Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
Add more filters










Publication year range
1.
J Virol ; : e0124024, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39087765

ABSTRACT

Science is humanity's best insurance against threats from nature, but it is a fragile enterprise that must be nourished and protected. The preponderance of scientific evidence indicates a natural origin for SARS-CoV-2. Yet, the theory that SARS-CoV-2 was engineered in and escaped from a lab dominates media attention, even in the absence of strong evidence. We discuss how the resulting anti-science movement puts the research community, scientific research, and pandemic preparedness at risk.

3.
J Virol ; 98(1): e0179123, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38168672

ABSTRACT

In the United States (US), biosafety and biosecurity oversight of research on viruses is being reappraised. Safety in virology research is paramount and oversight frameworks should be reviewed periodically. Changes should be made with care, however, to avoid impeding science that is essential for rapidly reducing and responding to pandemic threats as well as addressing more common challenges caused by infectious diseases. Decades of research uniquely positioned the US to be able to respond to the COVID-19 crisis with astounding speed, delivering life-saving vaccines within a year of identifying the virus. We should embolden and empower this strength, which is a vital part of protecting the health, economy, and security of US citizens. Herein, we offer our perspectives on priorities for revised rules governing virology research in the US.


Subject(s)
Biomedical Research , Containment of Biohazards , Virology , Humans , COVID-19 , United States , Viruses , Biomedical Research/standards
4.
J Virol ; 97(5): e0054423, 2023 05 31.
Article in English | MEDLINE | ID: mdl-37166327

ABSTRACT

The interface between humans and wildlife is changing and, with it, the potential for pathogen introduction into humans has increased. Avian influenza is a prominent example, with an ongoing outbreak showing the unprecedented expansion of both geographic and host ranges. Research in the field is essential to understand this and other zoonotic threats. Only by monitoring dynamic viral populations and defining their biology in situ can we gather the information needed to ensure effective pandemic preparation.


Subject(s)
Influenza in Birds , Influenza, Human , Zoonoses , Animals , Humans , Animals, Wild , Disease Outbreaks , Host Specificity , Influenza in Birds/epidemiology , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Pandemics , Zoonoses/epidemiology , Zoonoses/prevention & control
5.
mSphere ; 8(2): e0011923, 2023 04 20.
Article in English | MEDLINE | ID: mdl-36897078

ABSTRACT

When humans experience a new, devastating viral infection such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), significant challenges arise. How should individuals as well as societies respond to the situation? One of the primary questions concerns the origin of the SARS-CoV-2 virus that infected and was transmitted efficiently among humans, resulting in a pandemic. At first glance, the question appears straightforward to answer. However, the origin of SARS-CoV-2 has been the topic of substantial debate primarily because we do not have access to some relevant data. At least two major hypotheses have been suggested: a natural origin through zoonosis followed by sustained human-to-human spread or the introduction of a natural virus into humans from a laboratory source. Here, we summarize the scientific evidence that informs this debate to provide our fellow scientists and the public with the tools to join the discussion in a constructive and informed manner. Our goal is to dissect the evidence to make it more accessible to those interested in this important problem. The engagement of a broad representation of scientists is critical to ensure that the public and policy-makers can draw on relevant expertise in navigating this controversy.


Subject(s)
COVID-19 , Pandemics , SARS-CoV-2 , Viral Zoonoses , Humans , COVID-19/etiology , COVID-19/transmission , COVID-19/virology , SARS-CoV-2/genetics , Viral Zoonoses/etiology , Viral Zoonoses/transmission , Viral Zoonoses/virology , Furin/metabolism , RNA Cleavage/genetics , Genome, Viral , Chiroptera/virology , Animals
6.
J Virol ; 97(4): e0036523, 2023 04 27.
Article in English | MEDLINE | ID: mdl-36897089

ABSTRACT

When humans experience a new, devastating viral infection such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), significant challenges arise. How should individuals as well as societies respond to the situation? One of the primary questions concerns the origin of the SARS-CoV-2 virus that infected and was transmitted efficiently among humans, resulting in a pandemic. At first glance, the question appears straightforward to answer. However, the origin of SARS-CoV-2 has been the topic of substantial debate primarily because we do not have access to some relevant data. At least two major hypotheses have been suggested: a natural origin through zoonosis followed by sustained human-to-human spread or the introduction of a natural virus into humans from a laboratory source. Here, we summarize the scientific evidence that informs this debate to provide our fellow scientists and the public with the tools to join the discussion in a constructive and informed manner. Our goal is to dissect the evidence to make it more accessible to those interested in this important problem. The engagement of a broad representation of scientists is critical to ensure that the public and policy-makers can draw on relevant expertise in navigating this controversy.


Subject(s)
COVID-19 , Pandemics , SARS-CoV-2 , Humans , COVID-19/epidemiology , COVID-19/transmission , COVID-19/virology , Laboratories/standards , Research/standards , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Scientific Experimental Error , Viral Zoonoses/transmission , Viral Zoonoses/virology , Chiroptera/virology , Animals, Wild/virology
7.
mBio ; 14(2): e0058323, 2023 04 25.
Article in English | MEDLINE | ID: mdl-36897098

ABSTRACT

When humans experience a new, devastating viral infection such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), significant challenges arise. How should individuals as well as societies respond to the situation? One of the primary questions concerns the origin of the SARS-CoV-2 virus that infected and was transmitted efficiently among humans, resulting in a pandemic. At first glance, the question appears straightforward to answer. However, the origin of SARS-CoV-2 has been the topic of substantial debate primarily because we do not have access to some relevant data. At least two major hypotheses have been suggested: a natural origin through zoonosis followed by sustained human-to-human spread or the introduction of a natural virus into humans from a laboratory source. Here, we summarize the scientific evidence that informs this debate to provide our fellow scientists and the public with the tools to join the discussion in a constructive and informed manner. Our goal is to dissect the evidence to make it more accessible to those interested in this important problem. The engagement of a broad representation of scientists is critical to ensure that the public and policy-makers can draw on relevant expertise in navigating this controversy.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Pandemics
11.
J Virol ; 97(2): e0008923, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36700640

ABSTRACT

Viruses have brought humanity many challenges: respiratory infection, cancer, neurological impairment and immunosuppression to name a few. Virology research over the last 60+ years has responded to reduce this disease burden with vaccines and antivirals. Despite this long history, the COVID-19 pandemic has brought unprecedented attention to the field of virology. Some of this attention is focused on concern about the safe conduct of research with human pathogens. A small but vocal group of individuals has seized upon these concerns - conflating legitimate questions about safely conducting virus-related research with uncertainties over the origins of SARS-CoV-2. The result has fueled public confusion and, in many instances, ill-informed condemnation of virology. With this article, we seek to promote a return to rational discourse. We explain the use of gain-of-function approaches in science, discuss the possible origins of SARS-CoV-2 and outline current regulatory structures that provide oversight for virological research in the United States. By offering our expertise, we - a broad group of working virologists - seek to aid policy makers in navigating these controversial issues. Balanced, evidence-based discourse is essential to addressing public concern while maintaining and expanding much-needed research in virology.


Subject(s)
Research , Virology , Virus Diseases , Humans , COVID-19/prevention & control , Information Dissemination , Pandemics/prevention & control , Policy Making , Research/standards , Research/trends , SARS-CoV-2 , Virology/standards , Virology/trends , Virus Diseases/prevention & control , Virus Diseases/virology , Viruses
12.
mBio ; 14(1): e0018823, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36700642

ABSTRACT

Viruses have brought humanity many challenges: respiratory infection, cancer, neurological impairment and immunosuppression to name a few. Virology research over the last 60+ years has responded to reduce this disease burden with vaccines and antivirals. Despite this long history, the COVID-19 pandemic has brought unprecedented attention to the field of virology. Some of this attention is focused on concern about the safe conduct of research with human pathogens. A small but vocal group of individuals has seized upon these concerns - conflating legitimate questions about safely conducting virus-related research with uncertainties over the origins of SARS-CoV-2. The result has fueled public confusion and, in many instances, ill-informed condemnation of virology. With this article, we seek to promote a return to rational discourse. We explain the use of gain-of-function approaches in science, discuss the possible origins of SARS-CoV-2 and outline current regulatory structures that provide oversight for virological research in the United States. By offering our expertise, we - a broad group of working virologists - seek to aid policy makers in navigating these controversial issues. Balanced, evidence-based discourse is essential to addressing public concern while maintaining and expanding much-needed research in virology.


Subject(s)
COVID-19 , Respiratory Tract Infections , Viruses , Humans , COVID-19/prevention & control , SARS-CoV-2 , Pandemics/prevention & control , Viruses/genetics
13.
mSphere ; 8(2): e0003423, 2023 04 20.
Article in English | MEDLINE | ID: mdl-36700653

ABSTRACT

Viruses have brought humanity many challenges: respiratory infection, cancer, neurological impairment and immunosuppression to name a few. Virology research over the last 60+ years has responded to reduce this disease burden with vaccines and antivirals. Despite this long history, the COVID-19 pandemic has brought unprecedented attention to the field of virology. Some of this attention is focused on concern about the safe conduct of research with human pathogens. A small but vocal group of individuals has seized upon these concerns - conflating legitimate questions about safely conducting virus-related research with uncertainties over the origins of SARS-CoV-2. The result has fueled public confusion and, in many instances, ill-informed condemnation of virology. With this article, we seek to promote a return to rational discourse. We explain the use of gain-of-function approaches in science, discuss the possible origins of SARS-CoV-2 and outline current regulatory structures that provide oversight for virological research in the United States. By offering our expertise, we - a broad group of working virologists - seek to aid policy makers in navigating these controversial issues. Balanced, evidence-based discourse is essential to addressing public concern while maintaining and expanding much-needed research in virology.


Subject(s)
COVID-19 , Viruses , Humans , COVID-19/prevention & control , SARS-CoV-2 , Pandemics/prevention & control , Antiviral Agents
14.
mBio ; 12(2)2021 03 02.
Article in English | MEDLINE | ID: mdl-33653889

ABSTRACT

The peer-reviewed scientific literature is the bedrock of science. However, scientific publishing is undergoing dramatic changes, which include the expansion of open access, an increased number of for-profit publication houses, and ready availability of preprint manuscripts that have not been peer reviewed. In this opinion article, we discuss the inequities and concerns that these changes have wrought.


Subject(s)
Peer Review, Research/standards , Publishing/standards , Humans , Information Dissemination , Peer Review, Research/ethics , Publishing/ethics
15.
Carcinogenesis ; 40(6): 749-764, 2019 07 06.
Article in English | MEDLINE | ID: mdl-30794288

ABSTRACT

We have established a microbiome signature for prostate cancer using an array-based metagenomic and capture-sequencing approach. A diverse microbiome signature (viral, bacterial, fungal and parasitic) was observed in the prostate cancer samples compared with benign prostate hyperplasia controls. Hierarchical clustering analysis identified three distinct prostate cancer-specific microbiome signatures. The three signatures correlated with different grades, stages and scores of the cancer. Thus, microbiome signature analysis potentially provides clinical diagnosis and outcome predictions. The array data were validated by PCR and targeted next-generation sequencing (NGS). Specific NGS data suggested that certain viral genomic sequences were inserted into the host somatic chromosomes of the prostate cancer samples. A randomly selected group of these was validated by direct PCR and sequencing. In addition, PCR validation of Helicobacter showed that Helicobacter cagA sequences integrated within specific chromosomes of prostate tumor cells. The viral and Helicobacter integrations are predicted to affect the expression of several cellular genes associated with oncogenic processes.


Subject(s)
Microbiota , Prostatic Neoplasms/microbiology , Chromosomes, Human , Cluster Analysis , Helicobacter/isolation & purification , Herpesvirus 8, Human/genetics , High-Throughput Nucleotide Sequencing/methods , Humans , Male , Nucleic Acid Hybridization , Papillomaviridae/genetics , Polymerase Chain Reaction/methods , Prostatic Neoplasms/virology , Reproducibility of Results , Virus Integration
16.
Cell ; 174(1): 72-87.e32, 2018 06 28.
Article in English | MEDLINE | ID: mdl-29861175

ABSTRACT

Recent reports indicate that hypoxia influences the circadian clock through the transcriptional activities of hypoxia-inducible factors (HIFs) at clock genes. Unexpectedly, we uncover a profound disruption of the circadian clock and diurnal transcriptome when hypoxic cells are permitted to acidify to recapitulate the tumor microenvironment. Buffering against acidification or inhibiting lactic acid production fully rescues circadian oscillation. Acidification of several human and murine cell lines, as well as primary murine T cells, suppresses mechanistic target of rapamycin complex 1 (mTORC1) signaling, a key regulator of translation in response to metabolic status. We find that acid drives peripheral redistribution of normally perinuclear lysosomes away from perinuclear RHEB, thereby inhibiting the activity of lysosome-bound mTOR. Restoring mTORC1 signaling and the translation it governs rescues clock oscillation. Our findings thus reveal a model in which acid produced during the cellular metabolic response to hypoxia suppresses the circadian clock through diminished translation of clock constituents.


Subject(s)
Cell Hypoxia , Circadian Clocks , Mechanistic Target of Rapamycin Complex 1/metabolism , Adaptor Proteins, Signal Transducing , Amino Acids, Dicarboxylic/pharmacology , Animals , CLOCK Proteins/metabolism , Carrier Proteins/antagonists & inhibitors , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Cycle Proteins , Cells, Cultured , Circadian Clocks/drug effects , Culture Media/chemistry , Eukaryotic Initiation Factors , Hydrogen-Ion Concentration , Hypoxia-Inducible Factor 1, alpha Subunit/antagonists & inhibitors , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Lysosomes/metabolism , Mechanistic Target of Rapamycin Complex 1/antagonists & inhibitors , Mice , Phosphoproteins/antagonists & inhibitors , Phosphoproteins/genetics , Phosphoproteins/metabolism , RNA Interference , RNA, Small Interfering/metabolism , Ras Homolog Enriched in Brain Protein/metabolism , Signal Transduction/drug effects , T-Lymphocytes/cytology , T-Lymphocytes/metabolism , Transcriptome/drug effects , Tuberous Sclerosis Complex 2 Protein/deficiency , Tuberous Sclerosis Complex 2 Protein/genetics
17.
Front Microbiol ; 9: 951, 2018.
Article in English | MEDLINE | ID: mdl-29867857

ABSTRACT

A dysbiotic microbiome can potentially contribute to the pathogenesis of many different diseases including cancer. Breast cancer is the second leading cause of cancer death in women. Thus, we investigated the diversity of the microbiome in the four major types of breast cancer: endocrine receptor (ER) positive, triple positive, Her2 positive and triple negative breast cancers. Using a whole genome and transcriptome amplification and a pan-pathogen microarray (PathoChip) strategy, we detected unique and common viral, bacterial, fungal and parasitic signatures for each of the breast cancer types. These were validated by PCR and Sanger sequencing. Hierarchical cluster analysis of the breast cancer samples, based on their detected microbial signatures, showed distinct patterns for the triple negative and triple positive samples, while the ER positive and Her2 positive samples shared similar microbial signatures. These signatures, unique or common to the different breast cancer types, provide a new line of investigation to gain further insights into prognosis, treatment strategies and clinical outcome, as well as better understanding of the role of the micro-organisms in the development and progression of breast cancer.

18.
Cell Metab ; 27(6): 1263-1280.e6, 2018 Jun 05.
Article in English | MEDLINE | ID: mdl-29754953

ABSTRACT

Kidney cancer, one of the ten most prevalent malignancies in the world, has exhibited increased incidence over the last decade. The most common subtype is "clear cell" renal cell carcinoma (ccRCC), which features consistent metabolic abnormalities, such as highly elevated glycogen and lipid deposition. By integrating metabolomics, genomic, and transcriptomic data, we determined that enzymes in multiple metabolic pathways are universally depleted in human ccRCC tumors, which are otherwise genetically heterogeneous. Notably, the expression of key urea cycle enzymes, including arginase 2 (ARG2) and argininosuccinate synthase 1 (ASS1), is strongly repressed in ccRCC. Reduced ARG2 activity promotes ccRCC tumor growth through at least two distinct mechanisms: conserving the critical biosynthetic cofactor pyridoxal phosphate and avoiding toxic polyamine accumulation. Pharmacological approaches to restore urea cycle enzyme expression would greatly expand treatment strategies for ccRCC patients, where current therapies only benefit a subset of those afflicted with renal cancer.


Subject(s)
Arginase/metabolism , Carcinoma, Renal Cell/pathology , Kidney Neoplasms/pathology , Polyamines/metabolism , Animals , Arginase/genetics , Argininosuccinate Synthase/metabolism , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/enzymology , Cell Line, Tumor , Gene Expression Profiling , Heterografts , Humans , Kidney Neoplasms/drug therapy , Kidney Neoplasms/enzymology , Mice , Mice, Nude , Pyridoxal Phosphate/metabolism , Urea/metabolism
19.
Sci Rep ; 7(1): 4036, 2017 06 22.
Article in English | MEDLINE | ID: mdl-28642609

ABSTRACT

The microbiome is fundamentally one of the most unique organs in the human body. Dysbiosis can result in critical inflammatory responses and result in pathogenesis contributing to neoplastic events. We used a pan-pathogen array technology (PathoChip) coupled with next-generation sequencing to establish microbial signatures unique to human oral and oropharyngeal squamous cell carcinomas (OCSCC/OPSCC). Signatures for DNA and RNA viruses including oncogenic viruses, gram positive and negative bacteria, fungi and parasites were detected. Cluster and topological analyses identified 2 distinct groups of microbial signatures related to OCSCCs/OPSCCs. Results were validated by probe capture next generation sequencing; the data from which also provided a comprehensive map of integration sites and chromosomal hotspots for micro-organism genomic insertions. Identification of these microbial signatures and their integration sites may provide biomarkers for OCSCC/OPSCC diagnosis and prognosis as well as novel avenues for study of their potential role in OCSCCs/OPSCCs.


Subject(s)
Carcinoma, Squamous Cell/etiology , Microbiota , Mouth Neoplasms/etiology , Oropharyngeal Neoplasms/etiology , Animals , Bacteria/classification , Bacteria/genetics , Carcinoma, Squamous Cell/epidemiology , Computational Biology/methods , Host-Parasite Interactions , Host-Pathogen Interactions , Humans , Metagenome , Metagenomics/methods , Mouth Neoplasms/epidemiology , Mutagenesis, Insertional , Oropharyngeal Neoplasms/epidemiology , Parasites/classification , Parasites/genetics , Reproducibility of Results
20.
Oncotarget ; 8(22): 36225-36245, 2017 May 30.
Article in English | MEDLINE | ID: mdl-28410234

ABSTRACT

Humans and other mammals are colonized by microbial agents across the kingdom which can represent a unique microbiome pattern. Dysbiosis of the microbiome has been associated with pathology including cancer. We have identified a microbiome signature unique to ovarian cancers, one of the most lethal malignancies of the female reproductive system, primarily because of its asymptomatic nature during the early stages in development. We screened ovarian cancer samples along with matched, and non-matched control samples using our pan-pathogen array (PathoChip), combined with capture-next generation sequencing. The results show a distinct group of viral, bacterial, fungal and parasitic signatures of high significance in ovarian cases. Further analysis shows specific viral integration sites within the host genome of tumor samples, which may contribute to the carcinogenic process. The ovarian cancer microbiome signature provides insights for the development of targeted therapeutics against ovarian cancers.


Subject(s)
Bacteria/genetics , Fungi/physiology , Helminths/physiology , Infections/genetics , Microbiota , Ovarian Neoplasms/genetics , Viruses/genetics , Animals , Carcinogenesis , Chromosome Aberrations , Dysbiosis , Female , High-Throughput Nucleotide Sequencing , Humans , Infections/microbiology , Infections/parasitology , Infections/virology , Ovarian Neoplasms/microbiology , Ovarian Neoplasms/parasitology , Ovarian Neoplasms/virology , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL