Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.063
Filter
1.
Nat Commun ; 15(1): 5921, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39004688

ABSTRACT

The bacterial flagellum, which facilitates motility, is composed of ~20 structural proteins organized into a long extracellular filament connected to a cytoplasmic rotor-stator complex via a periplasmic rod. Flagellum assembly is regulated by multiple checkpoints that ensure an ordered gene expression pattern coupled to the assembly of the various building blocks. Here, we use epifluorescence, super-resolution, and transmission electron microscopy to show that the absence of a periplasmic protein (FlhE) prevents proper flagellar morphogenesis and results in the formation of periplasmic flagella in Salmonella enterica. The periplasmic flagella disrupt cell wall synthesis, leading to a loss of normal cell morphology resulting in cell lysis. We propose that FlhE functions as a periplasmic chaperone to control assembly of the periplasmic rod, thus preventing formation of periplasmic flagella.


Subject(s)
Bacterial Proteins , Flagella , Molecular Chaperones , Periplasm , Flagella/metabolism , Flagella/ultrastructure , Flagella/genetics , Molecular Chaperones/metabolism , Molecular Chaperones/genetics , Periplasm/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Salmonella enterica/metabolism , Salmonella enterica/genetics , Microscopy, Electron, Transmission , Periplasmic Proteins/metabolism , Periplasmic Proteins/genetics , Gene Expression Regulation, Bacterial
2.
Environ Microbiol Rep ; 16(4): e13287, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38978351

ABSTRACT

Salmonellosis associated with reptiles is a well-researched topic, particularly in China and the United States, but it occurs less frequently in Europe. The growth of the human population and changes in the environment could potentially increase the interaction between humans and free-living reptiles, which are an unidentified source of Salmonella species. In this study, we sought to explore this issue by comparing the microbiota of free-living European grass snakes, scientifically known as Natrix natrix, with that of captive banded water snakes, or Nerodia fasciata. We were able to isolate 27 strains of Salmonella species from cloacal swabs of 59 N. natrix and 3 strains from 10 N. fasciata. Our findings revealed that free-living snakes can carry strains of Salmonella species that are resistant to normal human serum (NHS). In contrast, all the Salmonella species strains isolated from N. fasciata were sensitive to the action of the NHS, further supporting our findings. We identified two serovars from N. natrix: Salmonella enterica subspecies diarizonae and S. enterica subspecies houtenae. Additionally, we identified three different virulotypes (VT) with invA, sipB, prgH, orgA, tolC, iroN, sitC, sifA, sopB, spiA, cdtB and msgA genes, and ß-galactosidase synthesised by 23 serovars. The identification of Salmonella species in terms of their VT is a relatively unknown aspect of their pathology. This can be specific to the serovar and pathovar and could be a result of adaptation to a new host or environment.


Subject(s)
Salmonella , Virulence Factors , Animals , Virulence Factors/genetics , Salmonella/isolation & purification , Salmonella/genetics , Salmonella/classification , Humans , Salmonella Infections, Animal/microbiology , Colubridae/microbiology , Salmonella enterica/genetics , Salmonella enterica/isolation & purification , Salmonella enterica/classification , Salmonella enterica/growth & development , Salmonella enterica/pathogenicity , Snakes/microbiology , Cloaca/microbiology
3.
Ann Clin Microbiol Antimicrob ; 23(1): 61, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965586

ABSTRACT

OBJECTIVES: The emergence of multidrug-resistant (MDR) Salmonella strains, especially resistant ones toward critically important antimicrobial classes such as fluoroquinolones and third- and fourth-generation cephalosporins, is a growing public health concern. The current study, therefore, aimed to determine the prevalence, and existence of virulence genes (invA, stn, and spvC genes), antimicrobial resistance profiles, and the presence of ß-lactamase resistance genes (blaOXA, blaCTX-M1, blaSHV, and blaTEM) in Salmonella strains isolated from native chicken carcasses in Egypt marketed in Mansoura, Egypt, as well as spotlight the risk of isolated MDR, colistin-, cefepime-, and levofloxacin-resistant Salmonella enterica serovars to public health. METHODS: One hundred fifty freshly dressed native chicken carcasses were collected from different poultry shops in Mansoura City, Egypt between July 2022 and November 2022. Salmonella isolation was performed using standard bacteriological techniques, including pre-enrichment in buffered peptone water (BPW), selective enrichment in Rappaport Vassiliadis broth (RVS), and cultivating on the surface of xylose-lysine-desoxycholate (XLD) agar. All suspected Salmonella colonies were subjected to biochemical tests, serological identification using slide agglutination test, and Polymerase Chain Reaction (PCR) targeting the invasion A gene (invA; Salmonella marker gene). Afterward, all molecularly verified isolates were screened for the presence of virulence genes (stn and spvC). The antimicrobial susceptibility testing for isolated Salmonella strains towards the 16 antimicrobial agents tested was analyzed by Kirby-Bauer disc diffusion method, except for colistin, in which the minimum inhibition concentration (MIC) was determined by broth microdilution technique. Furthermore, 82 cefotaxime-resistant Salmonella isolates were tested using multiplex PCR targeting the ß-lactamase resistance genes, including blaOXA, blaCTX-M1, blaSHV, and blaTEM genes. RESULTS: Salmonella enterica species were molecularly confirmed via the invA Salmonella marker gene in 18% (27/150) of the freshly dressed native chicken carcasses. Twelve Salmonella serotypes were identified among 129 confirmed Salmonella isolates with the most predominant serotypes were S. Kentucky, S. Enteritidis, S. Typhimurium, and S. Molade with an incidence of 19.4% (25/129), 17.1% (22/129), 17.1% (22/129), and 10.9% (14/129), respectively. All the identified Salmonella isolates (n = 129) were positive for both invA and stn genes, while only 31.8% (41/129) of isolates were positive for the spvC gene. One hundred twenty-one (93.8%) of the 129 Salmonella-verified isolates were resistant to at least three antibiotics. Interestingly, 3.9%, 14.7%, and 75.2% of isolates were categorized into pan-drug-resistant, extensively drug-resistant, and multidrug-resistant, respectively. The average MAR index for the 129 isolates tested was 0.505. Exactly, 82.2%, 82.2%, 63.6%, 51.9%, 50.4%, 48.8%, 11.6%, and 10.1% of isolated Salmonella strains were resistant to cefepime, colistin, cefotaxime, ceftazidime/clavulanic acid, levofloxacin, ciprofloxacin, azithromycin, and meropenem, respectively. Thirty-one out (37.8%) of the 82 cefotaxime-resistant Salmonella isolates were ß-lactamase producers with the blaTEM as the most predominant ß-lactamase resistance gene, followed by blaCTX-M1 and blaOXA genes, which were detected in 21, 16, and 14 isolates respectively). CONCLUSION: The high prevalence of MDR-, colistin-, cefepime-, and levofloxacin-resistant Salmonella serovars among Salmonella isolates from native chicken is alarming as these antimicrobials are critically important in treating severe salmonellosis cases and boost the urgent need for controlling antibiotic usage in veterinary and human medicine to protect public health.


Subject(s)
Anti-Bacterial Agents , Cefepime , Chickens , Colistin , Drug Resistance, Multiple, Bacterial , Levofloxacin , Microbial Sensitivity Tests , Salmonella enterica , Serogroup , Animals , Egypt , Salmonella enterica/drug effects , Salmonella enterica/genetics , Salmonella enterica/isolation & purification , Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Colistin/pharmacology , Levofloxacin/pharmacology , Cefepime/pharmacology , beta-Lactamases/genetics , Virulence Factors/genetics , Bacterial Proteins/genetics , Salmonella Infections, Animal/microbiology , Humans
4.
BMC Genomics ; 25(1): 679, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38978005

ABSTRACT

BACKGROUND: Oxford Nanopore provides high throughput sequencing platforms able to reconstruct complete bacterial genomes with 99.95% accuracy. However, even small levels of error can obscure the phylogenetic relationships between closely related isolates. Polishing tools have been developed to correct these errors, but it is uncertain if they obtain the accuracy needed for the high-resolution source tracking of foodborne illness outbreaks. RESULTS: We tested 132 combinations of assembly and short- and long-read polishing tools to assess their accuracy for reconstructing the genome sequences of 15 highly similar Salmonella enterica serovar Newport isolates from a 2020 onion outbreak. While long-read polishing alone improved accuracy, near perfect accuracy (99.9999% accuracy or ~ 5 nucleotide errors across the 4.8 Mbp genome, excluding low confidence regions) was only obtained by pipelines that combined both long- and short-read polishing tools. Notably, medaka was a more accurate and efficient long-read polisher than Racon. Among short-read polishers, NextPolish showed the highest accuracy, but Pilon, Polypolish, and POLCA performed similarly. Among the 5 best performing pipelines, polishing with medaka followed by NextPolish was the most common combination. Importantly, the order of polishing tools mattered i.e., using less accurate tools after more accurate ones introduced errors. Indels in homopolymers and repetitive regions, where the short reads could not be uniquely mapped, remained the most challenging errors to correct. CONCLUSIONS: Short reads are still needed to correct errors in nanopore sequenced assemblies to obtain the accuracy required for source tracking investigations. Our granular assessment of the performance of the polishing pipelines allowed us to suggest best practices for tool users and areas for improvement for tool developers.


Subject(s)
Benchmarking , Disease Outbreaks , Genome, Bacterial , Nanopores , Nanopore Sequencing/methods , High-Throughput Nucleotide Sequencing/methods , Salmonella enterica/genetics , Salmonella enterica/isolation & purification , Humans , Phylogeny
5.
J Vis Exp ; (208)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39007624

ABSTRACT

Bacteriophages, or simply phages, play a vital role in microbial environments, impacting bacterial populations and shaping their evolution and interactions. These organisms are viruses that infect and replicate within bacterial hosts. Phages are ubiquitous on Earth, highly diverse, and very abundant. While bacteriophages have valuable roles in different environments and are a key area of research in microbiology and ecology, their presence can be undesirable in certain industrial processes or products. Considering the abundance and ubiquity of bacteriophages on Earth, the design of procedures for the removal of bacteriophages from bacterial cultures is crucial in diverse laboratory and industrial applications to preserve the integrity of the cultures and ensure accurate experimental results or product quality. Here, we have fine-tuned a protocol to eliminate the bacteriophages from infected Salmonella enterica cultures, using a strategy based on the use of lipopolysaccharides (LPS) located in the outer membrane of Gram-negative bacteria. Bacterial LPS plays an important role in host recognition by phages, and we make use of this property to design an effective procedure for the removal of phages, which use LPS as a receptor, in Salmonella bacterial cultures.


Subject(s)
Salmonella Phages , Salmonella enterica , Salmonella Phages/physiology , Salmonella enterica/virology , Lipopolysaccharides , Salmonella/virology , Bacteriophages/isolation & purification , Bacteriophages/physiology
6.
Nat Commun ; 15(1): 5626, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992046

ABSTRACT

As bacteriophages continue to gain regulatory approval for personalized human therapy against antibiotic-resistant infections, there is a need for transformative technologies for rapid target identification through multiple, large, decentralized therapeutic phages biobanks. Here, we design a high throughput phage screening platform comprised of a portable library of individual shelf-stable, ready-to-use phages, in all-inclusive solid tablets. Each tablet encapsulates one phage along with luciferin and luciferase enzyme stabilized in a sugar matrix comprised of pullulan and trehalose capable of directly detecting phage-mediated adenosine triphosphate (ATP) release through ATP bioluminescence reaction upon bacterial cell burst. The tablet composition also enhances desiccation tolerance of all components, which should allow easier and cheaper international transportation of phages and as a result, increased accessibility to therapeutic phages. We demonstrate high throughput screening by identifying target phages for select multidrug-resistant clinical isolates of Pseudomonas aeruginosa, Salmonella enterica, Escherichia coli, and Staphylococcus aureus with targets identified within 30-120 min.


Subject(s)
Bacteriophages , Escherichia coli , High-Throughput Screening Assays , Phage Therapy , Precision Medicine , Staphylococcus aureus , Humans , Phage Therapy/methods , High-Throughput Screening Assays/methods , Escherichia coli/virology , Escherichia coli/metabolism , Escherichia coli/genetics , Bacteriophages/genetics , Bacteriophages/physiology , Staphylococcus aureus/virology , Precision Medicine/methods , Pseudomonas aeruginosa/virology , Adenosine Triphosphate/metabolism , Salmonella enterica/virology , Drug Resistance, Multiple, Bacterial/genetics
7.
Gut Microbes ; 16(1): 2369339, 2024.
Article in English | MEDLINE | ID: mdl-38962965

ABSTRACT

The bacterial species Salmonella enterica (S. enterica) is a highly diverse pathogen containing more than 2600 distinct serovars, which can infect a wide range of animal and human hosts. Recent global emergence of multidrug resistant strains, from serovars Infantis and Muenchen is associated with acquisition of the epidemic megaplasmid, pESI that augments antimicrobial resistance and pathogenicity. One of the main pESI's virulence factors is the potent iron uptake system, yersiniabactin encoded by fyuA, irp2-irp1-ybtUTE, ybtA, and ybtPQXS gene cluster. Here we show that yersiniabactin, has an underappreciated distribution among different S. enterica serovars and subspecies, integrated in their chromosome or carried by different conjugative plasmids, including pESI. While the genetic organization and the coding sequence of the yersiniabactin genes are generally conserved, a 201-bp insertion sequence upstream to ybtA, was identified in pESI. Despite this insertion, pESI-encoded yersiniabactin is regulated by YbtA and the ancestral Ferric Uptake Regulator (Fur), which binds directly to the ybtA and irp2 promoters. Furthermore, we show that yersiniabactin genes are specifically induced during the mid-late logarithmic growth phase and in response to iron-starvation or hydrogen peroxide. Concurring, yersiniabactin was found to play a previously unknown role in oxidative stress tolerance and to enhance intestinal colonization of S. Infantis in mice. These results indicate that yersiniabactin contributes to Salmonella fitness and pathogenicity in vivo and is likely to play a role in the rapid dissemination of pESI among globally emerging Salmonella lineages.


Subject(s)
Bacterial Proteins , Gene Expression Regulation, Bacterial , Iron , Oxidative Stress , Salmonella enterica , Animals , Iron/metabolism , Mice , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Salmonella enterica/genetics , Salmonella enterica/metabolism , Salmonella enterica/pathogenicity , Virulence/genetics , Phenols/metabolism , Thiazoles/metabolism , Humans , Salmonella Infections/microbiology , Gene Transfer, Horizontal , Female , Virulence Factors/genetics , Virulence Factors/metabolism , Plasmids/genetics
8.
BMC Genomics ; 25(1): 604, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886668

ABSTRACT

BACKGROUND: Salmonella, an important foodborne pathogen, was estimated to be responsible for 95.1 million cases and 50,771 deaths worldwide. Sixteen serovars were responsible for approximately 80% of Salmonella infections in humans in China, and infections caused by a few uncommon serovars have been reported in recent years, though not with S. Welikade. This study reports the first clinical case caused by S. Welikade in China and places Chinese S. Welikade isolates in the context of global isolates via genomic analysis. For comparison, S. Welikade isolates were also screened in the Chinese Local Surveillance System for Salmonella (CLSSS). The minimum inhibitory concentrations (MICs) of 28 antimicrobial agents were determined using the broth microdilution method. The isolates were sequenced on an Illumina platform to identify antimicrobial resistance genes, virulence genes, and phylogenetic relationships. RESULTS: The S. Welikade isolate (Sal097) was isolated from a two-year-old boy with acute gastroenteritis in 2021. Along with the other two isolates found in CLSSS, the three Chinese isolates were susceptible to all the examined antimicrobial agents, and their sequence types (STs) were ST5123 (n = 2) and ST3774 (n = 1). Single nucleotide polymorphism (SNP)-based phylogenetic analysis revealed that global S. Welikade strains can be divided into four groups, and these three Chinese isolates were assigned to B (n = 2; Sal097 and XXB1016) and C (n = 1; XXB700). In Group B, the two Chinese ST5123 isolates were closely clustered with three UK ST5123 isolates. In Group C, the Chinese isolate was closely related to the other 12 ST3774 isolates. The number of virulence genes in the S. Welikade isolates ranged from 59 to 152. The galF gene was only present in Group A, the pipB2 gene was only absent from Group A, the avrA gene was only absent from Group B, and the allB, sseK1, sspH2, STM0287, and tlde1 were found only within Group C and D isolates. There were 15 loci unique to the Sal097 isolate. CONCLUSION: This study is the first to characterize and investigate clinical S. Welikade isolates in China. Responsible for a pediatric case of gastroenteritis in 2021, the clinical isolate harbored no antimicrobial resistance and belonged to phylogenetic Group B of global S. Welikade genomes.


Subject(s)
Diarrhea , Microbial Sensitivity Tests , Phylogeny , Salmonella enterica , Serogroup , Humans , China , Salmonella enterica/genetics , Salmonella enterica/isolation & purification , Salmonella enterica/drug effects , Salmonella enterica/classification , Male , Child, Preschool , Diarrhea/microbiology , Salmonella Infections/microbiology , Genome, Bacterial , Genomics , Anti-Bacterial Agents/pharmacology , Virulence Factors/genetics
9.
Int J Mol Sci ; 25(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38891852

ABSTRACT

Salmonella diarizonae (IIIb) is frequently isolated from reptiles and less frequently from birds and mammals. However, its isolation from invasive human infections has not been widely reported. Migratory mallard ducks are excellent bioindicators of pathogen presence and pathogen antibiotic resistance (AMR). We present the first isolation from a mallard duck in central Europe of the antibiotic-resistant Salmonella enterica subsp. diarizonae with the unique antigenic pattern 58:r:z53 and report its whole-genome sequencing, serosequencing, and genotyping, which enabled the prediction of its pathogenicity and comparison with phenotypic AMR. The isolated strain was highly similar to S. diarizonae isolated from humans and food. Twenty-four AMR genes were detected, including those encoding aminoglycoside, fluoroquinolone, macrolide, carbapenem, tetracycline, cephalosporin, nitroimidazole, peptide antibiotic, and disinfecting agent/antiseptic resistance. Six Salmonella pathogenicity islands were found (SPI-1, SPI-2, SPI-3, SPI-5, SPI-9, and SPI-13). An iron transport system was detected in SPI-1 centisome C63PI. Plasmid profile analyses showed three to be present. Sequence mutations in the invA and invF genes were noted, which truncated and elongated the proteins, respectively. The strain also harbored genes encoding type-III secretion-system effector proteins and many virulence factors found in S. diarizonae associated with human infections. This study aims to elucidate the AMR and virulence genes in S. enterica subsp. diarizonae that may most seriously threaten human health.


Subject(s)
Ducks , Animals , Ducks/microbiology , Humans , Salmonella/genetics , Salmonella/pathogenicity , Salmonella/isolation & purification , Salmonella/drug effects , Whole Genome Sequencing , Genomic Islands/genetics , Salmonella Infections, Animal/microbiology , Anti-Bacterial Agents/pharmacology , Salmonella enterica/genetics , Salmonella enterica/pathogenicity , Salmonella enterica/isolation & purification , Salmonella enterica/drug effects , Drug Resistance, Multiple, Bacterial/genetics , Genome, Bacterial , Phylogeny , Drug Resistance, Bacterial/genetics , Plasmids/genetics
10.
Int J Food Microbiol ; 420: 110783, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-38851046

ABSTRACT

Despite the wide variety of native and exotic fruits in Brazil, there is limited understanding of their ability to support pathogens during storage. This study aimed to evaluate the behavior of Salmonella enterica and Listeria monocytogenes inoculated into the pulp of eight fruits native and exotic to Brazil: Jenipapo (Genipa americana L.), Umbu (Spondias tuberosa Arruda), Maná (Solanum sessiliflorum), Cajá-manga (Spondias dulcis), Physalis (Physalis angulata L.), Feijoa (Acca sellowiana), Cupuaçu (Theobroma grandiflorum) (average pH < 3.3) and in a low acidy fruit: Abiu (Pouteria caimito) (pH 6.11). The pathogens were inoculated into the different fruits and stored at 10, 20, 30 and 37 °C for up to 12 h and 6 days, respectively. Among the fruits evaluated, Abiu was the only one that allowed Salmonella growth, showing higher δ-values at 20 and 30 °C (5.6 log CFU/g for both temperatures). For Physalis and Feijoa, there was a small reduction in the pathogen concentration (<1 log-cycle), mainly at 10 and 20 °C, indicating its ability to remain in the matrices. For the other fruits, notable negative δ-values were obtained, indicating a tendency towards microbial inactivation. The survival potential was significantly affected by temperature in Abiu, Maná, Cupuaçu, and Cajá-manga (p < 0.05). The same phenomena regarding δ-value were observed for L. monocytogenes population, with the greatest survival potential observed at 20 °C in Abiu (3.3 log CFU/g). Regarding the exponential growth rates in Abiu, the highest values were observed at 30 and 37 °C, both for Salmonella (4.6 and 4.9 log (CFU/g)/day, respectively) and for L. monocytogenes (2.8 and 2.7 log (CFU/g)/day, respectively), with no significant difference between both temperatures. Regarding microbial inactivation, L. monocytogenes showed greater resistance than Salmonella in practically all matrices. Jenipapo and Umbu were the pulps that, in general, had the greatest effect on reducing the population of pathogens. Furthermore, the increase in storage temperature seems to favor the increase on inactivation rates. In conclusion, Salmonella and L. monocytogenes can grow only in Abiu pulp, although they can survive in some acidic tropical fruits kept at refrigeration and abusive temperatures.


Subject(s)
Food Microbiology , Fruit , Listeria monocytogenes , Salmonella enterica , Salmonella enterica/growth & development , Listeria monocytogenes/growth & development , Fruit/microbiology , Brazil , Temperature , Colony Count, Microbial , Food Contamination/analysis , Food Storage
11.
Anal Methods ; 16(25): 4083-4092, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38855899

ABSTRACT

Salmonella enterica is a common foodborne pathogen that can cause food poisoning in humans. The organism also infects and causes disease in animals. Rapid and sensitive detection of S. enterica is essential to prevent the spread of this pathogen. Traditional technologies for the extraction and detection of this pathogen from complex food matrices are cumbersome and time-consuming. In this study, we introduced a novel strategy of biphasic assay integrated with an accelerated strand exchange amplification (ASEA) method for efficient detection of S. enterica without culture or other extraction procedures. Food samples are rapidly dried, resulting in a physical fluidic network inside the dried food matrix, which allows polymerases and primers to access the target DNA and initiate ASEA. The dried food matrix is defined as the solid phase, while amplification products are enriched in the supernatant (liquid phase) and generate fluorescence signals. The analytical performances demonstrated that this strategy was able to specifically identify S. enterica and did not show any cross-reaction with other common foodborne pathogens. For artificially spiked food samples, the strategy can detect 5.0 × 101 CFU mL-1S. enterica in milk, 1.0 × 102 CFU g-1 in duck, scallop or lettuce, and 1.0 × 103 CFU g-1 in either oyster or cucumber samples without pre-enrichment of the target pathogen. We further validated the strategy using 82 real food samples, and this strategy showed 92% sensitivity. The entire detection process can be finished, sample-to-answer, within 50 min, dramatically decreasing the detection time. Therefore, we believe that the proposed method enables rapid and sensitive detection of S. enterica and holds great promise for the food safety industry.


Subject(s)
Food Microbiology , Nucleic Acid Amplification Techniques , Salmonella enterica , Salmonella enterica/isolation & purification , Salmonella enterica/genetics , Food Microbiology/methods , Nucleic Acid Amplification Techniques/methods , Animals , DNA, Bacterial/analysis , Milk/microbiology , Ducks/microbiology , Food Contamination/analysis , Lactuca/microbiology
12.
Food Microbiol ; 122: 104568, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38839227

ABSTRACT

The plasmid of emerging S. Infantis (pESI) or pESI-like plasmid in Salmonella enterica Infantis are consistently reported in poultry and humans worldwide. However, there has been limited research on these plasmids of S. Infantis isolated from eggs. Therefore, this study aimed to analyze the prevalence and characteristics of S. Infantis carrying the pESI-like plasmid from eggs in egg grading and packing plants. In this study, the pESI-like plasmid was only detected in 18 (78.3%) of 23 S. Infantis isolates, and it was absent in the other 9 Salmonella serovars. In particular, S. Infantis isolates carrying the pESI-like plasmid showed the significantly higher resistance to ß-lactams, phenicols, cephams, aminoglycosides, quinolones, sulfonamides, and tetracyclines than Salmonella isolates without the pESI-like plasmid (p < 0.05). Moreover, all S. Infantis isolates carrying the pESI-like plasmid were identified as extended-spectrum ß-lactamase (ESBL) producer, harboring the blaCTX-M-65 and blaTEM-1 genes, and carried non-ß-lactamase resistance genes (ant(3'')-Ia, aph(4)-Ia, aac(3)-IVa, aph(3')-Ic, sul1, tetA, dfrA14, and floR) against five antimicrobial classes. However, all isolates without the pESI-like plasmid only carried the blaTEM-1 gene among the ß-lactamase genes, and either had no non-ß-lactamase resistance genes or harbored non-ß-lactamase resistance genes against one or two antimicrobial classes. Furthermore, all S. Infantis isolates carrying the pESI-like plasmid carried class 1 and 2 integrons and the aadA1 gene cassette, but none of the other isolates without the pESI-like plasmid harbored integrons. In particular, D87Y substitution in the gyrA gene and IncP replicon type were observed in all the S. Infantis isolates carrying the pESI-like plasmid but not in the S. Infantis isolates without the pESI-like plasmid. The distribution of pulsotypes between pESI-positive and pESI-negative S. Infantis isolates was clearly distinguished, but all S. Infantis isolates were classified as sequence type 32, regardless of whether they carried the pESI-like plasmid. This study is the first to report the characteristics of S. Infantis carrying the pESI-like plasmid isolated from eggs and can provide valuable information for formulating strategies to control the spread of Salmonella in the egg industry worldwide.


Subject(s)
Anti-Bacterial Agents , Eggs , Plasmids , beta-Lactamases , Plasmids/genetics , Republic of Korea , Anti-Bacterial Agents/pharmacology , Eggs/microbiology , Animals , beta-Lactamases/genetics , Salmonella/genetics , Salmonella/isolation & purification , Salmonella/classification , Salmonella/drug effects , Microbial Sensitivity Tests , Drug Resistance, Multiple, Bacterial/genetics , Chickens/microbiology , Humans , Salmonella enterica/genetics , Salmonella enterica/isolation & purification , Salmonella enterica/drug effects , Salmonella enterica/classification
13.
Sci Rep ; 14(1): 13257, 2024 06 10.
Article in English | MEDLINE | ID: mdl-38858528

ABSTRACT

Salmonella enterica and Escherichia coli are major food-borne human pathogens, and their genomes are routinely sequenced for clinical surveillance. Computational pipelines designed for analyzing pathogen genomes should both utilize the most current information from annotation databases and increase the coverage of these databases over time. We report the development of the GEA pipeline to analyze large batches of E. coli and S. enterica genomes. The GEA pipeline takes as input paired Illumina raw reads files which are then assembled followed by annotation. Alternatively, assemblies can be provided as input and directly annotated. The pipeline provides predictive genome annotations for E. coli and S. enterica with a focus on the Center for Genomic Epidemiology tools. Annotation results are provided as a tab delimited text file. The GEA pipeline is designed for large-scale E. coli and S. enterica genome assembly and characterization using the Center for Genomic Epidemiology command-line tools and high-performance computing. Large scale annotation is demonstrated by an analysis of more than 14,000 Salmonella genome assemblies. Testing the GEA pipeline on E. coli raw reads demonstrates reproducibility across multiple compute environments and computational usage is optimized on high performance computers.


Subject(s)
Escherichia coli , Genome, Bacterial , Salmonella enterica , Escherichia coli/genetics , Salmonella enterica/genetics , Software , Computational Biology/methods , Molecular Sequence Annotation , Genomics/methods , Salmonella/genetics , Humans
14.
Prev Vet Med ; 228: 106234, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823251

ABSTRACT

The diagnosis of infectious diseases at herd level can be challenging as different stakeholders can have conflicting priorities. The current study proposes a "proof of concept" of an approach that considers a reasonable number of criteria to rank plausible diagnostic strategies using multi-criteria decision analysis (MCDA) methods. The example of Salmonella Dublin diagnostic in Québec dairy herds is presented according to two epidemiological contexts: (i) in herds with no history of S. Dublin infection and absence of clinical signs, (ii) in herds with a previous history of infection, but absence of clinical signs at the moment of testing. Multiple multiparty exchanges were conducted to determine: 1) stakeholders' groups; 2) the decision problem; 3) solutions to the problem (options) or diagnostic strategies to be ordered; 4) criteria and indicators; 5) criteria weights; 6) the construction of a performance matrix for each option; 7) the multi-criteria analyses using the visual preference ranking organization method for enrichment of evaluations approach; 8) the sensitivity analyses, and 9) the final decision. A total of nine people from four Québec's organizations (the dairy producers provincial association along with the DHI company, the ministry of agriculture, the association of veterinary practitioners, and experts in epidemiology) composed the MCDA team. The decision problem was "What is the optimal diagnostic strategy for establishing the status of a dairy herd for S. Dublin infection when there are no clinical signs of infection?". Fourteen diagnostic strategies composed of the three following parameters were considered: 1) biological samples (bulk tank milk or blood from 10 heifers aged over three months); 2) sampling frequencies (one to three samples collection visits); 3) case definitions to conclude to a positive status using imperfect milk- or blood-ELISA tests. The top-ranking diagnostic strategy was the same in the two contexts: testing the bulk tank milk and the blood samples, all samples collected during one visit and the herd being assigned a S. Dublin positive status if one sample is ELISA-positive. The final decision favored the top-ranking option for both contexts. This MCDA approach and its application to S. Dublin infection in dairy herds allowed a consensual, rational, and transparent ranking of feasible diagnostic strategies while taking into account the diagnostic tests accuracy, socio-economic, logistic, and perception considerations of the key actors in the dairy industry. This promising tool can be applied to other infectious diseases that lack a well-established diagnostic procedure to define a herd status.


Subject(s)
Cattle Diseases , Dairying , Decision Support Techniques , Salmonella Infections, Animal , Animals , Cattle , Salmonella Infections, Animal/diagnosis , Salmonella Infections, Animal/epidemiology , Quebec/epidemiology , Cattle Diseases/diagnosis , Cattle Diseases/microbiology , Female , Salmonella enterica/isolation & purification
15.
Open Vet J ; 14(5): 1117-1129, 2024 May.
Article in English | MEDLINE | ID: mdl-38938436

ABSTRACT

Background: Salmonella infections are considered the most common foodborne pathogens responsible for zoonotic infections and food poisoning in humans and animal species such as birds. Antimicrobial resistance is considered a global anxiety because it causes human public health repercussions, as well as leads to an increase in animal morbidity and death. Aim: The aims of this study are the isolation and identification of Salmonella enterica, as well as to investigate the antimicrobial susceptibility test (AST) and the molecular characteristics using polymerase chain reaction (PCR) and sequences for isolates from chicken products (eggs, livers, and minced meat) and human in the Wasit Governorate of Iraq. Methods: A total of 300 samples (150 chicken product samples including eggs, livers, and minced meat, and 150 human fecal samples) were collected from the Wasit governorate of Iraq from January to December 2022. The bacterial isolation was done according to recommendations of ISO 6579 standard and the Global Foodborne Infections Network laboratory protocol. Serotyping test and AST were done by using 19 antibiotic agents according to the recommendations of the Clinical and Laboratory Standards Institute, 2022 by using disc diffusion susceptibility test and Vitik 2 test. Finally, the suspected isolates were confirmed using the conventional PCR method and sequencing for a unique rRNA gene. Results: The results showed that the isolation percentage of S. enterica in chicken products was 8.66% (12% eggs, 6% livers, and 8% minced meat), while in humans it was 4.6%. Also, showed 100% of Salmonella typhi in humans. While, in chicken eggs S. typhi, Salmonella typhimurium, and Salmonella enteritidis were 50%, 33.33%, and 16.66%, respectively. Also, showed 100% of S. typhimurium in both livers and minced meat. The AST in human isolates showed resistance to Ampicillin, Cefotaxime, Ceftazidime, Cefepime, Amikacin, Gentamicin, Ciprofloxacin, Norfloxacin, and Ceftriaxone, while no resistance to Amoxicillin, Pipracillin, Ertapenem, Imipenem, Meropenem, Fosfomycin, Nitrofurantoin, Trimethoprim, Azithromycin, and Tetracycline. In chicken products, isolates were resistant with different percentages to Amikacin, Gentamicin, Tetracycline, Ciprofloxacin, Norfloxacin, Nitrofurantoin, Ampicillin, Cefotaxime, Ceftazidime, Cefepime, and Trimethoprim; while no resistance to Amoxicillin, Pipracillin, Ertapenem, Imipenem, Meropenem, Fosfomycin, Azithromycin, and Ceftriaxone. Sequencing by using rRNA gene was done for four PCR products. Conclusion: This study showed the presence of genetic mutations for S. enterica which led to variations in the molecular characteristics, and antimicrobial drug resistance of S. enterica isolated from chicken products and humans.


Subject(s)
Anti-Bacterial Agents , Chickens , Drug Resistance, Bacterial , Salmonella enterica , Animals , Salmonella enterica/drug effects , Salmonella enterica/isolation & purification , Salmonella enterica/genetics , Humans , Chickens/microbiology , Iraq/epidemiology , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests/veterinary , Meat/microbiology , Feces/microbiology , Poultry Products/microbiology , Salmonella Infections/microbiology , Salmonella Infections/epidemiology
16.
Molecules ; 29(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38930951

ABSTRACT

The discovery and investigation of new natural compounds with antimicrobial activity are new potential strategies to reduce the spread of antimicrobial resistance. The presented study reveals, for the first time, the promising antibacterial potential of two fractions from Cornu aspersum mucus with an MW < 20 kDa and an MW > 20 kDa against five bacterial pathogens-Bacillus cereus 1085, Propionibacterium acnes 1897, Salmonella enterica 8691, Enterococcus faecalis 3915, and Enterococcus faecium 8754. Using de novo sequencing, 16 novel peptides with potential antibacterial activity were identified in a fraction with an MW < 20 kDa. Some bioactive compounds in a mucus fraction with an MW > 20 kDa were determined via a proteomic analysis on 12% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and bioinformatics. High homology with proteins and glycoproteins was found, with potential antibacterial activity in mucus proteins named aspernin, hemocyanins, H-lectins, and L-amino acid oxidase-like protein, as well as mucins (mucin-5AC, mucin-5B, mucin-2, and mucin-17). We hypothesize that the synergy between the bioactive components determined in the composition of the fraction > 20 kDa are responsible for the high antibacterial activity against the tested pathogens in concentrations between 32 and 128 µg/mL, which is comparable to vancomycin, but without cytotoxic effects on model eukaryotic cells of Saccharomyces cerevisiae. Additionally, a positive effect, by reducing the levels of intracellular oxidative damage and increasing antioxidant capacity, on S. cerevisiae cells was found for both mucus extract fractions of C. aspersum. These findings may serve as a basis for further studies to develop a new antibacterial agent preventing the development of antibiotic resistance.


Subject(s)
Anti-Bacterial Agents , Microbial Sensitivity Tests , Mucus , Peptides , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Mucus/chemistry , Peptides/pharmacology , Peptides/chemistry , Enterococcus faecalis/drug effects , Enterococcus faecium/drug effects , Bacillus cereus/drug effects , Animals , Propionibacterium acnes/drug effects , Salmonella enterica/drug effects
17.
Int J Food Microbiol ; 421: 110800, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38878705

ABSTRACT

To our knowledge, this study is the first to elucidate the bactericidal efficacy of unpeeled carrots (hereafter referred to as carrots) pretreated with Ultra Violet-C (UV-C) against subsequent contamination with Listeria monocytogenes. Carrots pretreated with UV-C (240 mJ/cm2) exhibited a significant antilisterial effect within 2 h. In fact, the population of UV-C-pretreated carrots decreased from 7.94 log CFU/cm2 to levels below the limit of detection (LOD; <1.65 log CFU/cm2) within 24 h. For carrots that were not pretreated with UV-C, 3-4 log reductions were found after 24 h. Carrots pretreated with UV-C exhibited antimicrobial activity against another gram-positive pathogen, Staphylococcus aureus, but not against the gram-negative pathogens, E. coli O157:H7 and Salmonella enterica. Pretreatment with UV-C created a lasting antimicrobial effect as introducing L. monocytogenes on carrots, 72 h post-UV-C treatment, still maintained the antilisterial effect. Notably, all UV-C doses in the range of 48-240 mJ/cm2 induced a lasting antilisterial effect. The bactericidal effects against L. monocytogenes were confirmed in three varieties of washed and unwashed carrots (Danvers, Nantes, and Chantenay). Fluorescence microscopy confirmed the bactericidal effect of UV-C-pretreated carrots on the survival of L. monocytogenes. Conclusively, pretreating carrots with UV-C can reduce the population of L. monocytogenes to levels below the LOD and may further prevent pathogen growth during cold storage. Additional studies are necessary to discern the mechanism underlying the bactericidal efficacy of UV-C-pretreated carrots.


Subject(s)
Daucus carota , Listeria monocytogenes , Ultraviolet Rays , Listeria monocytogenes/drug effects , Listeria monocytogenes/growth & development , Listeria monocytogenes/radiation effects , Daucus carota/microbiology , Food Microbiology , Staphylococcus aureus/drug effects , Food Contamination/prevention & control , Food Contamination/analysis , Colony Count, Microbial , Escherichia coli O157/drug effects , Escherichia coli O157/radiation effects , Escherichia coli O157/growth & development , Salmonella enterica/drug effects , Salmonella enterica/radiation effects , Salmonella enterica/growth & development
18.
Microb Ecol ; 87(1): 85, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38935220

ABSTRACT

Antimicrobial resistance (AMR) is a major public health threat, exacerbated by the ability of bacteria to rapidly disseminate antimicrobial resistance genes (ARG). Since conjugative plasmids of the incompatibility group P (IncP) are ubiquitous mobile genetic elements that often carry ARG and are broad-host-range, they are important targets to prevent the dissemination of AMR. Plasmid-dependent phages infect plasmid-carrying bacteria by recognizing components of the conjugative secretion system as receptors. We sought to isolate plasmid-dependent phages from wastewater using an avirulent strain of Salmonella enterica carrying the conjugative IncP plasmid pKJK5. Irrespective of the site, we only obtained bacteriophages belonging to the genus Alphatectivirus. Eleven isolates were sequenced, their genomes analyzed, and their host range established using S. enterica, Escherichia coli, and Pseudomonas putida carrying diverse conjugative plasmids. We confirmed that Alphatectivirus are abundant in domestic and hospital wastewater using culture-dependent and culture-independent approaches. However, these results are not consistent with their low or undetectable occurrence in metagenomes. Therefore, overall, our results emphasize the importance of performing phage isolation to uncover diversity, especially considering the potential of plasmid-dependent phages to reduce the spread of ARG carried by conjugative plasmids, and to help combat the AMR crisis.


Subject(s)
Bacteriophages , Plasmids , Wastewater , Plasmids/genetics , Wastewater/virology , Wastewater/microbiology , Bacteriophages/genetics , Bacteriophages/isolation & purification , Bacteriophages/physiology , Bacteriophages/classification , Genome, Viral , Escherichia coli/virology , Escherichia coli/genetics , Host Specificity , Pseudomonas putida/virology , Pseudomonas putida/genetics , Salmonella enterica/virology , Salmonella enterica/genetics , Phylogeny
19.
Food Res Int ; 188: 114491, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823842

ABSTRACT

Minimum inhibitory concentrations (MIC) assays are often questioned for their representativeness. Especially when foodborne pathogens are tested, it is of crucial importance to also consider parameters of the human digestive system. Hence, the current study aimed to assess the inhibitory capacity of two antibiotics, ciprofloxacin and tetracycline, against Salmonella enterica and Listeria monocytogenes, under representative environmental conditions. More specifically, aspects of the harsh environment of the human gastrointestinal tract (GIT) were gradually added to the experimental conditions starting from simple aerobic lab conditions into an in vitro simulation of the GIT. In this way, the effects of parameters including the anoxic environment, physicochemical conditions of the GIT (low gastric pH, digestive enzymes, bile acids) and the gut microbiota were evaluated. The latter was simulated by including a representative consortium of selected gut bacteria species. In this study, the MIC of the two antibiotics against the relevant foodborne pathogens were established, under the previously mentioned environmental conditions. The results of S. enterica highlighted the importance of the anaerobic environment when conducting such studies, since the pathogen thrived under such conditions. Inclusion of physicochemical barriers led to exactly opposite results for S. enterica and L. monocytogenes since the former became more susceptible to ciprofloxacin while the latter showed lower susceptibility towards tetracycline. Finally, the inclusion of gut bacteria had a bactericidal effect against L. monocytogenes even in the absence of antibiotics, while gut bacteria protected S. enterica from the effect of ciprofloxacin.


Subject(s)
Anti-Bacterial Agents , Ciprofloxacin , Listeria monocytogenes , Microbial Sensitivity Tests , Salmonella enterica , Tetracycline , Ciprofloxacin/pharmacology , Listeria monocytogenes/drug effects , Salmonella enterica/drug effects , Tetracycline/pharmacology , Anti-Bacterial Agents/pharmacology , Humans , Gastrointestinal Tract/microbiology , Gastrointestinal Microbiome/drug effects , Food Microbiology , Hydrogen-Ion Concentration , Foodborne Diseases/microbiology , Foodborne Diseases/prevention & control
20.
Diagn Microbiol Infect Dis ; 109(4): 116354, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38776664

ABSTRACT

The study was done to assess the antimicrobial susceptibility pattern among Salmonella enterica serovars causing bacteremia in Northern India. In this observational study, blood samples positive for Salmonella enterica serovars from January 2021 to April 2023 were studied. Species identification was done using MALDI-ToF MS. Serotyping was done using slide agglutination method. Antimicrobial susceptibility was interpreted as per the CLSI guidelines. During the study period, 32 Salmonella enterica serovars were isolated. Salmonella enterica serovar Typhi was the predominant serovar, followed by Salmonella enterica serovar Paratyphi A. All isolates were susceptible to ceftriaxone, chloramphenicol, co-trimoxazole and cefotaxime. Pefloxacin showed 100% resistance. Resistance to nalidixic acid was found in 81.2% isolates. Of the isolates resistant to nalidixic acid, 19(73.08%) isolates were resistant to ciprofloxacin also. This changing susceptibility pattern necessitates continuous surveillance of antibiogram of Salmonella isolates to rationalize the treatment protocols for invasive salmonellosis and prevent emergence of resistant strains.


Subject(s)
Anti-Bacterial Agents , Bacteremia , Microbial Sensitivity Tests , Salmonella Infections , Tertiary Care Centers , Humans , Bacteremia/microbiology , Bacteremia/epidemiology , India/epidemiology , Tertiary Care Centers/statistics & numerical data , Anti-Bacterial Agents/pharmacology , Salmonella Infections/microbiology , Salmonella Infections/epidemiology , Serogroup , Salmonella enterica/drug effects , Salmonella enterica/isolation & purification , Salmonella/drug effects , Salmonella/isolation & purification , Salmonella/classification , Adult , Male , Drug Resistance, Bacterial , Serotyping , Middle Aged , Young Adult , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Female , Salmonella typhi/drug effects , Salmonella typhi/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...