Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38636134

ABSTRACT

Herein, a simple, sensitive, and reliable dispersive solid phase extraction was reported for the efficient extraction of sunitinib from biological samples. To facilitate the extraction of the desired analyte from urine and plasma samples, magnetic MIL-101Cr (NH2) @SiO2 @ NiFe2O4 was synthesized by a hydrothermal method and applied as an effective sorbent during the extraction process. After adsorption of the drug using 10 mg of MIL-101Cr (NH2) @ SiO2 @ NiFe2O4 nanoparticles through vortexing (1 min), the sorbent was separatedfrom the sample solution using a magnet. To eluate the drug, the sorbent containing the sunitinib was contacted with 100 µL dimethylformamide. The eluent was analyzed by high performance liquid chromatography-tandem mass spectrometry. Reasonable validation data consisting of low limits of detection (0.14, 0.35, and 0.70 ng mL-1 in deionized water, plasma, and urine) and quantification (0.48, 1.2, and 2.4 ng mL-1 in deionized water, plasma, and urine, respectively), a wide linear range of the calibration curve (0.48-200, 1.2-200, and 2.4-100 ng mL-1 in deionized water, plasma, and urine, respectively) good extraction recovery (76 %), and low relative standard deviations for inter- and intra-day precisions (6.9 %) were obtained by the method. Eventually, the proposed procedure was effectively implemented on both plasma and urine samples, yielding successful outcomes.


Subject(s)
Limit of Detection , Metal-Organic Frameworks , Solid Phase Extraction , Sunitinib , Tandem Mass Spectrometry , Tandem Mass Spectrometry/methods , Solid Phase Extraction/methods , Chromatography, High Pressure Liquid/methods , Sunitinib/blood , Sunitinib/urine , Sunitinib/analysis , Sunitinib/chemistry , Sunitinib/isolation & purification , Humans , Metal-Organic Frameworks/chemistry , Reproducibility of Results , Linear Models , Magnetite Nanoparticles/chemistry
2.
Anal Methods ; 15(33): 4187-4193, 2023 08 24.
Article in English | MEDLINE | ID: mdl-37581438

ABSTRACT

In the current study, salt- and pH-induced homogeneous dispersive solid phase extraction was developed using albumin as a sorbent for the extraction of some pesticides (diazinon, diniconazole, haloxyfop-R-methyl, and hexaconazole) from fruit juice of orange, pomegranate, and barberry. The extracted analytes were more concentrated by dispersive liquid-liquid microextraction to obtain high enrichment factors and low detection limits prior to their determination by gas chromatography-mass spectrometry. In the extraction process, human serum albumin solution was added to the sample solution at the µL-level and a homogeneous solution was obtained. Then, albumin was precipitated into the solution by adding an inorganic salt and decreasing the solution pH. By doing so, the analytes were adsorbed by albumin effectively due to their high adsorption capacity and large surface area. Following this, the pesticides were eluted from the albumin sorbent using an elution solvent and used in a dispersive liquid-liquid microextraction step. Under the optimum extraction conditions, low limits of detection and quantification were achieved in the ranges of 0.02-0.04 and 0.07-0.13 ng mL-1, respectively. The calibration curves were linear in the range of 0.13-250 ng mL-1. Relative standard deviation as a criterion for precision and the method repeatability were in the ranges of 2.9-4.2% for intra- (n = 5, C = 5 or 50 ng mL-1) and 3.2-5.2% for inter-day (n = 5, 50 ng mL-1) precisions. The enrichment factors and extraction recoveries were in the ranges of 390-460 and 78-92%, respectively. Finally, the offered procedure was applied for the analysis of pesticide residues in some fruit juice samples.


Subject(s)
Pesticide Residues , Pesticides , Humans , Pesticides/analysis , Fruit and Vegetable Juices/analysis , Pesticide Residues/analysis , Sodium Chloride/analysis , Solid Phase Extraction/methods , Sodium Chloride, Dietary/analysis , Albumins/analysis
3.
Crit Rev Anal Chem ; : 1-17, 2023 May 11.
Article in English | MEDLINE | ID: mdl-37166194

ABSTRACT

Liquid phase microextraction techniques are considered as the miniaturized version of traditional liquid-liquid extraction, which use only several microliters of a proper solvent to extract the analytes from sample. In these methods, the target analytes are migrated into a water-immiscible organic solvent (acceptor phase) from an aqueous sample (donor phase). They are mainly classified into three main groups including (a) single-drop microextraction, (b) dispersive liquid-liquid microextraction, and (c) hollow fiber-liquid phase microextraction. These techniques have been successfully applied to the assessment of different analytes in food samples, pharmaceuticals, beverages, and so on. This review mainly focuses on up-to-date information on the application of liquid phase microextraction techniques in dairy products. The advantages and disadvantages of the developed liquid phase microextraction methods were discussed.

4.
Anal Sci ; 39(8): 1287-1295, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37183226

ABSTRACT

This work offers preparation of surfactant-modified amorphous carbon and its application in dispersive solid phase extraction of metronidazole and clarithromycin from plasma samples. The extraction procedure was combined with dispersive liquid-liquid microextraction for further preconcentration of the analytes for sensitive determination of the analytes followed by high performance liquid chromatography-diode array detector. In this work, first, the sorbent was added to the sample and the mixture vortexed to adsorb the analytes. Then, the obtained supernatant after centrifuging is discarded and the loaded analytes onto the sorbent surface were eluted with a water-miscible organic solvent. In the following, to further enrichment of the analytes the microextraction step was done. For this purpose, the eluate is taken, mixed with a water-immiscible organic solvent, and injected into deionized water. After centrifuging, an aliquat of the sedimented phase is taken and injected into the analytical instrument for the quantitative analysis. Under the optimum extraction conditions, high extraction recoveries (79 and 89% for metronidazole and clarithromycin, respectively), low limits of detection (2.1 and 1.9 ng mL-1 for metronidazole and clarithromycin, respectively) and quantification (7.0 and 6.3 ng mL-1 for metronidazole and clarithromycin, respectively), good repeatability (relative standard deviations less than 4.3% for intra- and 6.3% inter-day precisions), and wide linear ranges (7.3-1000 and 6.3-1000 ng mL-1 for metronidazole and clarithromycin, respectively) were obtained. At the end, the introduced method was applied on the plasma samples of the patients treated with metronidazole and clarithromycin successfully.


Subject(s)
Clarithromycin , Metronidazole , Humans , Chromatography, High Pressure Liquid , Surface-Active Agents , Solvents , Water , Carbon
5.
J Sep Sci ; 45(9): 1550-1559, 2022 May.
Article in English | MEDLINE | ID: mdl-35220687

ABSTRACT

A vortex-assisted dispersive micro-solid-phase extraction procedure using a new and green sorbent was developed as a simple, fast, and efficient sample preparation method for the extracting five pesticides in several fruit juice samples. In this study, for the first time, riboflavin was used as an efficient sorbent. A few milligrams of riboflavin was directly added into the aqueous solution containing the analytes to adsorb them. After adsorption the analytes, they were desorbed and more concentrated by a dispersive liquid-liquid microextraction procedure. The influence of several effective parameters such as amount of riboflavin, pH, vortex time, eluent nature and volume, and extraction solvent type and volume on the extraction efficiency was investigated. In optimal conditions, linear ranges of the calibration curves were broad. The limits of detection and quantification were attained in the ranges of 0.56-1.5  and 1.9-0.52 ng mL-1 , respectively. The proposed method demonstrated to be suitable for concurrent extraction of the studied pesticides in various fruit juice samples with high enrichment factors (320-360) and precision (relative standard deviation ≤7.8% for intra- [n = 6] and interday [n = 4] precisions at a concentration of 25 ng mL-1 of each pesticide).


Subject(s)
Liquid Phase Microextraction , Pesticides , Fruit and Vegetable Juices , Liquid Phase Microextraction/methods , Pesticides/analysis , Riboflavin , Solid Phase Extraction/methods , Solvents
SELECTION OF CITATIONS
SEARCH DETAIL