Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.332
Filter
1.
Respir Med ; 231: 107725, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38950682

ABSTRACT

BACKGROUND: The Phase III slope from a single breath nitrogen washout test provides information about ventilation heterogeneity (VH) in the lungs. PURPOSE: To determine if the Phase III slope from the exhaled tracer gas concentration during a standard, single breath DLCO test using rapid gas analysis provides similar information about VH. BASIC PROCEDURES: Retrospective analysis of clinical pulmonary function laboratory data including spirometry, lung volumes, and DLCO. The normalized Phase III slope from the exhaled CH4 concentration (SnCH4) was compared among different patterns of physiologic abnormality and with VA/TLC as an indicator of VH. MAIN FINDINGS: SnCH4 was the steepest in the group with "Obstruction and Low DLCO", with significant differences between this group and the "Normal", "Obstruction with Normal DLCO", "Mixed Obstruction and Restriction" and "Isolated Low DLCO" groups. SnCH4 was steeper in current and former smokers compared to non-smokers. Among the entire study sample, SnCH4 correlated with VA/TLC (Spearman rho = -0.56, p < 0.01) and remained a significant determinant of VA/TLC by regression modeling. PRINCIPAL CONCLUSIONS: The SnCH4 derived from a standard, single breath DLCO test using rapid gas analysis varied among distinct patterns of physiologic abnormalities and was associated with VA/TLC as a measure of VH.


Subject(s)
Breath Tests , Exhalation , Methane , Humans , Breath Tests/methods , Male , Retrospective Studies , Female , Middle Aged , Exhalation/physiology , Methane/analysis , Methane/metabolism , Adult , Aged , Pulmonary Ventilation/physiology , Spirometry/methods , Lung/metabolism , Lung/physiopathology , Respiratory Function Tests/methods , Pulmonary Diffusing Capacity/physiology , Smoking/metabolism , Smoking/physiopathology
2.
Sci Rep ; 14(1): 17242, 2024 07 26.
Article in English | MEDLINE | ID: mdl-39060561

ABSTRACT

Obstructive sleep apnea (OSA) is an airway disease caused by periodic collapse of the airway during sleep. Imaging-based subject-specific computational fluid dynamics (CFD) simulations allow non-invasive assessment of clinically relevant metrics such as total pressure loss (TPL) in patients with OSA. However, most of such studies use static airway geometries, which neglect physiological airway motion. This study aims to quantify how much the airway moves during the respiratory cycle, and to determine how much this motion affects CFD pressure loss predictions. Motion of the airway wall was quantified using cine MRI data captured over a single respiratory cycle in three subjects with OSA. Synchronously-measured respiratory airflow was used as the flow boundary condition for all simulations. Simulations were performed for full respiratory cycles with 5 different wall boundary conditions: (1) a moving airway wall, and static airway walls at (2) peak inhalation, (3) end inhalation, (4) peak exhalation, and (5) end exhalation. Geometric analysis exposed significant local airway cross-sectional area (CSA) variability, with local CSA varying as much as 300%. The comparative CFD simulations revealed the discrepancies between dynamic and static wall simulations are subject-specific, with TPL differing by up to 400% between static and dynamic simulations. There is no consistent pattern to which static wall CFD simulations overestimate or underestimate the airway TPL. This variability underscores the complexity of accurately modeling airway physiology and the importance of considering dynamic anatomical factors to predict realistic respiratory airflow dynamics in patients with OSA.


Subject(s)
Hydrodynamics , Sleep Apnea, Obstructive , Humans , Sleep Apnea, Obstructive/physiopathology , Sleep Apnea, Obstructive/diagnostic imaging , Male , Computer Simulation , Middle Aged , Adult , Female , Respiration , Magnetic Resonance Imaging/methods , Pulmonary Ventilation/physiology
3.
Scand J Med Sci Sports ; 34(6): e14674, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38895762

ABSTRACT

This study assesses the impact of three volumetric gas flow measurement methods-turbine (fT); pneumotachograph (fP), and Venturi (fV)-on predictive accuracy and precision of expired gas analysis indirect calorimetry (EGAIC) across varying exercise intensities. Six males (Age: 38 ± 8 year; Height: 178.8 ± 4.2 cm; V ̇ O 2 peak $$ \dot{V}{\mathrm{O}}_2\mathrm{peak} $$ : 42 ± 2.8 mL O2 kg-1 min-1) and 14 females (Age = 44.6 ± 9.6 year; Height = 164.6 ± 6.9 cm; V ̇ O 2 peak $$ \dot{V}{\mathrm{O}}_2\mathrm{peak} $$ = 45 ± 8.6 mL O2 kg-1 min-1) were recruited. Participants completed physical exertion on a stationary cycle ergometer for simultaneous pulmonary minute ventilation ( V ̇ $$ \dot{V} $$ ) measurements and EGAIC computations. Exercise protocols and subsequent conditions involved a 5-min cycling warm-up at 25 W min-1, incremental exercise to exhaustion ( V ̇ O 2 $$ \dot{V}{\mathrm{O}}_2 $$ ramp test), then a steady-state exercise bout induced by a constant Watt load equivalent to 80% ventilatory threshold (80% VT). A linear mixed model revealed that exercise intensity significantly affected V ̇ O 2 $$ \dot{V}{\mathrm{O}}_2 $$ measurements (p < 0.0001), whereas airflow sensor method (p = 0.97) and its interaction with exercise intensity (p = 0.91) did not. Group analysis of precision yielded a V ̇ O 2 $$ \dot{V}{\mathrm{O}}_2 $$ CV % = 21%; SEM = 5 mL O2 kg-1 min-1. Intra- and interindividual analysis of precision via Bland-Altman revealed a 95% confidence interval (CI) precision benchmark of 3-5 mL kg-1 min-1. Agreement among methods decreased at power outputs eliciting V ̇ $$ \dot{V} $$ up to 150 L min-1, indicating a decrease in precision and highlighting potential challenges in interpreting biological variability, training response heterogeneity, and test-retest comparisons. These findings suggest careful consideration of airflow sensor method variance across metabolic cart configurations.


Subject(s)
Calorimetry, Indirect , Exercise Test , Humans , Male , Adult , Female , Exercise Test/methods , Middle Aged , Pulmonary Ventilation/physiology , Oxygen Consumption/physiology , Physical Exertion/physiology , Exercise/physiology
5.
Physiol Meas ; 45(7)2024 Jul 26.
Article in English | MEDLINE | ID: mdl-38925138

ABSTRACT

Objective.In the future, thoracic electrical impedance tomography (EIT) monitoring may include continuous and simultaneous tracking of both breathing and heart activity. However, an effective way to decompose an EIT image stream into physiological processes as ventilation-related and cardiac-related signals is missing.Approach.This study analyses the potential ofMulti-dimensional Ensemble Empirical Mode Decompositionby application of theComplete Ensemble Empirical Mode Decomposition with Adaptive Noiseand a novel frequency-based combination criterion for detrending, denoising and source separation of EIT image streams, collected from nine healthy male test subjects with similar age and constitution.Main results.In this paper, a novel approach to estimate the lung, the heart and the perfused regions of an EIT image is proposed, which is based on theRoot Mean Square Errorbetween the index of maximal respiratory and cardiac variation to their surroundings. The summation of the indexes of the respective regions reveals physiologically meaningful time signals, separated into the physiological bandwidths of ventilation and heart activity at rest. Moreover, the respective regions were compared with the relative thorax movement and photoplethysmogram (PPG) signal. In linear regression analysis and in the Bland-Altman plot, the beat-to-beat time course of both the ventilation-related signal and the cardiac-related signal showed a high similarity with the respective reference signal.Significance.Analysis of the data reveals a fair separation of ventilatory and cardiac activity realizing the aimed source separation, with optional detrending and denoising. For all performed analyses, a feasible correlation of 0.587 to 0.905 was found between the cardiac-related signal and the PPG signal.


Subject(s)
Electric Impedance , Tomography , Humans , Tomography/methods , Male , Adult , Image Processing, Computer-Assisted/methods , Signal Processing, Computer-Assisted , Heart/physiology , Heart/diagnostic imaging , Perfusion , Respiration , Pulmonary Ventilation/physiology
6.
Am J Physiol Endocrinol Metab ; 327(1): E111-E120, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38836780

ABSTRACT

The master circadian clock, located in the suprachiasmatic nuclei (SCN), organizes the daily rhythm in minute ventilation (V̇e). However, the extent that the daily rhythm in V̇e is secondary to SCN-imposed O2 and CO2 cycles (i.e., metabolic rate) or driven by other clock mechanisms remains unknown. Here, we experimentally shifted metabolic rate using time-restricted feeding (without affecting light-induced synchronization of the SCN) to determine the influence of metabolic rate in orchestrating the daily V̇e rhythm. Mice eating predominantly at night exhibited robust daily rhythms in O2 consumption (V̇o2), CO2 production (V̇co2), and V̇e with similar peak times (approximately ZT18) that were consistent with SCN organization. However, feeding mice exclusively during the day separated the relative timing of metabolic and ventilatory rhythms, resulting in an approximately 8.5-h advance in V̇co2 and a disruption of the V̇e rhythm, suggesting opposing circadian and metabolic influences on V̇e. To determine if the molecular clock of cells involved in the neural control of breathing contributes to the daily V̇e rhythm, we examined V̇e in mice lacking BMAL1 in Phox2b-expressing respiratory cells (i.e., BKOP mice). The ventilatory and metabolic rhythms of predominantly night-fed BKOP mice did not differ from wild-type mice. However, in contrast to wild-type mice, exclusive day feeding of BKOP mice led to an unfettered daily V̇e rhythm with a peak time aligning closely with the daily V̇co2 rhythm. Taken together, these results indicate that both daily V̇co2 changes and intrinsic circadian time-keeping within Phox2b respiratory cells are predominant orchestrators of the daily rhythm in ventilation.NEW & NOTEWORTHY The master circadian clock organizes the daily rhythm in ventilation; however, the extent that this rhythm is driven by SCN regulation of metabolic rate versus other clock mechanisms remains unknown. We report that metabolic rate alone is insufficient to explain the daily oscillation in ventilation and that neural respiratory clocks within Phox2b-expressing cells additionally optimize breathing. Collectively, these findings advance our mechanistic understanding of the circadian rhythm in ventilatory control.


Subject(s)
Circadian Clocks , Circadian Rhythm , Mice, Inbred C57BL , Suprachiasmatic Nucleus , Animals , Mice , Circadian Rhythm/physiology , Circadian Clocks/physiology , Male , Suprachiasmatic Nucleus/metabolism , Suprachiasmatic Nucleus/physiology , Oxygen Consumption/physiology , Carbon Dioxide/metabolism , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , ARNTL Transcription Factors/genetics , ARNTL Transcription Factors/metabolism , Feeding Behavior/physiology , Respiration , Pulmonary Ventilation/physiology , Energy Metabolism/physiology
7.
Expert Rev Respir Med ; 18(6): 355-367, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38912849

ABSTRACT

INTRODUCTION: Cardiopulmonary exercise testing (CPET) is nowadays used to study the exercise response in healthy subjects and in disease. Ventilatory efficiency is one of the main determinants in exercise tolerance, and its main variables are a useful tool to guide pathophysiologists toward specific diagnostic pathways, providing prognostic information and improving disease management, treatment, and outcomes. AREAS COVERED: This review will be based on today's available scientific evidence, describing the main physiological determinants of ventilatory efficiency at rest and during exercise, and focusing also on how CPET variables are modified in specific diseases, leading to the possibility of early diagnosis and management. EXPERT OPINION: Growing knowledge on CPET interpretation and a wider use of this clinical tool is expected in order to offer more precise diagnostic and prognostic information to patients and clinicians, helping in the management of therapeutic decisions. Future research could be able to identify new and more simple markers of ventilatory efficiency, and to individuate new interventions for the improvement of symptoms, such as exertional dyspnea.


Subject(s)
Exercise Test , Exercise Tolerance , Pulmonary Gas Exchange , Humans , Pulmonary Gas Exchange/physiology , Pulmonary Ventilation/physiology , Exercise/physiology , Prognosis , Lung/physiopathology
8.
Respir Physiol Neurobiol ; 327: 104285, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38825094

ABSTRACT

BACKGROUND: Long COVID is defined as persistency of symptoms, such as exertional dyspnea, twelve weeks after recovery from SARS-CoV-2 infection. OBJECTIVES: To investigate ventilatory efficiency by the use of cardiopulmonary exercise testing (CPET) in patients with exertional dyspnea despite normal basal spirometry after 18 (T18) and 36 months (T36) from COVID-19 pneumonia. METHODS: One hundred patients with moderate-critical COVID-19 were prospectively enrolled in our Long COVID program. Medical history, physical examination and lung high-resolution computed tomography (HRCT) were obtained at hospitalization (T0), 3 (T3) and 15 months (T15). All HRCTs were revised using a semi-quantitative CT severity score (CSS). Pulmonary function tests were obtained at T3 and T15. CPET was performed in a subset of patients with residual dyspnea (mMRC ≥ 1), at T18 and at T36. RESULTS: Remarkably, at CPET, ventilatory efficiency was reduced both at T18 (V'E/V'CO2 slope = 31.4±3.9 SD) and T36 (V'E/V'CO2 slope = 31.28±3.70 SD). Furthermore, we identified positive correlations between V'E/V'CO2 slope at T18 and T36 and both percentage of involvement and CSS at HRCT at T0, T3 and T15. Also, negative linear correlations were found between V'E/V'CO2 slope at T18 and T36 and DLCO at T3 and T15. CONCLUSIONS: At eighteen months from COVID-19 pneumonia, 20 % of subjects still complains of exertional dyspnea. At CPET this may be explained by persistently reduced ventilatory efficiency, possibly related to the degree of lung parenchymal involvement in the acute phase of infection, likely reflecting a damage in the pulmonary circulation.


Subject(s)
COVID-19 , Dyspnea , Humans , COVID-19/physiopathology , COVID-19/complications , Male , Dyspnea/physiopathology , Dyspnea/etiology , Female , Middle Aged , Aged , Exercise Test , Tomography, X-Ray Computed , Respiratory Function Tests , Prospective Studies , Lung/physiopathology , Lung/diagnostic imaging , Spirometry , SARS-CoV-2 , Pulmonary Ventilation/physiology
9.
PLoS One ; 19(5): e0302476, 2024.
Article in English | MEDLINE | ID: mdl-38709742

ABSTRACT

BACKGROUND: The Incentive Spirometer (IS) increases lung volume and improves gas exchange by visually stimulating patients to take slow, deep breaths. It prevents respiratory complications and treats postoperative atelectasis in patients undergoing abdominal, thoracic, and neurosurgical procedures. Its effectiveness has been validated in studies that support improved lung capacities and volumes in individuals with respiratory complications, postoperative thoracic surgery, upper abdominal surgery, and bariatric surgery. The modified Pachón incentive spirometer (MPIS) is a cost-effective alternative to branded IS. It is crucial to validate whether the MPIS distributes ventilation as effectively as commercial devices do. Ventilation distribution will be measured using electrical impedance tomography. OBJECTIVE: The aim is to compare the distribution of pulmonary ventilation between the MPIS and another commercial IS in healthy adults using electrical impedance tomography. METHODS: A crossover clinical trial is proposed to evaluate the measurement of pulmonary ventilation distribution using EIT in a sample of healthy adults. All participants will use a commercial flow IS and the MPIS, with the order of assignment randomized. This research will use electrical impedance tomography to validate the operation of the MPIS. CONCLUSIONS: This study protocol will compare two incentive spirometers' impact on pulmonary ventilation, potentially endorsing the adoption of a cost-effective device to enhance accessibility for targeted populations. TRIAL REGISTRATION: The study was registered in ClinicalTrials.gov (NTC05532748).


Subject(s)
Electric Impedance , Pulmonary Ventilation , Spirometry , Tomography , Humans , Adult , Spirometry/methods , Spirometry/instrumentation , Tomography/methods , Pulmonary Ventilation/physiology , Male , Female , Healthy Volunteers , Cross-Over Studies , Lung/physiology , Middle Aged , Young Adult
10.
Physiol Meas ; 45(5)2024 May 31.
Article in English | MEDLINE | ID: mdl-38722570

ABSTRACT

Objective.Impedance pneumography (IP) has provided static assessments of subjects' breathing patterns in previous studies. Evaluating the feasibility and limitation of ambulatory IP based respiratory monitoring needs further investigation on clinically relevant exercise designs. The aim of this study was to evaluate the capacity of an advanced IP in ambulatory respiratory monitoring, and its predictive value in independent ventilatory capacity quantification during cardiopulmonary exercise testing (CPET).Approach.35 volunteers were examined with the same calibration methodology and CPET exercise protocol comprising phases of rest, unloaded, incremental load, maximum load, recovery and further-recovery. In 3 or 4 deep breaths of calibration stage, thoracic impedance and criterion spirometric volume were simultaneously recorded to produce phase-specific prior calibration coefficients (CCs). The IP measurement during exercise protocol was converted by prior CCs to volume estimation curve and thus calculate minute ventilation (VE) independent from the spirometry approach.Main results.Across all measurements, the relative error of IP-derived VE (VER) and flowrate-derived VE (VEf) was less than 13.8%. In Bland-Altman plots, the aggregate VE estimation bias was statistically insignificant for all 3 phases with pedaling exercise and the discrepancy between VERand VEffell within the 95% limits of agreement (95% LoA) for 34 or all subjects in each of all CPET phases.Significance.This work reinforces the independent use of IP as an accurate and robust alternative to flowmeter for applications in cycle ergometry CPET, which could significantly encourage the clinical use of IP and improve the convenience and comfort of CPET.


Subject(s)
Electric Impedance , Pulmonary Ventilation , Humans , Male , Female , Adult , Pulmonary Ventilation/physiology , Exercise Test , Young Adult , Calibration , Exercise/physiology , Bicycling/physiology , Monitoring, Physiologic/methods
11.
Arq Bras Cardiol ; 121(4): e20230578, 2024.
Article in Portuguese, English | MEDLINE | ID: mdl-38695473

ABSTRACT

BACKGROUND: Currently, excess ventilation has been grounded under the relationship between minute-ventilation/carbon dioxide output ( V ˙ E - V ˙ CO 2 ). Alternatively, a new approach for ventilatory efficiency ( η E V ˙ ) has been published. OBJECTIVE: Our main hypothesis is that comparatively low levels of η E V ˙ between chronic heart failure (CHF) and chronic obstructive pulmonary disease (COPD) are attainable for a similar level of maximum and submaximal aerobic performance, conversely to long-established methods ( V ˙ E - V ˙ CO 2 slope and intercept). METHODS: Both groups performed lung function tests, echocardiography, and cardiopulmonary exercise testing. The significance level adopted in the statistical analysis was 5%. Thus, nineteen COPD and nineteen CHF-eligible subjects completed the study. With the aim of contrasting full values of V ˙ E - V ˙ CO 2 and η V ˙ E for the exercise period (100%), correlations were made with smaller fractions, such as 90% and 75% of the maximum values. RESULTS: The two groups attained matched characteristics for age (62±6 vs. 59±9 yrs, p>.05), sex (10/9 vs. 14/5, p>0.05), BMI (26±4 vs. 27±3 Kg m2, p>0.05), and peak V ˙ O 2 (72±19 vs. 74±20 %pred, p>0.05), respectively. The V ˙ E - V ˙ CO 2 slope and intercept were significantly different for COPD and CHF (27.2±1.4 vs. 33.1±5.7 and 5.3±1.9 vs. 1.7±3.6, p<0.05 for both), but η V ˙ E average values were similar between-groups (10.2±3.4 vs. 10.9±2.3%, p=0.462). The correlations between 100% of the exercise period with 90% and 75% of it were stronger for η V ˙ E (r>0.850 for both). CONCLUSION: The η V ˙ E is a valuable method for comparison between cardiopulmonary diseases, with so far distinct physiopathological mechanisms, including ventilatory constraints in COPD.


FUNDAMENTO: Atualmente, o excesso de ventilação tem sido fundamentado na relação entre ventilação-minuto/produção de dióxido de carbono ( V ˙ E − V ˙ CO 2 ). Alternativamente, uma nova abordagem para eficiência ventilatória ( η E V ˙ ) tem sido publicada. OBJETIVO: Nossa hipótese principal é que níveis comparativamente baixos de η E V ˙ entre insuficiência cardíaca crônica (ICC) e doença pulmonar obstrutiva crônica (DPOC) são atingíveis para um nível semelhante de desempenho aeróbico máximo e submáximo, inversamente aos métodos estabelecidos há muito tempo (inclinação V ˙ E − V ˙ CO 2 e intercepto). MÉTODOS: Ambos os grupos realizaram testes de função pulmonar, ecocardiografia e teste de exercício cardiopulmonar. O nível de significância adotada na análise estatística foi 5%. Assim, dezenove indivíduos elegíveis para DPOC e dezenove indivíduos elegíveis para ICC completaram o estudo. Com o objetivo de contrastar valores completos de V ˙ E − V ˙ CO 2 e η E V ˙ para o período de exercício (100%), correlações foram feitas com frações menores, como 90% e 75% dos valores máximos. RESULTADOS: Os dois grupos tiveram características correspondentes para a idade (62±6 vs 59±9 anos, p>.05), sexo (10/9 vs 14/5, p>0,05), IMC (26±4 vs 27±3 Kg m2, p>0,05), e pico V ˙ O 2 (72±19 vs 74±20 % pred, p>0,05), respectivamente. A inclinação V ˙ E − V ˙ CO 2 e intercepto foram significativamente diferentes para DPOC e ICC (207,2±1,4 vs 33,1±5,7 e 5,3±1,9 vs 1,7±3,6, p<0,05 para ambas), mas os valores médios da η E V ˙ foram semelhantes entre os grupos (10,2±3,4 vs 10,9±2,3%, p=0,462). As correlações entre 100% do período do exercício com 90% e 75% dele foram mais fortes para η E V ˙ (r>0,850 para ambos). CONCLUSÃO: A η E V ˙ é um método valioso para comparação entre doenças cardiopulmonares, com mecanismos fisiopatológicos até agora distintos, incluindo restrições ventilatórias na DPOC.


Subject(s)
Exercise Test , Heart Failure , Oxygen Consumption , Pulmonary Disease, Chronic Obstructive , Humans , Pulmonary Disease, Chronic Obstructive/physiopathology , Male , Middle Aged , Female , Heart Failure/physiopathology , Exercise Test/methods , Aged , Oxygen Consumption/physiology , Respiratory Function Tests , Exercise Tolerance/physiology , Pulmonary Ventilation/physiology , Reference Values , Echocardiography , Chronic Disease , Carbon Dioxide
12.
J Appl Physiol (1985) ; 137(1): 125-135, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38813610

ABSTRACT

Peripheral hypercapnic chemosensitivity (PHC) is assessed as the change in ventilation in response to a rapid change in carbon dioxide pressures (Pco2). The increase in chemoresponse from rest to subrespiratory compensation point (RCP) exercise intensities is well-defined but less clear at intensities above the RCP when changes in known ventilatory stimulants occur. Twenty healthy subjects (n = 10 females) completed a maximal exercise test on 1 day, and on a subsequent day, transient hypercapnia was used to test PHC at multiple exercise stages. The transient hypercapnia involved two breaths of 10% CO2 repeated five times during each of the following: sitting at rest on the cycle ergometer, cycling at 40% wmax, cycling at 85% Wmax, at rest on the cycle ergometer immediately following the 85% stage, and cycling at 40% Wmax again following the postexercise rest. The PHC was not different across exercise intensities (0.98 ± 0.37 vs. 0.91 ± 0.39 vs. 0.92 ± 0.42 L·min-1·mmHg-1 for first 40% wmax, 85% wmax and second 40% Wmax, respectively (P = 0.45). There were no differences in PHC between presupra-RCP exercise rest and postsupra-RCP exercise rest (0.52 ± 0.23 vs. 0.53 ± 0.24 L·min-1·mmHg-1, P = 0.8003). Using a repeated-measures correlation to account for within-participant changes, there was a significant relationship between the end-tidal Pco2 and PHC for the 85% intensity (r = 0.5, P < 0.0001) when end-tidal Pco2 was dynamic between the trials. We conclude that the physiological changes (e.g., metabolic milieu and temperature) produced with supra-RCP exercise do not further augment PHC, and that the prestimulus end-tidal Pco2 modulates the PHC.NEW & NOTEWORTHY Exercise at intensities above the respiratory compensation point did not further augment peripheral hypercapnic chemosensitivity (PHC). Moreover, the PHC was not different during a preexercise resting state compared with rest immediately after intense exercise. The lack of differences across both comparisons suggests that exercise itself appears to sensitize the PHC.


Subject(s)
Carbon Dioxide , Chemoreceptor Cells , Exercise , Hypercapnia , Humans , Hypercapnia/physiopathology , Hypercapnia/metabolism , Female , Male , Exercise/physiology , Adult , Carbon Dioxide/metabolism , Chemoreceptor Cells/metabolism , Chemoreceptor Cells/physiology , Young Adult , Pulmonary Ventilation/physiology , Exercise Test/methods , Respiration , Oxygen Consumption/physiology
13.
Exp Physiol ; 109(7): 1080-1098, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38747161

ABSTRACT

High altitude (HA) ascent imposes systemic hypoxia and associated risk of acute mountain sickness. Acute hypoxia elicits a hypoxic ventilatory response (HVR), which is augmented with chronic HA exposure (i.e., ventilatory acclimatization; VA). However, laboratory-based HVR tests lack portability and feasibility in field studies. As an alternative, we aimed to characterize area under the curve (AUC) calculations on Fenn diagrams, modified by plotting portable measurements of end-tidal carbon dioxide ( P ETC O 2 ${P_{{\mathrm{ETC}}{{\mathrm{O}}_{\mathrm{2}}}}}$ ) against peripheral oxygen saturation ( S p O 2 ${S_{{\mathrm{p}}{{\mathrm{O}}_{\mathrm{2}}}}}$ ) to characterize and quantify VA during incremental ascent to HA (n = 46). Secondarily, these participants were compared with a separate group following the identical ascent profile whilst self-administering a prophylactic oral dose of acetazolamide (Az; 125 mg BID; n = 20) during ascent. First, morning P ETC O 2 ${P_{{\mathrm{ETC}}{{\mathrm{O}}_{\mathrm{2}}}}}$ and S p O 2 ${S_{{\mathrm{p}}{{\mathrm{O}}_{\mathrm{2}}}}}$ measurements were collected on 46 acetazolamide-free (NAz) lowland participants during an incremental ascent over 10 days to 5160 m in the Nepal Himalaya. AUC was calculated from individually constructed Fenn diagrams, with a trichotomized split on ranked values characterizing the smallest, medium, and largest magnitudes of AUC, representing high (n = 15), moderate (n = 16), and low (n = 15) degrees of acclimatization. After characterizing the range of response magnitudes, we further demonstrated that AUC magnitudes were significantly smaller in the Az group compared to the NAz group (P = 0.0021), suggesting improved VA. These results suggest that calculating AUC on modified Fenn diagrams has utility in assessing VA in large groups of trekkers during incremental ascent to HA, due to the associated portability and congruency with known physiology, although this novel analytical method requires further validation in controlled experiments. HIGHLIGHTS: What is the central question of this study? What are the characteristics of a novel methodological approach to assess ventilatory acclimatization (VA) with incremental ascent to high altitude (HA)? What is the main finding and its importance? Area under the curve (AUC) magnitudes calculated from modified Fenn diagrams were significantly smaller in trekkers taking an oral prophylactic dose of acetazolamide compared to an acetazolamide-free group, suggesting improved VA. During incremental HA ascent, quantifying AUC using modified Fenn diagrams is feasible to assess VA in large groups of trekkers with ascent, although this novel analytical method requires further validation in controlled experiments.


Subject(s)
Acclimatization , Acetazolamide , Altitude Sickness , Altitude , Hypoxia , Acetazolamide/pharmacology , Humans , Acclimatization/physiology , Male , Adult , Altitude Sickness/physiopathology , Female , Hypoxia/physiopathology , Carbonic Anhydrase Inhibitors/pharmacology , Young Adult , Carbon Dioxide/metabolism , Oxygen Saturation/physiology , Oxygen Saturation/drug effects , Pulmonary Ventilation/drug effects , Pulmonary Ventilation/physiology
14.
Front Public Health ; 12: 1370765, 2024.
Article in English | MEDLINE | ID: mdl-38737857

ABSTRACT

Background: Occupational health is closely related to harmful factors in the workplace. Dust is the primary contributing factor causing impaired lung ventilation function among employees with dust exposure, and their lung ventilation function may also be influenced by other factors. We aimed at assessing the status and influencing factors of lung ventilation function among employees exposed to dust in the enterprises of the Eighth Division located in the Xinjiang Production and Construction Corps (XPCC), China. Methods: Employees exposed to dust in enterprises of the Eighth Division located in the XPCC in 2023 were selected as the subjects of this cross-sectional study. Their lung ventilation function indicators were extracted from health examination records, and an on-site electronic questionnaire survey was conducted among them. Binary logistic regression analyses were conducted to evaluate the factors influencing lung ventilation function. Results: According to the fixed value criteria, the abnormal rates of forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC), and FEV1/FVC were 31.6, 1.4, and 0.4%, respectively. The lower limit of normal (LLN) criteria could overestimate the rate of abnormal lung ventilation function. Several factors were related to impaired lung ventilation function, including gender, age, education level, marital status, body mass index (BMI), smoking status, physical activity, the type of dust, industry, enterprise scale, occupation, length of service, working shift, monthly income, and respiratory protection. Conclusions: A relatively low abnormal rate of lung ventilation function was observed among employees exposed to dust in enterprises of the Eighth Division, XPCC, and their lung ventilation function was associated with various factors. Effective measures should be taken urgently to reduce the effects of adverse factors on lung ventilation function, thereby further protecting the health of the occupational population.


Subject(s)
Dust , Occupational Exposure , Humans , China , Male , Female , Cross-Sectional Studies , Adult , Occupational Exposure/adverse effects , Middle Aged , Surveys and Questionnaires , Respiratory Function Tests , Pulmonary Ventilation/physiology , Vital Capacity , Forced Expiratory Volume
15.
Sensors (Basel) ; 24(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38794056

ABSTRACT

Regional lung ventilation assessment is a critical tool for the early detection of lung diseases and postoperative evaluation. Biosensor-based impedance measurements, known for their non-invasive nature, among other benefits, have garnered significant attention compared to traditional detection methods that utilize pressure sensors. However, solely utilizing overall thoracic impedance fails to accurately capture changes in regional lung air volume. This study introduces an assessment method for lung ventilation that utilizes impedance data from the five lobes, develops a nonlinear model correlating regional impedance with lung air volume, and formulates an approach to identify regional ventilation obstructions based on impedance variations in affected areas. The electrode configuration for the five lung lobes was established through numerical simulations, revealing a power-function nonlinear relationship between regional impedance and air volume changes. An analysis of 389 pulmonary function tests refined the equations for calculating pulmonary function parameters, taking into account individual differences. Validation tests on 30 cases indicated maximum relative errors of 0.82% for FVC and 0.98% for FEV1, all within the 95% confidence intervals. The index for assessing regional ventilation impairment was corroborated by CT scans in 50 critical care cases, with 10 validation trials showing agreement with CT lesion localization results.


Subject(s)
Electric Impedance , Lung , Pulmonary Ventilation , Respiratory Function Tests , Humans , Lung/diagnostic imaging , Lung/physiology , Lung/physiopathology , Respiratory Function Tests/methods , Pulmonary Ventilation/physiology , Male , Female , Middle Aged , Adult , Aged , Tomography, X-Ray Computed/methods , Biosensing Techniques/methods , Electrodes
16.
Adv Physiol Educ ; 48(3): 558-565, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38813605

ABSTRACT

The movement of air into and out of the lungs is facilitated by changes in pressure within the thoracic cavity relative to atmospheric pressure, as well as the resistance encountered by airways. In this process, the movement of air into and out of the lungs is driven by pressure gradients established by changes in lung volume and intra-alveolar pressure. However, pressure never sucks! The concept that pressure never sucks, pressure only pushes encapsulates a fundamental principle in the behavior of gases. This concept challenges common misconceptions about pressure, shedding light on the dynamic forces that govern the movement of gases. In this Illumination, we explore the essence of this concept and its applications in pulmonary ventilation. Pressure is one of the most important concepts in physics and physiology. Atmospheric pressure at sea level is equal to 1 atmosphere or around 101,325 Pascal [Pa (1 Pa = 1 N/m2)]. This huge pressure is pushing down on everything all the time. However, this pressure is difficult to understand because we do not often observe the power of this incredible force. We used five readily available, simple, and inexpensive demonstrations to introduce the physics and power of pressure. This extraordinarily complex physics concept was approached in a straightforward and inexpensive manner while still providing an understanding of the fundamental concepts. These simple demonstrations introduced basic concepts and addressed common misconceptions about pressure.NEW & NOTEWORTHY The concept that pressure never sucks, pressure only pushes challenges common misconceptions about pressure, shedding light on the dynamic forces that govern the movement of gases. In this Illumination, we will explore the essence of this concept and its applications in pulmonary ventilation. Specifically, we used five readily available, simple, inexpensive demonstrations to introduce the physics and power of pressure.


Subject(s)
Physiology , Pressure , Humans , Physiology/education , Lung/physiology , Pulmonary Ventilation/physiology
19.
Respir Physiol Neurobiol ; 325: 104255, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38555042

ABSTRACT

The causes and consequences of excess exercise ventilation (EEV) in patients with fibrosing interstitial lung disease (f-ILD) were explored. Twenty-eight adults with f-ILD and 13 controls performed an incremental cardiopulmonary exercise test. EEV was defined as ventilation-carbon dioxide output (⩒E-⩒CO2) slope ≥36 L/L. Patients showed lower pulmonary function and exercise capacity compared to controls. Lower DLCO was related to higher ⩒E-⩒CO2 slope in patients (P<0.05). 13/28 patients (46.4%) showed EEV, reporting higher dyspnea scores (P=0.033). Patients with EEV showed a higher dead space (VD)/tidal volume (VT) ratio while O2 saturation dropped to a greater extent during exercise compared to those without EEV. Higher breathing frequency and VT/inspiratory capacity ratio were observed during exercise in the former group (P<0.05). An exaggerated ventilatory response to exercise in patients with f-ILD is associated with a blunted decrease in the wasted ventilation in the physiological dead space and greater hypoxemia, prompting higher inspiratory constraints and breathlessness.


Subject(s)
Exercise Test , Exercise , Lung Diseases, Interstitial , Humans , Lung Diseases, Interstitial/physiopathology , Female , Male , Middle Aged , Aged , Exercise/physiology , Pulmonary Ventilation/physiology , Respiratory Function Tests , Tidal Volume/physiology , Dyspnea/physiopathology , Exercise Tolerance/physiology
20.
J Asthma ; 61(8): 808-812, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38385570

ABSTRACT

OBJECTIVE: Asthma is a common chronic respiratory diseases, and the relationship between pulmonary ventilation function and the prognosis of patients with suspected asthma is not well understood. This study aims to explore the impact of pulmonary ventilation functions on the prognosis of patients with suspected asthma. METHODS: This retrospective observational study included patients with suspected asthma who were diagnosed and treated at the Guangdong Provincial Hospital of Traditional Chinese Medicine between August 2015 and January 2020. The primary outcome of interest was improvement in asthma symptoms, as measured by bronchial provocation test (BPT) results within one year after diagnosis. The impact of pulmonary ventilation functions on prognosis was explored by multivariable logistic regression analysis. RESULTS: Seventy-two patients were included in the study. Patients with normal (OR = 0.123, p = .004) or generally normal (OR = 0.075, p = .039) pulmonary ventilation function were more likely to achieve improvement in asthma symptoms compared with patients with mild obstruction. There were no significant differences between the improvement and non-improvement groups in baseline characteristics. CONCLUSION: These results suggest that suspected asthma patients with normal or generally normal pulmonary ventilation function are more likely to achieve improvement in asthma symptoms within one year compared to patients with mild obstruction.


Subject(s)
Asthma , Humans , Asthma/diagnosis , Asthma/physiopathology , Asthma/therapy , Retrospective Studies , Male , Female , Middle Aged , Adult , Prognosis , Pulmonary Ventilation/physiology , Bronchial Provocation Tests/methods , Respiratory Function Tests , Aged
SELECTION OF CITATIONS
SEARCH DETAIL