Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.264
Filter
1.
Sci Rep ; 14(1): 22793, 2024 10 01.
Article in English | MEDLINE | ID: mdl-39354022

ABSTRACT

Retinol is widely used to treat skin ageing because of its effect on cell differentiation, proliferation and apoptosis. However, its potential benefits appear to be limited by its skin permeability. Herein, we investigated the transcutaneous behavior of retinol in semisolid cosmetics, in both in vitro and in vivo experiments. In vitro experiments used the modified Franz diffusion cell combined with Raman spectroscopy. In in vivo experiments, the content of retinol in rat skin and plasma was detected with HPLC. Retinol in semisolid cosmetics was mainly concentrated in the stratum corneum in the skin of the three animal models tested, and in any case did not cross the skin barrier after a 24 h dermatologic topical treatment in Franz diffusion cells tests. Similar results were obtained in live mice and rats, where retinol did not cross the skin barrier and did not enter the blood circulation. Raman spectroscopy was used to test the penetration depth of retinol in skin, which reached 16 µm out of 34 µm in pig skin, whereas the skin of mouse and rat showed too strong bakground interference. To explore epidermal transport mechanism and intradermal residence, skin transcriptomics was performed in rats, which identified 126 genes upregulated related to retinol transport and metabolism, relevant to the search terms "retinoid metabolic process" and "transporter activity". The identity of these upregulated genes suggests that the mechanism of retinol action is linked to epidermis, skin, tissue and epithelium development.


Subject(s)
Cosmetics , Skin Absorption , Skin , Vitamin A , Animals , Vitamin A/metabolism , Vitamin A/pharmacokinetics , Mice , Rats , Skin/metabolism , Administration, Cutaneous , Spectrum Analysis, Raman , Swine , Male , Permeability , Epidermis/metabolism
2.
Int J Mol Sci ; 25(17)2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39273618

ABSTRACT

Retinoids are known to improve the condition of the skin. Transepithelial transport of sodium and chloride ions is important for proper skin function. So far, the effect of applying vitamin A preparations to the skin on ion transport has not been evaluated. In the study, electrophysiological parameters, including transepithelial electric potential (PD) and transepithelial resistance (R), of rabbit skin specimens after 24 h exposure to retinol ointment (800 mass units/g) were measured in a modified Ussing chamber. The R of the fragments incubated with retinol was significantly different than that of the control skin samples incubated in iso-osmotic Ringer solution. For the controls, the PD values were negative, whereas the retinol-treated specimens revealed positive PD values. Mechanical-chemical stimulation with the use of inhibitors of the transport of sodium (amiloride) or chloride (bumetanide) ions revealed specific changes in the maximal and minimal PD values measured for the retinol-treated samples. Retinol was shown to slightly modify the transport pathways of sodium and chloride ions. In particular, an intensification of the chloride ion secretion from keratinocytes was observed. The proposed action may contribute to deep hydration and increase skin tightness, limiting the action of other substances on its surface.


Subject(s)
Ion Transport , Skin , Vitamin A , Animals , Rabbits , Vitamin A/pharmacology , Vitamin A/metabolism , Ion Transport/drug effects , Skin/metabolism , Skin/drug effects , Ointments , Sodium/metabolism , Chlorides/metabolism
3.
J Agric Food Chem ; 72(38): 20752-20762, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39285668

ABSTRACT

Vitamin A (retinoids) is crucial for human health, with significant demand across the food, pharmaceutical, and animal feed industries. Currently, the market primarily relies on chemical synthesis and natural extraction methods, which face challenges such as low synthesis efficiency and complex extraction processes. Advances in synthetic biology have enabled vitamin A biosynthesis using microbial cell factories, offering a promising and sustainable solution to meet the increasing market demands. This review introduces the key enzymes involved in the biosynthesis of vitamin A from ß-carotene, evaluates achievements in vitamin A production using various microbial hosts, and summarizes strategies for optimizing vitamin A biosynthesis. Additionally, we outline the remaining challenges and propose future directions for the biotechnological production of vitamin A.


Subject(s)
Bacteria , Vitamin A , beta Carotene , beta Carotene/metabolism , Vitamin A/metabolism , Bacteria/metabolism , Bacteria/genetics , Retinoids/metabolism , Retinoids/chemistry , Metabolic Engineering , Humans , Fungi/metabolism , Fungi/genetics , Industrial Microbiology
4.
Nat Commun ; 15(1): 7611, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39218970

ABSTRACT

The development of functional neurons is a complex orchestration of multiple signaling pathways controlling cell proliferation and differentiation. Because the balance of antioxidants is important for neuronal survival and development, we hypothesized that ferroptosis must be suppressed to gain neurons. We find that removal of antioxidants diminishes neuronal development and laminar organization of cortical organoids, which is fully restored when ferroptosis is inhibited by ferrostatin-1 or when neuronal differentiation occurs in the presence of vitamin A. Furthermore, iron-overload-induced developmental growth defects in C. elegans are ameliorated by vitamin E and A. We determine that all-trans retinoic acid activates the Retinoic Acid Receptor, which orchestrates the expression of anti-ferroptotic genes. In contrast, retinal and retinol show radical-trapping antioxidant activity. Together, our study reveals an unexpected function of vitamin A in coordinating the expression of essential cellular gatekeepers of ferroptosis, and demonstrates that suppression of ferroptosis by radical-trapping antioxidants or by vitamin A is required to obtain mature neurons and proper laminar organization in cortical organoids.


Subject(s)
Antioxidants , Caenorhabditis elegans , Ferroptosis , Neurons , Vitamin A , Animals , Ferroptosis/drug effects , Vitamin A/pharmacology , Vitamin A/metabolism , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/drug effects , Antioxidants/pharmacology , Neurons/metabolism , Neurons/drug effects , Neurons/cytology , Cyclohexylamines/pharmacology , Cell Differentiation/drug effects , Vitamin E/pharmacology , Receptors, Retinoic Acid/metabolism , Receptors, Retinoic Acid/genetics , Tretinoin/pharmacology , Organoids/drug effects , Organoids/metabolism , Neurogenesis/drug effects , Mice , Humans , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Signal Transduction/drug effects , Phenylenediamines
5.
Zhongguo Zhong Yao Za Zhi ; 49(16): 4396-4406, 2024 Aug.
Article in Chinese | MEDLINE | ID: mdl-39307776

ABSTRACT

Retinol is one of the main active forms of vitamin A, crucial for the organism's growth, development, and maintenance of eye and skin functions. It is widely used in cosmetics, pharmaceuticals, and feed additives. Although animals lack a complete pathway for synthesizing vitamin A internally, they can obtain vitamin A directly through diet or convert ß-carotene acquired from the diet. To boost the research on the biosynthesis of retinol, three different sources of alcohol dehydrogenase were firstly screened based on the ß-carotene synthesis platform CAR*1. It was determined that ybbO from Escherichia coli exhibited the highest catalytic activity,with a conversion rate of 95. 6%. To further enhance the reaction rate and yield of retinol, protein fusion technology was employed to merge two adjacent enzymes, blh and ybbO, within the retinol synthesis module. The evaluation was conducted using the high-yield engineered strain CAR*3 of ß-carotene. The optimal combination, blh-GGGS-ybbO, was obtained, with a 44. 9% increase in yield after fusion, reaching(111. 1± 3. 5) mg·L~(-1). Furthermore, through the introduction of human-derived retinol-binding protein(RBP4) and transthyretin(TTR), the process of hepatic cell secreting retinol was simulated in Saccharomyces cerevisiae, leading to an increased retinol yield of(158. 0±13. 1)mg·L~(-1). Finally, optimization strategies including overexpressing INO2 to enhance the reaction area for ß-carotene synthesis, enhancing hemoglobin VHb expression to improve oxygen supply, and strengthening PDR3m expression to facilitate retinol transport were implemented. A two-stage fermentation process resulted in the successful elevation of retinol production to(2 320. 0±26. 0)mg·L~(-1) in the fermentation tank of 5 L, which provided a significant foundation for the industrial development of retinol.


Subject(s)
Fermentation , Saccharomyces cerevisiae , Vitamin A , Vitamin A/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Humans , Metabolic Engineering , Escherichia coli/genetics , Escherichia coli/metabolism , beta Carotene/metabolism , Alcohol Dehydrogenase/genetics , Alcohol Dehydrogenase/metabolism
6.
Sheng Wu Gong Cheng Xue Bao ; 40(8): 2552-2569, 2024 Aug 25.
Article in Chinese | MEDLINE | ID: mdl-39174470

ABSTRACT

Vitamins are the essential organic substances to ensure the normal life activities of the human body. At present, vitamins are widely used in the pharmaceutical, food, animal farming, beauty and other industries, appearing in increasing application scenarios. Accordingly, the global demand for vitamins has also increased greatly. The current methods of vitamin production mainly include chemical synthesis and biosynthesis, with the latter being greener, more environmentally friendly, safer, and lower in energy consumption. Establishing the method for the biosynthesis of vitamins is of great scientific significance for achieving the goals of low carbon, energy saving, and emission reduction, as well as carbon emission peak and carbon neutrality in China. This paper reviews the research progress in the biosynthesis of vitamins, especially fat-soluble vitamins (vitamins A, D, E, and K), in recent years.


Subject(s)
Vitamin A , Vitamins , Vitamins/biosynthesis , Vitamins/metabolism , Vitamin A/metabolism , Vitamin A/biosynthesis , Vitamin E/biosynthesis , Vitamin E/metabolism , Vitamin K/metabolism , Vitamin K/biosynthesis , Vitamin D/biosynthesis , Vitamin D/metabolism , Solubility , Humans
7.
Exp Eye Res ; 246: 110018, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39111651

ABSTRACT

NADPH, the primary source of reducing equivalents in the cytosol, is used in vertebrate rod photoreceptor outer segments to reduce the all-trans retinal released from photoactivated visual pigment to all-trans retinol. Light activation of the visual pigment isomerizes the 11-cis retinal chromophore to all-trans, thereby destroying it and necessitating its regeneration. Release and reduction of all-trans retinal are the first steps in the series of reactions that regenerate the visual pigment. Glucose and glutamine can both support the reduction of all-trans retinal to retinol, indicating that the NADPH used in rod photoreceptor outer segments can be generated by the pentose phosphate pathway as well as by mitochondria-linked pathways. We have used the conversion of all-trans retinal to all-trans retinol to examine whether amino acids other than glutamine can also support the generation of NADPH in rod photoreceptors. We have measured this conversion in single isolated mouse rod photoreceptors by imaging the fluorescence of the all-trans retinal and retinol generated after exposure of the cells to light. In agreement with previous work, we find that 5 mM glucose or 0.5 mM glutamine support the conversion of ∼70-80% of all-trans retinal to retinol, corresponding to a reduced NADP fraction of ∼10%. All other amino acids at 0.5 mM concentration support the conversion to a much lesser extent, indicating reduced NADP fractions of 1-2% at most. Taurine was also ineffective at supporting NADPH generation, while formic acid, the toxic metabolite of methanol, suppressed the generation of NADPH by either glucose or glutamine.


Subject(s)
Glutamine , Mice, Inbred C57BL , NADP , Retinal Rod Photoreceptor Cells , Vitamin A , Animals , NADP/metabolism , Mice , Glutamine/metabolism , Retinal Rod Photoreceptor Cells/metabolism , Vitamin A/metabolism , Retinaldehyde/metabolism , Glucose/metabolism
8.
Food Funct ; 15(18): 9315-9329, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39171480

ABSTRACT

The main constituents of saffron are the apocarotenoids crocins and crocetin, present in the stigmas. Numerous healthy properties, especially those related to the effects on the central nervous system, have been attributed to these compounds but the metabolites responsible for these effects are still unknown. Previous evidences in animal models suggest a role for the gut microbiota in the pharmacokinetics and the neuroprotective effects of these compounds. However, the interaction between these apocarotenoids and the gut microbiota has been poorly studied. In this article, we have thoroughly investigated the batch fermentation of crocin-1 and crocetin (10 µM) with human fecal samples of two donors at different incubation times (0-240 h) using a metabolomic approach. We corroborated a rapid transformation of crocin-1 which looses the glucose molecules through de-glycosylation reactions until its complete transformation into crocetin in 6 hours. A group of intermediate crocins with different degrees of glycosylation were detected in a very short time. Crocetin was further metabolized and new microbial metabolites produced by double-bond reduction and demethylation reactions were identified for the first time: dihydro and tetrahydro crocetins and di-demethyl crocetin. In addition, we detected changes in the levels of the short chain fatty acids valeric acid and hexanoic acid suggesting further structural modifications of crocetin or changes in the catabolic production of these compounds. This research is a pioneering study of the action of the human gut microbiota on the saffron apocarotenoids and goes one step further towards the discovery of metabolites potentially involved in the benefits of saffron.


Subject(s)
Carotenoids , Crocus , Feces , Gastrointestinal Microbiome , Vitamin A , Carotenoids/metabolism , Humans , Crocus/chemistry , Crocus/metabolism , Vitamin A/analogs & derivatives , Vitamin A/metabolism , Feces/microbiology , Fermentation , Bacteria/metabolism , Bacteria/classification , Plant Extracts/metabolism , Plant Extracts/pharmacology
9.
PeerJ ; 12: e17916, 2024.
Article in English | MEDLINE | ID: mdl-39193514

ABSTRACT

Background: Aberrant DNA methylation patterns play a critical role in the development of hepatocellular carcinoma (HCC). However, the molecular mechanisms associated with these aberrantly methylated genes remain unclear. This study aimed to comprehensively investigate the methylation-driven gene expression alterations in HCC using a multi-omics dataset. Methods: Whole genome bisulfite sequencing (WGBS) and RNA sequencing (RNA-seq) techniques were used to assess the methylation and gene expression profiles of HCC tissues (HCCs) and normal adjacent tissues (NATs). The candidate genes' potential function was further investigated using single-cell RNA sequencing (scRNA seq) data. Results: We observed widespread hypomethylation in HCCs compared to NATs. Methylation levels in distinct genomic regions exhibited significant differences between HCCs and NATs. We identified 247,632 differentially methylated regions (DMRs) and 4,926 differentially expressed genes (DEGs) between HCCs and NATs. Integrated analysis of DNA methylation and RNA-seq data identified 987 methylation-driven candidate genes, with 970 showing upregulation and 17 showing downregulation. Four genes involved in the retinol metabolic pathway, namely ADH1A, CYP2A6, CYP2C8, and CYP2C19, were identified as hyper-downregulated genes. Their expression levels could stratify HCCs into three subgroups with distinct survival outcomes, immune cell infiltration, and tumor microenvironments. Validation of these findings in an independent dataset yielded similar outcomes, confirming the high concordance and potential prognostic value of these genes. ScRNA seq data revealed the low expression of these genes in immune cells, emphasizing their role in promoting malignant cell proliferation and migration. In conclusion, this study provides insights into the molecular characteristics of HCC, revealing the involvement of retinol metabolism-related genes in the development and progression of HCC. These findings have implications for HCC diagnosis, prognosis prediction, and the development of therapeutic targets.


Subject(s)
Carcinoma, Hepatocellular , DNA Methylation , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Liver Neoplasms , Vitamin A , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Vitamin A/metabolism , Female , Male
10.
Food Funct ; 15(17): 8835-8847, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39118544

ABSTRACT

The effect of different cooking methods (boiling, baking, steaming and microwaving) on the colour and texture of carrots, as well as on the bioaccessibility of carotenoids, was investigated in order to identify the more "sustainable cooking" methods. Cooking resulted in statistically significant increases in total carotenoid bioaccessibility, both with intensity and duration of treatments. In particular, significant increases in carotenoid bioaccessible content (CBC) were observed, ranging from 6.03-fold (microwave) to 8.90-fold (baking) for the most intense cooking conditions tested. Although the relative concentration of the colourless carotenoids (phytoene and phytofluene) in raw carrots is lower than that of provitamins A α- and ß-carotene, the bioaccessible content of the colourless ones is much higher. From an energy consumption standpoint and considering samples with the same tenderness, the highest CBC values per kWh decreased in the order microwaving > baking > water cooking > steaming. Our findings are important to help combat vitamin A deficiency since increases of up to ∼40-fold and ∼70-fold in the CBCs of the vitamin A precursors α- and ß-carotene, respectively, were observed. These results provide a basis for defining "sustainable cooking" as "cooking practices that optimize intensity, duration and other parameters leading to a more efficient use of energy to maximize the bioavailability of nutrients and other beneficial food components (such as bioactives) while ensuring food appeal and safety".


Subject(s)
Carotenoids , Cooking , Daucus carota , Vitamin A , Carotenoids/chemistry , Carotenoids/metabolism , Daucus carota/chemistry , Vitamin A/analysis , Vitamin A/metabolism , Biological Availability , Provitamins/metabolism , beta Carotene/analysis , Humans , Color , Hot Temperature
11.
Stem Cell Res Ther ; 15(1): 223, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39044210

ABSTRACT

BACKGROUND: Hepatic stellate cells (HSC) have numerous critical roles in liver function and homeostasis, while they are also known for their importance during liver injury and fibrosis. There is therefore a need for relevant in vitro human HSC models to fill current knowledge gaps. In particular, the roles of vitamin A (VA), lipid droplets (LDs), and energy metabolism in human HSC activation are poorly understood. METHODS: In this study, human pluripotent stem cell-derived HSCs (scHSCs), benchmarked to human primary HSC, were exposed to 48-hour starvation of retinol (ROL) and palmitic acid (PA) in the presence or absence of the potent HSC activator TGF-ß. The interventions were studied by an extensive set of phenotypic and functional analyses, including transcriptomic analysis, measurement of activation-related proteins and cytokines, VA- and LD storage, and cell energy metabolism. RESULTS: The results show that though the starvation of ROL and PA alone did not induce scHSC activation, the starvation amplified the TGF-ß-induced activation-related transcriptome. However, TGF-ß-induced activation alone did not lead to a reduction in VA or LD stores. Additionally, reduced glycolysis and increased mitochondrial fission were observed in response to TGF-ß. CONCLUSIONS: scHSCs are robust models for activation studies. The loss of VA and LDs is not sufficient for scHSC activation in vitro, but may amplify the TGF-ß-induced activation response. Collectively, our work provides an extensive framework for studying human HSCs in healthy and diseased conditions.


Subject(s)
Hepatic Stellate Cells , Palmitic Acid , Transforming Growth Factor beta , Vitamin A , Humans , Vitamin A/pharmacology , Vitamin A/metabolism , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/drug effects , Palmitic Acid/pharmacology , Transforming Growth Factor beta/metabolism , Lipid Droplets/metabolism , Lipid Droplets/drug effects , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/drug effects , Pluripotent Stem Cells/cytology , Energy Metabolism/drug effects
12.
J Steroid Biochem Mol Biol ; 243: 106583, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38992392

ABSTRACT

The oviduct of the Chinese brown frog (Rana dybowskii) expands during pre-brumation rather than the breeding period, exhibiting a special physiological feature. Vitamin A is essential for the proper growth and development of many organisms, including the reproductive system such as ovary and oviduct. Vitamin A is metabolized into retinoic acid, which is crucial for oviduct formation. This study examined the relationship between oviducal expansion and vitamin A metabolism. We observed a significant increase in the weight and diameter of the oviduct in Rana dybowskii during pre-brumation. Vitamin A and its active metabolite, retinoic acid, notably increased during pre-brumation. The mRNA levels of retinol binding protein 4 (rbp4) and its receptor stra6 gene, involved in vitamin A transport, were elevated during pre-brumation compared to the breeding period. In the vitamin A metabolic pathway, the mRNA expression level of retinoic acid synthase aldh1a2 decreased significantly during pre-brumation, while the mRNA levels of retinoic acid α receptor (rarα) and the retinoic acid catabolic enzyme cyp26a1 increased significantly during pre-brumation, but not during the breeding period. Immunohistochemical results showed that Rbp4, Stra6, Aldh1a2, Rarα, and Cyp26a1 were expressed in ampulla region of the oviduct. Western blot results indicated that Aldh1a2 expression was lower, while Rbp4, Stra6, RARα, and Cyp26a1 were higher during pre-brumation compared to the breeding period. Transcriptome analyses further identified differential genes in the oviduct and found enrichment of differential genes in the vitamin A metabolism pathway, providing evidences for our study. These results suggest that the vitamin A metabolic pathway is more active during pre-brumation compared to the breeding period, and retinoic acid may regulate pre-brumation oviductal expansion through Rarα-mediated autocrine/paracrine modulation.


Subject(s)
Oviducts , Ranidae , Seasons , Vitamin A , Animals , Female , Vitamin A/metabolism , Oviducts/metabolism , Ranidae/metabolism , Ranidae/genetics , Tretinoin/metabolism
13.
Am J Physiol Endocrinol Metab ; 327(3): E258-E270, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39017681

ABSTRACT

Perinatal nutrition exerts a profound influence on adult metabolic health. This study aimed to investigate whether increased maternal vitamin A (VA) supply can lead to beneficial metabolic phenotypes in the offspring. The researchers utilized mice deficient in the intestine-specific homeobox (ISX) transcription factor, which exhibits increased intestinal VA retinoid production from dietary ß-carotene (BC). ISX-deficient dams were fed a VA-sufficient or a BC-enriched diet during the last week of gestation and the whole lactation period. Total retinol levels in milk and weanling livers were 2- to 2.5-fold higher in the offspring of BC-fed dams (BC offspring), indicating increased VA supplies during late gestation and lactation. The corresponding VA-sufficient and BC offspring (males and females) were compared at weaning and adulthood after being fed either a standard or high-fat diet (HFD) with regular VA content for 13 weeks from weaning. HFD-induced increases in adiposity metrics, such as fat depot mass and adipocyte diameter, were more pronounced in males than females and were attenuated or suppressed in the BC offspring. Notably, the BC offspring were protected from HFD-induced increases in circulating triacylglycerol levels and hepatic steatosis. These protective effects were associated with reduced food efficiency, enhanced capacity for thermogenesis and mitochondrial oxidative metabolism in adipose tissues, and increased adipocyte hyperplasia rather than hypertrophy in the BC offspring. In conclusion, maternal VA nutrition influenced by genetics may confer metabolic benefits to the offspring, with mild increases in late gestation and lactation protecting against obesity and metabolic dysregulation in adulthood.NEW & NOTEWORTHY A genetic mouse model, deficient in intestine-specific homeobox (ISX) transcription factor, is used to show that a mildly increased maternal vitamin A supply from ß-carotene feeding during late gestation and lactation programs energy and lipid metabolism in tissues and protects the offspring from diet-induced hypertrophic obesity and hepatic steatosis. This knowledge may have implications for human populations where polymorphisms in ISX and ISX target genes involved in vitamin A homeostasis are prevalent.


Subject(s)
Diet, High-Fat , Homeostasis , Obesity , Vitamin A , Animals , Female , Mice , Vitamin A/metabolism , Male , Pregnancy , Obesity/metabolism , Obesity/genetics , Prenatal Exposure Delayed Effects/metabolism , Prenatal Exposure Delayed Effects/genetics , beta Carotene/metabolism , Maternal Nutritional Physiological Phenomena , Mice, Inbred C57BL , Lactation , Mice, Knockout , Maternal Inheritance , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Diet , Liver/metabolism , Adiposity/genetics
14.
Invest Ophthalmol Vis Sci ; 65(8): 9, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38958967

ABSTRACT

Purpose: Light detection destroys the visual pigment. Its regeneration, necessary for the recovery of light sensitivity, is accomplished through the visual cycle. Release of all-trans retinal by the light-activated visual pigment and its reduction to all-trans retinol comprise the first steps of the visual cycle. In this study, we determined the kinetics of all-trans retinol formation in human rod and cone photoreceptors. Methods: Single living rod and cone photoreceptors were isolated from the retinas of human cadaver eyes (ages 21 to 90 years). Formation of all-trans retinol was measured by imaging its outer segment fluorescence (excitation, 360 nm; emission, >420 nm). The extent of conversion of released all-trans retinal to all-trans retinol was determined by measuring the fluorescence excited by 340 and 380 nm. Measurements were repeated with photoreceptors isolated from Macaca fascicularis retinas. Experiments were carried out at 37°C. Results: We found that ∼80% to 90% of all-trans retinal released by the light-activated pigment is converted to all-trans retinol, with a rate constant of 0.24 to 0.55 min-1 in human rods and ∼1.8 min-1 in human cones. In M. fascicularis rods and cones, the rate constants were 0.38 ± 0.08 min-1 and 4.0 ± 1.1 min-1, respectively. These kinetics are several times faster than those measured in other vertebrates. Interphotoreceptor retinoid-binding protein facilitated the removal of all-trans retinol from human rods. Conclusions: The first steps of the visual cycle in human photoreceptors are several times faster than in other vertebrates and in line with the rapid recovery of light sensitivity exhibited by the human visual system.


Subject(s)
Macaca fascicularis , Retinal Cone Photoreceptor Cells , Retinal Rod Photoreceptor Cells , Vitamin A , Humans , Retinal Cone Photoreceptor Cells/physiology , Retinal Cone Photoreceptor Cells/metabolism , Aged , Retinal Rod Photoreceptor Cells/physiology , Aged, 80 and over , Middle Aged , Adult , Vitamin A/metabolism , Animals , Young Adult , Male , Retinaldehyde/metabolism , Cadaver , Female , Vision, Ocular/physiology , Retinal Pigments/metabolism
15.
Neuroscience ; 554: 72-82, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39002756

ABSTRACT

Vitamin A (VA) has many functions in the body, some of which are key for the development and functioning of the nervous system, while some others might indirectly influence neural function. Both hypovitaminosis and hypervitaminosis A can lead to clinical manifestations of concern for individuals and for general global health. Scientific evidence on the link between VA and autism spectrum disorder (ASD) is growing, with some clinical studies and accumulating results obtained from basic research using cellular and animal models. Remarkably, it has been shown that VA deficiency can exacerbate autistic symptomatology. In turn, VA supplementation has been shown to be able to improve autistic symptomatology in selected groups of individuals with ASD. However, it is important to recognize that ASD is a highly heterogeneous condition. Therefore, it is important to clarify how and when VA supplementation can be of benefit for affected individuals. Here we delve into the relationship between VA and ASD, discussing clinical observations and mechanistic insights obtained from research on selected autistic syndromes and laboratory models to advance in defining how the VA signaling pathway can be exploited for treatment of ASD.


Subject(s)
Autism Spectrum Disorder , Vitamin A , Autism Spectrum Disorder/metabolism , Humans , Vitamin A/metabolism , Animals , Vitamin A Deficiency/complications , Vitamin A Deficiency/metabolism , Dietary Supplements
16.
Life Sci ; 352: 122892, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38971363

ABSTRACT

Retinoids, natural and synthetic derivatives of vitamin A, have various regulatory activities including controlling cellular proliferation, differentiation, and death. Furthermore, they have been used to treat specific cancers with satisfying results. Nevertheless, retinoids have yet to be converted into effective systemic therapies for the majority of tumor types. Regulation of unfolded protein response signaling, and persistent activation of endoplasmic reticulum stress (ER-stress) are promising treatment methods for cancer. The present article reviews the current understanding of how vitamin A and its derivatives may aid to cause ER-stress-activated apoptosis, as well as therapeutic options for exploiting ER-stress for achieving beneficial goal. The therapeutic use of some retinoids discussed in this article was related to decreased disease recurrence and improved therapeutic outcomes via ER-stress activation and promotion, indicating that retinoids may play an important role in cancer treatment and prevention. More research is needed to expand the use of vitamin A derivatives in cancer therapy, either alone or in combination with unfolded protein response inducers.


Subject(s)
Endoplasmic Reticulum Stress , Neoplasms , Retinoids , Unfolded Protein Response , Endoplasmic Reticulum Stress/drug effects , Humans , Retinoids/pharmacology , Retinoids/therapeutic use , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms/metabolism , Animals , Unfolded Protein Response/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Vitamin A/pharmacology , Vitamin A/therapeutic use , Vitamin A/metabolism , Signal Transduction/drug effects
17.
J Diabetes Complications ; 38(8): 108806, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38996583

ABSTRACT

BACKGROUND: This study aimed to investigate the impact of Vitamin A (VA) on intestinal glucose metabolic phenotypes. METHODS: Male C57BL/6 mice were randomized assigned to a VA-normal diet (VAN) or a VA-deficient diet (VAD) for 12 weeks. After12 weeks, the VAD mice were given 30 IU/g/d retinol for 10 days and VAN diet (VADN) for 10 weeks. By using glucose tolerance tests, immunofluorescence staining, quantitative polymerase chain reaction, siRNA transduction, and enzyme-linked immunosorbent assay, the glucose metabolic phenotypes as well as secretory function and intracellular hormone changes of STC-1 were assessed. RESULTS: VAD mice showed a decrease of glucose-stimulated insulin secretion and a loss of intestinal glucagon-like peptide-1 (GLP-1) expression. Through reintroducing dietary VA to VAD mice, the intestinal VA levels, GLP-1 expression and normal glucose can be restored. The incubation with retinol increased VA signaling factors expression within STC-1 cells, especially retinoic acid receptor ß (RARß). The activation of RARß restored intracellular incretin hormone synthesis and secretory function. CONCLUSIONS: VA deficiency leads to an imbalance of intestinal glucose metabolic phenotypes through a mechanism involving RARß signaling pathway, suggesting a new method to achieve the treatment for VAD induced glucose metabolism impairment.


Subject(s)
Glucagon-Like Peptide 1 , Incretins , Mice, Inbred C57BL , Receptors, Retinoic Acid , Vitamin A , Animals , Male , Vitamin A/metabolism , Mice , Receptors, Retinoic Acid/metabolism , Receptors, Retinoic Acid/genetics , Incretins/metabolism , Glucagon-Like Peptide 1/metabolism , Vitamin A Deficiency/metabolism , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Signal Transduction/drug effects , Insulin Secretion/drug effects , Insulin Secretion/physiology
18.
Food Chem ; 455: 139917, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38838622

ABSTRACT

Crocus sativus L. is a both medicinal and food bulbous flower whose qualities are geographically characterized. However, identification involving different places of origin of such substances is currently limited to single-omics mediated content analysis. Integrated metabolomics and proteomics, 840 saffron samples from six countries (Spain, Greece, Iran, China, Japan, and India) were analyzed using the QuEChERS extraction method. A total of 77 differential metabolites and 14 differential proteins were identified. The limits of detection of the method were 1.33 to 8.33 µg kg-1, and the recoveries were 85.56% to 105.18%. Using homology modeling and molecular docking, the Gln84, Lys195, Val182 and Pro184 sites of Crocetin glucosyltransferase 2 were found to be the targets of crocetin binding. By multivariate statistical analysis (PCA and PLS-DA), different saffron samples were clearly distinguished. The results provided the basis for the selection and identification of high quality saffron from different producing areas.


Subject(s)
Carotenoids , Crocus , Molecular Docking Simulation , Vitamin A , Crocus/chemistry , Crocus/metabolism , Carotenoids/metabolism , Carotenoids/chemistry , Vitamin A/analogs & derivatives , Vitamin A/metabolism , Glucosyltransferases/metabolism , Glucosyltransferases/chemistry , Biotransformation , Plant Proteins/metabolism , Plant Proteins/chemistry , Flowers/chemistry , Flowers/metabolism
19.
Poult Sci ; 103(8): 103769, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38917605

ABSTRACT

Magang geese are typical short-day breeders whose reproductive behaviors are significantly influenced by photoperiod. Exposure to a long-day photoperiod results in testicular regression and spermatogenesis arrest in Magang geese. To investigate the epigenetic influence of DNA methylation on the seasonal testicular regression in Magang geese, we conducted whole-genome bisulfite sequencing and transcriptome sequencing of testes across 3 reproductive phases during a long-day photoperiod. A total of 250,326 differentially methylated regions (DMR) were identified among the 3 comparison groups, with a significant number showing hypermethylation, especially in intronic regions of the genome. Integrating bisulfite sequencing with transcriptome sequencing data revealed that DMR-associated genes tend to be differentially expressed in the testes, highlighting a potential regulatory role for DNA methylation in gene expression. Furthermore, there was a significant negative correlation between changes in the methylation of CG DMRs and changes in the expression of their associated genes in the testes. A total of 3,359 DMR-associated differentially expressed genes (DEG) were identified; functional enrichment analyses revealed that motor proteins, MAPK signaling pathway, ECM-receptor interaction, phagosome, TGF-beta signaling pathway, and calcium signaling might contribute to the testicular regression process. GSEA revealed that the significantly enriched activated hallmark gene set was associated with apoptosis and estrogen response during testicular regression, while the repressed hallmark gene set was involved in spermatogenesis. Our study also revealed that methylation changes significantly impacted the expression level of vitamin A metabolism-related genes during testicular degeneration, with hypermethylation of STRA6 and increased calmodulin levels indicating vitamin A efflux during the testicular regression. These findings were corroborated by pyrosequencing and real-time qPCR, which revealed that the vitamin A metabolic pathway plays a pivotal role in testicular degeneration under long-day conditions. Additionally, metabolomics analysis revealed an insufficiency of vitamin A and an abnormally high level of oxysterols accumulated in the testes during testicular regression. In conclusion, our study demonstrated that testicular degeneration in Magang geese induced by a long-day photoperiod is linked to vitamin A homeostasis disruption, which manifests as the hypermethylation status of STRA6, vitamin A efflux, and a high level of oxysterol accumulation. These findings offer new insights into the effects of DNA methylation on the seasonal testicular regression that occurs during long-day photoperiods in Magang geese.


Subject(s)
DNA Methylation , Geese , Photoperiod , Testis , Vitamin A , Animals , Male , Testis/metabolism , Geese/genetics , Geese/physiology , Vitamin A/metabolism , Signal Transduction
20.
Eur J Pharm Sci ; 198: 106784, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38705422

ABSTRACT

To investigate the effect of retinoids, such as retinol (ROL), retinal (RAL), and retinyl palmitate (RP), on epidermal integrity, skin deposition, and bioconversion to retinoic acid (RA). 3-D human skin equivalent model (EpiDermFT™) was used. Epidermal cellular integrity measured by TEER values was significantly higher for a topical treatment of ROL and RAL than RP (p < 0.05). The skin deposition (µM) of ROL and RAL was approximately 269.54 ± 73.94 and 211.35 ± 20.96, respectively, greater than that of RP (63.70 ± 37.97) over 2 h incubation. Spectral changes were revealed that the CO maximum absorbance occurred between 1600∼1800 cm-1 and was greater from ROL than that from RAL and RP, indicating conjugation of R-OH to R-CHO or R-COOH could strongly occur after ROL treatment. Subsequently, a metabolite from the bioconversion of ROL and RAL was identified as RA, which has a product ion of m/z 283.06, by using liquid a chromatography-mass spectrometry (LC-MS) - total ion chromatogram (TIC). The amount of bioconversion from ROL and RAL to RA in artificial skin was 0.68 ± 0.13 and 0.70 ± 0.10 µM at 2 h and 0.60 ± 0.04 and 0.57 ± 0.06 µM at 24 h, respectively. RA was not detected in the skin and the receiver compartment after RP treatment. ROL could be a useful dermatological ingredient to maintain epidermal integrity more effectively, more stably deposit on the skin, and more steadily metabolize to RA than other retinoids such as RAL and RP.


Subject(s)
Retinaldehyde , Retinoids , Skin , Tretinoin , Humans , Tretinoin/metabolism , Skin/metabolism , Retinoids/metabolism , Retinaldehyde/metabolism , Kinetics , Retinyl Esters/metabolism , Vitamin A/analogs & derivatives , Vitamin A/metabolism , Diterpenes/chemistry , Diterpenes/pharmacokinetics , Mass Spectrometry , Models, Biological , Epidermis/metabolism , Skin Absorption
SELECTION OF CITATIONS
SEARCH DETAIL