Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.077
Filter
1.
J Org Chem ; 89(14): 9937-9948, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38985331

ABSTRACT

Baloxavir marboxil (1; BXM) is a potent drug used for treating influenza infections. The current synthetic route to BXM (1) is based on optical resolution; however, this method results in the loss of nearly 50% of the material. This study aimed to describe an efficient and simpler method for the synthesis of BXM. We achieved a stereoselective synthesis of BXM (1). The tricyclic triazinanone core possessing a chiral center was prepared via diastereoselective cyclization utilizing the readily available amino acid l-serine. The carboxyl moiety derived from l-serine was removed via photoredox decarboxylation under mild conditions to furnish the chiral tricyclic triazinanone core ((R)-14). The synthetic route demonstrated herein provides an efficient and atomically economical method for preparing this potent anti-influenza agent.


Subject(s)
Dibenzothiepins , Serine , Stereoisomerism , Cyclization , Serine/chemistry , Molecular Structure , Dibenzothiepins/chemistry , Dibenzothiepins/chemical synthesis , Triazines/chemistry , Triazines/chemical synthesis , Oxidation-Reduction , Decarboxylation , Morpholines/chemistry , Morpholines/chemical synthesis , Pyridones/chemistry , Pyridones/chemical synthesis , Photochemical Processes , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry
2.
Acta Biomater ; 184: 144-155, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38964528

ABSTRACT

The integration of barrier materials with pharmacological therapy is a promising strategy to treat intrauterine adhesions (IUAs). However, most of these materials are surgically implanted in a fixed shape and incongruence with the natural mechanical properties of the uterus, causing poor adaptability and significant discomfort to the patients. Herein, an injectable, biodegradable, and mechanically adaptive hydrogel loaded with platelet-rich plasma (PRP) is created by L­serine and allyl functionalized chitosan (ACS) to achieve efficient, comfortable, and minimally invasive treatment of IUAs. L­serine induces fast gelation and mechanical reinforcement of the hydrogel, while ACS introduces, imparting a good injectability and complaint yet strong feature to the hydrogel. This design enables the hydrogel to adapt to the complex geometry and match the mechanical properties of the uterine. Moreover, the hydrogel exhibits proper degradability, sustained growth factors (GFs) of PRP release ability, and good biocompatibility. Consequently, the hydrogel shows promising therapeutic efficacy by reducing collagen fiber deposition and facilitating endometrium cell proliferation, thereby restoring the fertility function of the uterus in an IUAs model of rats. Accordingly, the combination of L­serine and ACS-induced hydrogel with such advantages holds great potential for treating IUAs. STATEMENT OF SIGNIFICANCE: This research introduces a breakthrough in the treatment of intrauterine adhesions (IUAs) with an injectable, biodegradable and mechanically adaptive hydrogel using L­serine and allyl functionalized chitosan (ACS). Unlike traditional surgical treatments, this hydrogel uniquely conforms to the uterus's geometry and mechanical properties, offering a minimally invasive, comfortable, and more effective solution. The hydrogel is designed to release growth factors from platelet-rich plasma (PRP) sustainably, promoting tissue regeneration by enhancing collagen fiber deposition and endometrium cell proliferation. Demonstrated efficacy in a rat model of IUAs indicates its great potential to significantly improve fertility restoration treatments. This advancement represents a significant leap in reproductive medicine, promising to transform IUAs treatment with its innovative approach to achieving efficient, comfortable, and minimally invasive therapy.


Subject(s)
Chitosan , Hydrogels , Platelet-Rich Plasma , Rats, Sprague-Dawley , Serine , Female , Animals , Chitosan/chemistry , Chitosan/pharmacology , Tissue Adhesions/pathology , Hydrogels/chemistry , Hydrogels/pharmacology , Serine/chemistry , Serine/pharmacology , Rats , Injections , Uterus/drug effects , Uterus/pathology , Uterine Diseases/pathology , Uterine Diseases/therapy
3.
Chem Pharm Bull (Tokyo) ; 72(6): 559-565, 2024.
Article in English | MEDLINE | ID: mdl-38880627

ABSTRACT

Biosynthetic intermediates of siderophore vibrioferrin (VF), O-citryl-L-serine, 2-aminoethyl citrate, and alanine-2-amidoethyl citrate were respectively synthesized as a mixture of stereoisomers. These compounds were used as substrates for enzyme reactions using recombinant PvsA, PvsB, and PvsE proteins as corresponding enzyme equivalents. The results of our study show that each enzyme reacts with a respective substrate and produces VF along the proposed biosynthetic pathway. Furthermore, the results of this study will contribute to the understanding of VF biosynthetic enzymes and may help in the development of antimicrobial drugs by inhibiting siderophore biosynthetic enzymes.


Subject(s)
Siderophores , Stereoisomerism , Siderophores/biosynthesis , Siderophores/chemistry , Siderophores/metabolism , Substrate Specificity , Molecular Structure , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Serine/biosynthesis , Serine/chemistry , Serine/metabolism
4.
Biophys Chem ; 311: 107272, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38824845

ABSTRACT

In the presented work, a study on the solubility and intermolecular interactions of l-serine and L-cysteine was carried out in binary mixtures of H2O + dimethylformamide (DMF), H2O + dimethylsulfoxide (DMSO), and H2O + acetonitrile (ACN) in the temperature range of T = 288.15 K to 308.15 K. l-serine exhibited the highest solubility in water, while L-cysteine was more soluble in water-DMF. The solvation process was assessed through standard Gibbs energy calculations, indicating the solvation stability order: water-ACN > water-DMSO > water-DMF for l-serine, and water-DMF > water-DMSO > water-ACN for L-cysteine. This study also explored the influence of these amino acids on solvent-solvent interactions, revealing changes in chemical entropies and self-association patterns within the binary solvent mixtures.


Subject(s)
Acetonitriles , Cysteine , Dimethyl Sulfoxide , Dimethylformamide , Serine , Solubility , Temperature , Water , Dimethyl Sulfoxide/chemistry , Serine/chemistry , Acetonitriles/chemistry , Water/chemistry , Cysteine/chemistry , Dimethylformamide/chemistry , Thermodynamics , Solvents/chemistry
5.
J Proteome Res ; 23(7): 2474-2494, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38850255

ABSTRACT

Protein glycosylation is a ubiquitous process observed across all domains of life. Within the human pathogen Acinetobacter baumannii, O-linked glycosylation is required for virulence; however, the targets and conservation of glycosylation events remain poorly defined. In this work, we expand our understanding of the breadth and site specificity of glycosylation within A. baumannii by demonstrating the value of strain specific glycan electron-transfer/higher-energy collision dissociation (EThcD) triggering for bacterial glycoproteomics. By coupling tailored EThcD-triggering regimes to complementary glycopeptide enrichment approaches, we assessed the observable glycoproteome of three A. baumannii strains (ATCC19606, BAL062, and D1279779). Combining glycopeptide enrichment techniques including ion mobility (FAIMS), metal oxide affinity chromatography (titanium dioxide), and hydrophilic interaction liquid chromatography (ZIC-HILIC), as well as the use of multiple proteases (trypsin, GluC, pepsin, and thermolysis), we expand the known A. baumannii glycoproteome to 33 unique glycoproteins containing 42 glycosylation sites. We demonstrate that serine is the sole residue subjected to glycosylation with the substitution of serine for threonine abolishing glycosylation in model glycoproteins. An A. baumannii pan-genome built from 576 reference genomes identified that serine glycosylation sites are highly conserved. Combined this work expands our knowledge of the conservation and site specificity of A. baumannii O-linked glycosylation.


Subject(s)
Acinetobacter baumannii , Glycoproteins , Polysaccharides , Proteomics , Serine , Acinetobacter baumannii/genetics , Acinetobacter baumannii/metabolism , Acinetobacter baumannii/chemistry , Glycosylation , Serine/metabolism , Serine/chemistry , Proteomics/methods , Glycoproteins/metabolism , Glycoproteins/chemistry , Glycoproteins/genetics , Polysaccharides/metabolism , Polysaccharides/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Glycopeptides/analysis , Glycopeptides/chemistry , Glycopeptides/metabolism , Chromatography, Liquid
6.
J Am Chem Soc ; 146(21): 14785-14798, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38743019

ABSTRACT

Selective RNA delivery is required for the broad implementation of RNA clinical applications, including prophylactic and therapeutic vaccinations, immunotherapies for cancer, and genome editing. Current polyanion delivery relies heavily on cationic amines, while cationic guanidinium systems have received limited attention due in part to their strong polyanion association, which impedes intracellular polyanion release. Here, we disclose a general solution to this problem in which cationic guanidinium groups are used to form stable RNA complexes upon formulation but at physiological pH undergo a novel charge-neutralization process, resulting in RNA release. This new delivery system consists of guanidinylated serinol moieties incorporated into a charge-altering releasable transporter (GSer-CARTs). Significantly, systematic variations in structure and formulation resulted in GSer-CARTs that exhibit highly selective mRNA delivery to the lung (∼97%) and spleen (∼98%) without targeting ligands. Illustrative of their breadth and translational potential, GSer-CARTs deliver circRNA, providing the basis for a cancer vaccination strategy, which in a murine model resulted in antigen-specific immune responses and effective suppression of established tumors.


Subject(s)
Guanidine , RNA, Messenger , Animals , Mice , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Messenger/chemistry , Guanidine/chemistry , Humans , Serine/chemistry
7.
FEBS Lett ; 598(14): 1783-1791, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38757247

ABSTRACT

Certain amino acid sites of 5-HT2AR play crucial roles in interacting with various G proteins. Hallucinogens and non-hallucinogens both act on 5-HT2AR but mediate different pharmacological effects, possibly due to the coupling of different G proteins. Therefore, this study identified the binding sites of hallucinogens and non-hallucinogens with 5-HT2AR through molecular docking. We conducted site mutation to examine the impact of these sites on G proteins, in order to find out the sites that can distinguish the pharmacological effects of hallucinogens and non-hallucinogens. Our results indicate that I4.60A and S3.39A did not affect the ability of hallucinogens to activate Gq signaling, but significantly reduced Gs signaling activation by hallucinogens. These results suggest that S3.39 and I4.60 are important for the activation of Gs signaling by hallucinogens.


Subject(s)
Receptor, Serotonin, 5-HT2A , Serine , Signal Transduction , Receptor, Serotonin, 5-HT2A/metabolism , Receptor, Serotonin, 5-HT2A/genetics , Receptor, Serotonin, 5-HT2A/chemistry , Humans , HEK293 Cells , Serine/metabolism , Serine/chemistry , Binding Sites , Isoleucine/metabolism , Isoleucine/chemistry , Molecular Docking Simulation , Hallucinogens/pharmacology , Hallucinogens/metabolism , Hallucinogens/chemistry , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , GTP-Binding Protein alpha Subunits, Gq-G11/chemistry , GTP-Binding Protein alpha Subunits, Gq-G11/genetics , Protein Binding
8.
J Biol Chem ; 300(6): 107354, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38718862

ABSTRACT

The nucleocapsid protein (N) of SARS-CoV-2 is essential for virus replication, genome packaging, evading host immunity, and virus maturation. N is a multidomain protein composed of an independently folded monomeric N-terminal domain that is the primary site for RNA binding and a dimeric C-terminal domain that is essential for efficient phase separation and condensate formation with RNA. The domains are separated by a disordered Ser/Arg-rich region preceding a self-associating Leu-rich helix. Phosphorylation in the Ser/Arg region in infected cells decreases the viscosity of N:RNA condensates promoting viral replication and host immune evasion. The molecular level effect of phosphorylation, however, is missing from our current understanding. Using NMR spectroscopy and analytical ultracentrifugation, we show that phosphorylation destabilizes the self-associating Leu-rich helix 30 amino-acids distant from the phosphorylation site. NMR and gel shift assays demonstrate that RNA binding by the linker is dampened by phosphorylation, whereas RNA binding to the full-length protein is not significantly affected presumably due to retained strong interactions with the primary RNA-binding domain. Introducing a switchable self-associating domain to replace the Leu-rich helix confirms the importance of linker self-association to droplet formation and suggests that phosphorylation not only increases solubility of the positively charged elongated Ser/Arg region as observed in other RNA-binding proteins but can also inhibit self-association of the Leu-rich helix. These data highlight the effect of phosphorylation both at local sites and at a distant self-associating hydrophobic helix in regulating liquid-liquid phase separation of the entire protein.


Subject(s)
Coronavirus Nucleocapsid Proteins , SARS-CoV-2 , Arginine/chemistry , Arginine/metabolism , Coronavirus Nucleocapsid Proteins/metabolism , Coronavirus Nucleocapsid Proteins/chemistry , Coronavirus Nucleocapsid Proteins/genetics , COVID-19/virology , COVID-19/metabolism , Magnetic Resonance Spectroscopy , Nucleocapsid/metabolism , Nucleocapsid/chemistry , Nucleocapsid Proteins/metabolism , Nucleocapsid Proteins/chemistry , Phase Separation , Phosphoproteins/metabolism , Phosphoproteins/chemistry , Phosphoproteins/genetics , Phosphorylation , Protein Binding , RNA, Viral/metabolism , RNA, Viral/chemistry , RNA, Viral/genetics , SARS-CoV-2/metabolism , SARS-CoV-2/chemistry , Serine/metabolism , Serine/chemistry
9.
Int J Biol Macromol ; 270(Pt 1): 132363, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38754675

ABSTRACT

The combination of pharmacological and physical barrier therapy is a highly promising strategy for treating intrauterine adhesions (IUAs), but there lacks a suitable scaffold that integrates good injectability, proper mechanical stability and degradability, excellent biocompatibility, and non-toxic, non-rejection therapeutic agents. To address this, a novel injectable, degradable hydrogel composed of poly(ethylene glycol) diacrylate (PEGDA), sodium alginate (SA), and l-serine, and loaded with platelet-rich plasma (PRP) (referred to as PSL-PRP) is developed for treating IUAs. l-Serine induces rapid gelation within 1 min and enhances the mechanical properties of the hydrogel, while degradable SA provides the hydrogel with strength, toughness, and appropriate degradation capabilities. As a result, the hydrogel exhibits an excellent scaffold for sustained release of growth factors in PRP and serves as an effective physical barrier. In vivo testing using a rat model of IUAs demonstrates that in situ injection of the PSL-PRP hydrogel significantly reduces fibrosis and promotes endometrial regeneration, ultimately leading to fertility restoration. The combined advantages make the PSL-PRP hydrogel very promising in IUAs therapy and in preventing adhesions in other internal tissue wounds.


Subject(s)
Alginates , Hydrogels , Platelet-Rich Plasma , Serine , Alginates/chemistry , Animals , Platelet-Rich Plasma/chemistry , Tissue Adhesions , Female , Hydrogels/chemistry , Rats , Serine/chemistry , Serine/pharmacology , Polyethylene Glycols/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Injections , Rats, Sprague-Dawley , Uterine Diseases/drug therapy , Uterine Diseases/therapy
10.
Chemistry ; 30(28): e202400271, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38456538

ABSTRACT

Cirratiomycin, a heptapeptide with antibacterial activity, was isolated and characterized in 1981; however, its biosynthetic pathway has not been elucidated. It contains several interesting nonproteinogenic amino acids, such as (2S,3S)-2,3-diaminobutyric acid ((2S,3S)-DABA) and α-(hydroxymethyl)serine, as building blocks. Here, we report the identification of a cirratiomycin biosynthetic gene cluster in Streptomyces cirratus. Bioinformatic analysis revealed that several Streptomyces viridifaciens and Kitasatospora aureofaciens strains also have this cluster. One S. viridifaciens strain was confirmed to produce cirratiomycin. The biosynthetic gene cluster was shown to be responsible for cirratiomycin biosynthesis in S. cirratus in a gene inactivation experiment using CRISPR-cBEST. Interestingly, this cluster encodes a nonribosomal peptide synthetase (NRPS) composed of 12 proteins, including those with an unusual domain organization: a stand-alone adenylation domain, two stand-alone condensation domains, two type II thioesterases, and two NRPS modules that have no adenylation domain. Using heterologous expression and in vitro analysis of recombinant enzymes, we revealed the biosynthetic pathway of (2S,3S)-DABA: (2S,3S)-DABA is synthesized from l-threonine by four enzymes, CirR, CirS, CirQ, and CirB. In addition, CirH, a glycine/serine hydroxymethyltransferase homolog, was shown to synthesize α-(hydroxymethyl)serine from d-serine in vitro. These findings broaden our knowledge of nonproteinogenic amino acid biosynthesis.


Subject(s)
Biosynthetic Pathways , Multigene Family , Serine , Streptomyces , Streptomyces/genetics , Streptomyces/metabolism , Serine/analogs & derivatives , Serine/metabolism , Serine/chemistry , Serine/biosynthesis , Peptide Synthases/metabolism , Peptide Synthases/genetics , Aminobutyrates/chemistry , Aminobutyrates/metabolism , Anti-Bacterial Agents/biosynthesis , Anti-Bacterial Agents/chemistry
11.
J Phys Chem B ; 128(2): 504-514, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38190618

ABSTRACT

Residue-specific phosphorylation is a protein post-translational modification that regulates cellular functions. Experimental determination of the exact sites of protein phosphorylation provides an understanding of the signaling and processes at work for a given cellular state. Any experimental artifact that involves migration of the phosphate group during measurement is a concern, as the outcome can lead to erroneous conclusions that may confound studies on cellular signal transduction. Herein, we examine computationally the mechanism by which a phosphate group migrates from one serine residue to another serine in monoprotonated pentapeptides [BA-pSer-Gly-Ser-BB + H]+ → [BA-Ser-Gly-pSer-BB + H]+ (where BA and BB are different combinations of the three basic amino acids, histidine, lysine, and arginine). In addition to moving the phosphate group, the overall mechanism involves transferring a proton from the N-terminal amino acid, BA, to the C-terminal amino acid, BB. This is not a synchronous process, and there is a key high-energy intermediate, structure C, that is zwitterionic with both the basic amino acids protonated and the phosphate group attached to both serine residues and carrying a negative charge. The barriers to moving the phosphate group are calculated to be in the range of 219-274 kJ mol-1 at the B3LYP/6-31G(d) level. These barriers are systematically slightly lower and in good agreement with single-point energy calculations at both M06-2X/6-311++G(d,p) and MP2/6-31++G(d,p) levels. The competitive reaction, loss of phosphoric acid from the protonated pentapeptides, has a barrier in the range of 176-202 kJ mol-1 at the B3LYP/6-31G(d) level. Extension of the theory to M06-2X/6-311++G(d,p)//B3LYP/6-31G(d) and MP2/6-31++G(d,p)// B3LYP/6-31G(d) gives higher values for the loss of phosphoric acid, falling in the range of 196-226 kJ mol-1; these are comparable to the barriers against phosphate migration at the same levels of theory. For larger peptides His-pSer-(Gly)n-Ser-His, where n has values from 2 to 5, the barriers against the loss of phosphoric acid are higher than those against the phosphate group migration. This difference is most pronounced and significant when n = 4 and 5 (the differences are approximately 80 kJ mol-1 under the single-point energy calculations at the M06-2X and MP2 levels). Energy differences using two more recent functionals, M08-HX and MN15, on His-pSer-(Gly)n-Ser-His, where n = 1 and 5, are in good agreement with the M06-2X and MP2 calculations. These results provide the mechanistic rationale for phosphate migration versus other competing reactions in the gas phase under tandem mass spectrometry conditions.


Subject(s)
Phosphates , Phosphopeptides , Protons , Serine/chemistry , Phosphoric Acids , Arginine
12.
Cancer Immunol Immunother ; 72(12): 4001-4014, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37973660

ABSTRACT

BACKGROUND: Regulation of alternative splicing is a new therapeutic approach in cancer. The programmed cell death receptor 1 (PD-1) is an immunoinhibitory receptor expressed on immune cells that binds to its ligands, PD-L1 and PD-L2 expressed by cancer cells forming a dominant immune checkpoint pathway in the tumour microenvironment. Targeting this pathway using blocking antibodies (nivolumab and pembrolizumab) is the mainstay of anti-cancer immunotherapies, restoring the function of exhausted T cells. PD-1 is alternatively spliced to form isoforms that are either transmembrane signalling receptors (flPD1) that mediate T cell death by binding to the ligand, PD-L1 or an alternatively spliced, soluble, variant that lacks the transmembrane domain. METHODS: We used PCR and western blotting on primary peripheral blood mononuclear cells (PBMCs) and Jurkat T cells, IL-2 ELISA, flow cytometry, co-culture of melanoma and cholangiocarcinoma cells, and bioinformatics analysis and molecular cloning to examine the mechanism of splicing of PD1 and its consequence. RESULTS: The soluble form of PD-1, generated by skipping exon 3 (∆Ex3PD1), was endogenously expressed in PBMCs and T cells and prevents cancer cell-mediated T cell repression. Multiple binding sites of SRSF1 are adjacent to PD-1 exon 3 splicing sites. Overexpression of phosphomimic SRSF1 resulted in preferential expression of flPD1. Inhibition of SRSF1 phosphorylation both by SRPK1 shRNA knockdown and by a selective inhibitor, SPHINX31, resulted in a switch in splicing to ∆Ex3PD1. Cholangiocarcinoma cell-mediated repression of T cell IL-2 expression was reversed by SPHINX31 (equivalent to pembrolizumab). CONCLUSIONS: These results indicate that switching of the splicing decision from flPD1 to ∆Ex3PD1 by targeting SRPK1 could represent a potential novel mechanism of immune checkpoint inhibition in cancer.


Subject(s)
Alternative Splicing , Cholangiocarcinoma , Humans , Phosphorylation , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Protein Serine-Threonine Kinases/genetics , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism , Arginine/genetics , Arginine/metabolism , Serine/chemistry , Serine/genetics , Serine/metabolism , T-Cell Exhaustion , Interleukin-2/genetics , Leukocytes, Mononuclear/metabolism , Programmed Cell Death 1 Receptor/metabolism , Serine-Arginine Splicing Factors/genetics , Protein Isoforms/genetics , Protein Isoforms/metabolism , Immunotherapy
13.
PeerJ ; 11: e16103, 2023.
Article in English | MEDLINE | ID: mdl-37744237

ABSTRACT

Background: Serine/arginine-rich (SR) proteins regulate pre-mRNA splicing. However, structurally similar proteins often behave differently in splicing regulation and the underlying mechanisms are largely unknown. Here, using SMN1/2 minigenes we extensively analyzed four SR proteins, SRSF1/5/6/9. Methods: In this study, the effects of these proteins on SMN1/2 exon 7 splicing when tethered at either intron 6 or 7 were evaluated using an MS2-tethering assay. Deletion analysis in four SR proteins and co-overexpression analysis were performed. Results: Splicing outcomes varied among all four SR proteins, SRSF1 and SRSF5 function the same at the two sites, acting as repressor and stimulator, respectively; while SRSF6 and SRSF9 promote exon 7 inclusion at only one site. Further, the key domains of each SR proteins were investigated, which identified a potent inhibitory nonapeptide in the C-terminus of SRSF1/9 ribonucleic acid recognition motif-1 (RRM1) and a potent stimulatory heptapeptide at the N-terminus of SRSF5/6 RRM1. Conclusion: The insight of the four SR proteins and their domains in affecting SMN gene splicing brings a new perspective on the modes of action of SR proteins; and the functional peptides obtained here offers new ideas for developing splice switching-related therapies.


Subject(s)
RNA , Serine , RNA/metabolism , Serine/chemistry , RNA Splicing/genetics , Proteins/metabolism , Peptides/metabolism , Arginine/chemistry
14.
Arch Biochem Biophys ; 745: 109712, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37543353

ABSTRACT

Mangiferin, a polyphenolic xanthone glycoside found in various botanical sources, including mango (Mangifera indica L.) leaves, can exhibit a variety of bioactivities. Although mangiferin has been reported to inhibit many targets, none of the studies have investigated the inhibition of serine hydroxymethyltransferase (SHMT), an attractive target for antimalarial and anticancer drugs. SHMT, one of the key enzymes in the deoxythymidylate synthesis cycle, catalyzes the reversible conversion of l-serine and (6S)-tetrahydrofolate (THF) into glycine and 5,10-methylene THF. Here, in vitro and in silico studies were used to probe how mangiferin isolated from mango leaves inhibits Plasmodium falciparum and human cytosolic SHMTs. The inhibition kinetics at pH 7.5 revealed that mangiferin is a competitive inhibitor against THF for enzymes from both organisms. Molecular docking and molecular dynamic (MD) simulations demonstrated the inhibitory effects of the deprotonated forms of mangiferin, specifically the C6-O- species and its resonance C9-O- species appearing at pH 7.5, combined with two docked poses, either a xanthone or glucose moiety, placed inside the THF-binding pocket. The MD analysis revealed that both C6-O- and its resonance-stabilized C9-O- species can favorably bind to SHMT in a similar fashion to THF, supporting the THF competitive inhibition of mangiferin. In addition, characterization of the proton dissociation equilibria of isolated mangiferin revealed that only three hydroxy groups of the xanthone moiety, C6-OH, C3-OH, and C7-OH, underwent varying degrees of deprotonation with pKa values of 6.38 ± 0.11, 8.21 ± 0.35, and 12.37 ± 0.30, respectively, while C1-OH remained protonated. Altogether, our findings demonstrate a new bioactivity of mangiferin and provide the basis for the future development of mangiferin as a potent antimalarial and anticancer drug.


Subject(s)
Antimalarials , Antineoplastic Agents , Folic Acid Antagonists , Xanthones , Humans , Antimalarials/pharmacology , Glycine Hydroxymethyltransferase , Molecular Docking Simulation , Xanthones/pharmacology , Antineoplastic Agents/pharmacology , Serine/chemistry
15.
Nat Chem ; 15(12): 1715-1721, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37563323

ABSTRACT

The design and improvement of enzymes based on physical principles remain challenging. Here we demonstrate that the principle of electrostatic catalysis can be leveraged to substantially improve a natural enzyme's activity. We enhanced the active-site electric field in horse liver alcohol dehydrogenase by replacing the serine hydrogen-bond donor with threonine and replacing the catalytic Zn2+ with Co2+. Based on the electric field enhancement, we make a quantitative prediction of rate acceleration-50-fold faster than the wild-type enzyme-which was in close agreement with experimental measurements. The effects of the hydrogen bonding and metal coordination, two distinct chemical forces, are described by a unified physical quantity-electric field, which is quantitative, and shown here to be additive and predictive. These results suggest a new design paradigm for both biological and non-biological catalysts.


Subject(s)
Serine , Animals , Horses , Catalytic Domain , Catalysis , Serine/chemistry , Static Electricity , Kinetics
16.
ACS Chem Biol ; 18(6): 1360-1367, 2023 06 16.
Article in English | MEDLINE | ID: mdl-37172287

ABSTRACT

Eponemycin is an α,ß-epoxyketone natural product that inhibits the proteasome via covalent interaction of the epoxyketone warhead with catalytic N-terminal threonine residues. The epoxyketone warhead is biosynthesized from a ß-ketoacid substrate by EpnF, a recently identified flavin-dependent acyl-CoA dehydrogenase-like enyzme. Herein, we report biochemical characterization of EpnF kinetics and substrate scope using a series of synthetic ß-ketoacid substrates. These studies indicate that epoxide formation likely occurs prior to other tailoring reactions in the biosynthetic pathway, and have led to the identification of novel epoxyketone analogues with potent anticancer activity.


Subject(s)
Antineoplastic Agents , Proteasome Inhibitors , Proteasome Inhibitors/metabolism , Antineoplastic Agents/pharmacology , Amides/chemistry , Serine/chemistry
17.
J Biol Chem ; 299(5): 104684, 2023 05.
Article in English | MEDLINE | ID: mdl-37030501

ABSTRACT

Serine palmitoyltransferase (SPT) is a key enzyme of sphingolipid biosynthesis, which catalyzes the pyridoxal-5'-phosphate-dependent decarboxylative condensation reaction of l-serine (l-Ser) and palmitoyl-CoA (PalCoA) to form 3-ketodihydrosphingosine called long chain base (LCB). SPT is also able to metabolize l-alanine (l-Ala) and glycine (Gly), albeit with much lower efficiency. Human SPT is a membrane-bound large protein complex containing SPTLC1/SPTLC2 heterodimer as the core subunits, and it is known that mutations of the SPTLC1/SPTLC2 genes increase the formation of deoxy-type of LCBs derived from l-Ala and Gly to cause some neurodegenerative diseases. In order to study the substrate recognition of SPT, we examined the reactivity of Sphingobacterium multivorum SPT on various amino acids in the presence of PalCoA. The S. multivorum SPT could convert not only l-Ala and Gly but also l-homoserine, in addition to l-Ser, into the corresponding LCBs. Furthermore, we obtained high-quality crystals of the ligand-free form and the binary complexes with a series of amino acids, including a nonproductive amino acid, l-threonine, and determined the structures at 1.40 to 1.55 Å resolutions. The S. multivorum SPT accommodated various amino acid substrates through subtle rearrangements of the active-site amino acid residues and water molecules. It was also suggested that non-active-site residues mutated in the human SPT genes might indirectly influence the substrate specificity by affecting the hydrogen-bonding networks involving the bound substrate, water molecules, and amino acid residues in the active site of this enzyme. Collectively, our results highlight SPT structural features affecting substrate specificity for this stage of sphingolipid biosynthesis.


Subject(s)
Serine C-Palmitoyltransferase , Sphingobacterium , Humans , Palmitoyl Coenzyme A/chemistry , Palmitoyl Coenzyme A/metabolism , Serine/chemistry , Serine C-Palmitoyltransferase/genetics , Serine C-Palmitoyltransferase/metabolism , Sphingobacterium/enzymology , Sphingolipids/metabolism , Substrate Specificity
18.
Chirality ; 35(9): 535-539, 2023 09.
Article in English | MEDLINE | ID: mdl-36890664

ABSTRACT

Mammalian D-Cysteine is racemized from L-cysteine by serine racemase, a pyridoxal phosphate (PLP)-dependent enzyme. Endogenous D-Cysteine plays a role in neural development by inhibiting proliferation of neural progenitor cells (NPCs) via protein kinase B (AKT) signaling mediated by the FoxO family of transcription factors. D-Cysteine binds to Myristoylated Alanine Rich C Kinase Substrate (MARCKS) and alters phosphorylation at Ser 159/163 and its translocation from the membrane. By racemizing serine and cysteine, mammalian serine racemase may play important roles in neural development highlighting its importance in psychiatric disorders.


Subject(s)
Amino Acids , Cysteine , Animals , Humans , Stereoisomerism , Proteins , Serine/chemistry , Mammals/metabolism
19.
Lett Appl Microbiol ; 76(1)2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36688758

ABSTRACT

D-amino acids, the important components of the bacterial cell walls, are valuable molecular and genetic markers of bacterial-derived organic material in the environment. D-serine, a racemization product of L-serine is one such amino acid present in various prokaryotes and eukaryotes. It is a well-recognized regulator of various activities in the human nervous system. In plants, it has a role in the nitrogen cycle regulation and pollen tube growth. Serine enantiomers are present in different concentrations and few bacterial strains are reported to contribute to D-serine in the environment. During the present study, soil samples from different places in North India were collected and processed to isolate and screen the bacteria on M9 minimal media (Himedia) for D-serine synthesis. Thin-layer chromatography (TLC Silica gel 60 F 254 (20 × 20 cm, Merck, Darmstadt, Germany) and Mass spectroscopic analysis (Bruker MICROTOF II spectrometer) studies, etc were performed. D-serine-producing isolates were characterized as per standard procedures. Bacterial isolate A1C1 with maximum D-serine (0.919 ± 0.02 nM) synthesis under optimal growth conditions (37°C ± 0.5, 150 ± 0.5 RPM, and 7 ± 0.5 pH) was identified as Bacillus tequilensis based on 16sRNA sequencing. The isolate could be a valuable serine racemization tool for various industrial and environmental applications.


Subject(s)
Bacillus , Serine , Humans , Serine/analysis , Serine/chemistry , Serine/metabolism , Amino Acids/metabolism , Bacillus/metabolism , Chromatography, Thin Layer
20.
J Am Chem Soc ; 145(5): 3158-3174, 2023 02 08.
Article in English | MEDLINE | ID: mdl-36696670

ABSTRACT

The first dual-function assay for human serine racemase (hSR), the only bona fide racemase in human biology, is reported. The hSR racemization function is essential for neuronal signaling, as the product, d-serine (d-Ser), is a potent N-methyl d-aspartate (NMDA) coagonist, important for learning and memory, with dysfunctional d-Ser-signaling being observed in some neuronal disorders. The second hSR function is ß-elimination and gives pyruvate; this activity is elevated in colorectal cancer. This new NMR-based assay allows one to monitor both α-proton-exchange chemistry and ß-elimination using only the native l-Ser substrate and hSR and is the most sensitive such assay. The assay judiciously employs segregated dual 13C-labeling and 13C/2H crosstalk, exploiting both the splitting and shielding effects of deuterium. The assay is deployed to screen a 1020-compound library and identifies an indolo-chroman-2,4-dione inhibitor family that displays allosteric site binding behavior (noncompetitive inhibition vs l-Ser substrate; competitive inhibition vs adenosine 5'-triphosphate (ATP)). This assay also reveals important mechanistic information for hSR; namely, that H/D exchange is ∼13-fold faster than racemization, implying that K56 protonates the carbanionic intermediate on the si-face much faster than does S84 on the re-face. Moreover, the 13C NMR peak pattern seen is suggestive of internal return, pointing to K56 as the likely enamine-protonating residue for ß-elimination. The 13C/2H-isotopic crosstalk assay has also been applied to the enzyme tryptophan synthase and reveals a dramatically different partition ratio in this active site (ß-replacement: si-face protonation ∼6:1 vs ß-elimination: si-face protonation ∼1:3.6 for hSR), highlighting the value of this approach for fingerprinting the pyridoxal phosphate (PLP) enzyme mechanism.


Subject(s)
Protons , Pyridoxal Phosphate , Humans , Racemases and Epimerases , Serine/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL