12 proteins significantly upregulated at the gene level in glioblastoma as compared to normal brain tissue (fold change > 1.5; P < 0.0001). Validation experiments were performed on three major kinases involved in cancer biology: ABL1, MAPK1/ERK2, and MAPK14/p38α. Mebendazole could inhibit the activity of these kinases in vitro in a dose-dependent manner, with a high potency against MAPK14 (IC50  = 104 ± 46 nm). Its direct binding to MAPK14 was further validated in vitro, and inhibition of MAPK14 kinase activity was confirmed in live glioblastoma cells. Consistent with biophysical data, molecular modeling suggested that mebendazole was able to bind to the catalytic site of MAPK14. Finally, gene silencing demonstrated that MAPK14 is involved in glioblastoma tumor spheroid growth and response to mebendazole treatment. This study thus highlighted the role of MAPK14 in the anticancer mechanism of action of mebendazole and provides further rationale for the pharmacological targeting of MAPK14 in brain tumors. It also opens new avenues for the development of novel MAPK14/p38α inhibitors to treat human diseases.


Subject(s)
Computer Simulation , Mebendazole/therapeutic use , Mitogen-Activated Protein Kinase 14/antagonists & inhibitors , Molecular Targeted Therapy , Protein Kinase Inhibitors/therapeutic use , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Glioblastoma/drug therapy , Glioblastoma/pathology , Humans , Inhibitory Concentration 50 , Mebendazole/chemistry , Mebendazole/pharmacology , Mitogen-Activated Protein Kinase 14/metabolism , Models, Molecular , Protein Kinase Inhibitors/pharmacology
18.
BMC Endocr Disord ; 20(1): 138, 2020 Sep 07.
Article in English | MEDLINE | ID: mdl-32894113

ABSTRACT

BACKGROUND: The specific underlying pathogenesis of prolactinoma has not been clarified yet, to the best of our knowledge. p38 mitogen-activated protein kinase (MAPK) signaling including p38α MAPK (MAPK14), p38ß (MAPK11), p38γ (MAPK12) and p38δ (MAPK13) is associated with the development and progression of several types of cancer. METHODS: Immunofluorescence analysis was performed on the prolactin (PRL) and MAPK14 expressions of pituitary gland in C57BL/6 mice and human prolactinoma specimen. In the present study, the role of MAPK14 in prolactinoma was determined using estradiol-induced mice and dopamine D2 receptor knockout (DRD2-/-) mice models in C57BL/6 wild-type (WT), MAPK14-/- and DRD2-/-MAPK14+/- mice. GH3 cells were transfected with different sets of MAPK14 small interfering RNA, which to study MAPK14 and PRL expression in GH3 cells. RESULTS: Immunofluorescence analysis showed that PRL and MAPK14 expression were colocalized and increased in the pituitary gland of mice and human prolactinoma specimen compared with the control specimen. It was shown that PRL and MAPK14 expression was colocalized and increased significantly in the pituitary gland of estradiol-injected prolactinoma mice compared with the control mice. Knockout of MAPK14 significantly inhibited tumor overgrowth, and PRL expression was decreased in estradiol-induced mice. Furthermore, MAPK14 knockout of DRD2-/-MAPK14+/- mice significantly reduced the overgrowth of pituitary gland and PRL production and secretion compared with DRD2-/- mice. MAPK14 knockout using siRNA inhibited PRL production in GH3 cells. CONCLUSION: These results suggest that MAPK14 serves a promoting role in the formation of prolactinoma, and highlights the potential of MAPK14 as a potential therapeutic target in the treatment of prolactinoma.


Subject(s)
Mitogen-Activated Protein Kinase 14/antagonists & inhibitors , Pituitary Neoplasms/pathology , Prolactinoma/pathology , RNA, Small Interfering/pharmacology , Animals , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cells, Cultured , Female , Gene Deletion , Gene Expression Regulation, Neoplastic/drug effects , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitogen-Activated Protein Kinase 14/genetics , Pituitary Neoplasms/genetics , Pituitary Neoplasms/metabolism , Prolactin/genetics , Prolactin/metabolism , Prolactinoma/genetics , Prolactinoma/metabolism , Rats , Receptors, Dopamine D2/genetics , Receptors, Dopamine D2/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics , Somatotrophs/metabolism , Somatotrophs/pathology
19.
Oncogene ; 39(40): 6313-6326, 2020 10.
Article in English | MEDLINE | ID: mdl-32848211

ABSTRACT

Cancer can metastasize from early lesions without detectable tumors. Despite extensive studies on metastasis in cancer cells from patients with detectable primary tumors, mechanisms for early metastatic dissemination are poorly understood. Her2 promotes breast cancer early dissemination by inhibiting p38, but the downstream pathway in this process was unknown. Using early lesion breast cancer models, we demonstrate that the effect of p38 suppression by Her2 on early dissemination is mediated by MK2 and heat shock protein 27 (Hsp27). The early disseminating cells in the MMTV-Her2 breast cancer model are Her2highp-p38lowp-MK2lowp-Hsp27low, which also exist in human breast carcinoma tissues. Suppression of p38 and MK2 by Her2 reduces MK2-mediated Hsp27 phosphorylation, and unphosphorylated Hsp27 binds to ß-catenin and enhances its phosphorylation by Src, leading to ß-catenin activation and disseminating phenotypes in early lesion breast cancer cells. Pharmacological inhibition of MK2 promotes, while inhibition of a p38 phosphatase Wip1 suppresses, early dissemination in vivo. These findings identify Her2-mediated suppression of the p38-MK2-Hsp27 pathway as a novel mechanism for cancer early dissemination, and provide a basis for new therapies targeting early metastatic dissemination in Her2+ breast cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/pathology , MAP Kinase Signaling System/drug effects , Protein Phosphatase 2C/antagonists & inhibitors , Receptor, ErbB-2/metabolism , Aminopyridines/pharmacology , Aminopyridines/therapeutic use , Animals , Antineoplastic Agents/therapeutic use , Breast Neoplasms/drug therapy , Cell Line, Tumor , Dipeptides/pharmacology , Dipeptides/therapeutic use , Female , Heat-Shock Proteins/metabolism , Heterocyclic Compounds, 4 or More Rings/pharmacology , Heterocyclic Compounds, 4 or More Rings/therapeutic use , Humans , Imidazoles/pharmacology , Imidazoles/therapeutic use , Intracellular Signaling Peptides and Proteins/metabolism , Mice , Mitogen-Activated Protein Kinase 14/antagonists & inhibitors , Mitogen-Activated Protein Kinase 14/metabolism , Molecular Chaperones/metabolism , Neoplasm Metastasis/pathology , Neoplasm Metastasis/prevention & control , Phosphorylation/drug effects , Protein Phosphatase 2C/metabolism , Protein Serine-Threonine Kinases/metabolism , Pyridines/pharmacology , Pyridines/therapeutic use , Xenograft Model Antitumor Assays
20.
Chem Commun (Camb) ; 56(62): 8818-8821, 2020 Aug 04.
Article in English | MEDLINE | ID: mdl-32749403

ABSTRACT

The conformational dynamics of a kinase's activation loop have been challenging to assess due to the activation loop's intrinsic flexibility. To directly probe the conformational equilibrium of the activation loop of mitogen-activated protein kinase p38α, we present an approach based on site-directed spin labeling, electron paramagnetic resonance (EPR) distance restraints, and multilateration. We demonstrate that the activation loop of apo p38α resides in a highly flexible equilibrium state and we reveal that binding of small molecules significantly alters this equilibrium and the populated sub-states.


Subject(s)
Mitogen-Activated Protein Kinase 14/antagonists & inhibitors , Mitogen-Activated Protein Kinase 14/metabolism , Protein Kinase Inhibitors/metabolism , Mitogen-Activated Protein Kinase 14/chemistry , Models, Molecular , Protein Binding , Protein Conformation , Protein Kinase Inhibitors/pharmacology , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...