Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 20
1.
Orphanet J Rare Dis ; 18(1): 381, 2023 Dec 06.
Article En | MEDLINE | ID: mdl-38057861

BACKGROUND: Studies indicate that doses of alglucosidase alfa (ALGLU) higher than label dose (20 mg/kg every other week) improve clinical outcomes in infantile-onset Pompe disease (IOPD). We investigated data from the Pompe Registry to determine the association between ALGLU dose and survival in IOPD. RESULTS: We included 332 IOPD patients from the Registry as of January 2022 who had cardiomyopathy and were first treated at age < 1 year. We used Cox proportional hazards models to estimate hazard ratios (HR) and 95% confidence intervals (CI) for the association between ALGLU as a time-varying exposure and survival, adjusting for age at first treatment, sex, and cross-reactive immunologic material (CRIM)/immune tolerance induction (ITI) status. Dose was measured as average relative dose received over time (in multiples of label dose, range > 0 to 4 times label dose), current dose, and lagged dose. 81% patients received label dose at treatment initiation. Over time, 52% received a higher dose. Higher ALGLU dose over time was associated with improved survival: adjusted HR 0.40 (95% CI 0.22-0.73, p = 0.003) per 1-unit increase in average relative dose, with similar results for invasive ventilation-free survival (adjusted HR 0.48, 95% CI 0.28-0.84; p = 0.010). The association was consistent in patients first treated before or after 3 months of age and did not vary significantly by CRIM status. Results for current and lagged dose were similar to average dose. CONCLUSIONS: Higher ALGLU doses were associated with significantly improved overall and invasive ventilator-free survival in IOPD. Results were consistent across sensitivity analyses.


Glycogen Storage Disease Type II , Humans , Glycogen Storage Disease Type II/drug therapy , alpha-Glucosidases/therapeutic use , Registries , Enzyme Replacement Therapy/methods
2.
Orphanet J Rare Dis ; 18(1): 265, 2023 09 04.
Article En | MEDLINE | ID: mdl-37667371

BACKGROUND: Gyrate atrophy of the choroid and retina is a rare autosomal recessive metabolic disorder caused by biallelic variants in the OAT gene, encoding the enzyme ornithine δ-aminotransferase. Impaired enzymatic activity leads to systemic hyperornithinaemia, which in turn underlies progressive chorioretinal degeneration. In this study, we describe the clinical and molecular findings in a cohort of individuals with gyrate atrophy. METHODS: Study participants were recruited through a tertiary UK clinical ophthalmic genetic service. All cases had a biochemical and molecular diagnosis of gyrate atrophy. Retrospective phenotypic and biochemical data were collected using electronic healthcare records. RESULTS: 18 affected individuals from 12 families (8 male, 10 female) met the study inclusion criteria. The median age at diagnosis was 8 years (range 10 months - 33 years) and all cases had hyperornithinaemia (median: 800 micromoles/L; range: 458-1244 micromoles/L). Common features at presentation included high myopia (10/18) and nyctalopia (5/18). Ophthalmic findings were present in all study participants who were above the age of 6 years. One third of patients had co-existing macular oedema and two thirds developed pre-senile cataracts. Compliance with dietary modifications was suboptimal in most cases. A subset of participants had extraocular features including a trend towards reduced fat-free mass and developmental delay. CONCLUSIONS: Our findings highlight the importance of multidisciplinary care in families with gyrate atrophy. Secondary ophthalmic complications such as macular oedema and cataract formation are common. Management of affected individuals remains challenging due to the highly restrictive nature of the recommended diet and the limited evidence-base for current strategies.


Cataract , Gyrate Atrophy , Macular Edema , Humans , Female , Male , Infant , Child , Gyrate Atrophy/genetics , Retrospective Studies , Retina
3.
Orphanet J Rare Dis ; 18(1): 203, 2023 07 21.
Article En | MEDLINE | ID: mdl-37480023

BACKGROUND: Fabry disease is a rare, X-linked inherited lysosomal storage disorder, that manifests as a heterogeneous disease with renal, cardiac and nervous system involvement. The most common pain experienced by people with Fabry disease are episodes of neuropathic pain reported in up to 80% of classical hemizygous male patients and up to 65% of heterozygous female patients. No clear consensus exists within UK clinical practice for the assessment and management of pain in Fabry disease based on agreed clinical practice and clinical experience. Here we describe a modified Delphi initiative to establish expert consensus on management of pain in Fabry disease in the UK clinical setting. METHODS: Delphi panel members were identified based on their demonstrated expertise in managing adult or paediatric patients with Fabry disease in the UK and recruited by an independent third-party administrator. Ten expert panellists agreed to participate in two survey rounds, during which they remained anonymous to each other. Circulation of the questionnaires, and collection and processing of the panel's responses were conducted between September 2021 and December 2021. All questions required an answer. RESULTS: The Delphi panel reached a consensus on 21 out of 41 aspects of pain assessment and management of pain in Fabry disease. These encompassed steps in the care pathway from the goals of therapy through to holistic support, including the use of gabapentin and carbamazepine as first-line analgesic medications for the treatment of neuropathic pain in Fabry disease, as well as the proactive management of symptoms of anxiety and/or depression associated with Fabry pain. CONCLUSIONS: The consensus panel outcomes reported here have highlighted strengths in current UK clinical practice, along with unmet needs for further research and agreement. This consensus is intended to prompt the next steps towards developing clinical guidelines.


Fabry Disease , Neuralgia , Adult , Humans , Female , Male , Child , Fabry Disease/diagnosis , Fabry Disease/drug therapy , Consensus , Neuralgia/diagnosis , Neuralgia/drug therapy , Neuralgia/etiology , Kidney , United Kingdom
4.
Genet Med ; 25(2): 100328, 2023 02.
Article En | MEDLINE | ID: mdl-36542086

PURPOSE: Mini-COMET (NCT03019406; Sanofi) is a phase 2, open-label, ascending-dose, 3-cohort study, evaluating avalglucosidase alfa safety, pharmacokinetics, and efficacy in individuals with infantile-onset Pompe disease aged <18 years who previously received alglucosidase alfa and showed clinical decline (cohorts 1 and 2) or suboptimal response (cohort 3). METHODS: During a 25-week primary analysis period, cohorts 1 and 2 received avalglucosidase alfa 20 and 40 mg/kg every other week, respectively, for 6 months, whereas cohort 3 individuals were randomized (1:1) to receive avalglucosidase alfa 40 mg/kg every other week or alglucosidase alfa (current stable dose) for 6 months. RESULTS: In total, 22 individuals were enrolled (cohort 1 [n = 6], cohort 2 [n = 5], cohort 3-avalglucosidase alfa [n = 5], and cohort 3-alglucosidase alfa [n = 6]). Median treatment compliance was 100%. None of the individuals discontinued treatment or died. Percentages of individuals with treatment-emergent adverse events were similar across dose and treatment groups. No serious or severe treatment-related treatment-emergent adverse events occurred. Trends for better motor function from baseline to week 25 were observed for 40 mg/kg every other week avalglucosidase alfa compared with either 20 mg/kg every other week avalglucosidase alfa or alglucosidase alfa up to 40 mg/kg weekly. CONCLUSION: These data support the positive clinical effect of avalglucosidase alfa in patients with infantile-onset Pompe disease previously declining on alglucosidase alfa.


Glycogen Storage Disease Type II , Humans , Glycogen Storage Disease Type II/drug therapy , Cohort Studies , Treatment Outcome , alpha-Glucosidases/adverse effects , Research , Enzyme Replacement Therapy/adverse effects
5.
Orphanet J Rare Dis ; 16(1): 235, 2021 05 21.
Article En | MEDLINE | ID: mdl-34020687

BACKGROUND: Wolman disease is a rare, lysosomal storage disorder in which biallelic variants in the LIPA gene result in reduced or complete lack of lysosomal acid lipase. The accumulation of the substrates; cholesterol esters and triglycerides, significantly impacts cellular function. Untreated patients die within the first 12 months of life. Clinically, patients present severely malnourished, with diarrhoea and hepatosplenomegaly, many have an inflammatory phenotype, including with hemophagocytic lymphohistiocytosis (HLH). Hematopoietic stem cell transplant (HCT) had been historically the only treatment available but has a high procedure-related mortality because of disease progression and disease-associated morbidities. More recently, enzyme replacement therapy (ERT) with dietary substrate reduction (DSR) has significantly improved patient survival. However, ERT is life long, expensive and its utility is limited by anti-drug antibodies (ADA) and the need for central venous access. RESULTS: We describe five Wolman disease patients diagnosed in infancy that were treated at Royal Manchester Children's Hospital receiving ERT with DSR then HCT-multimodal therapy. In 3/5 an initial response to ERT was attenuated by ADA with associated clinical and laboratory features of deterioration. 1/5 developed anaphylaxis to ERT and the other patient died post HCT with ongoing HLH. All patients received allogeneic HCT. 4/5 patients are alive, and both disease phenotype and laboratory parameters are improved compared to when they were on ERT alone. The gastrointestinal symptoms are particularly improved after HCT, with reduced diarrhoea and vomiting. This allows gradual structured normalisation of diet with improved tolerance of dietary fat. Histologically there are reduced cholesterol clefts, fewer foamy macrophages and an improved villous structure. Disease biomarkers also show improvement with ERT, immunotherapy and HCT. Three patients have mixed chimerism after HCT, indicating a likely engraftment-defect in this condition. CONCLUSION: We describe combined ERT, DSR and HCT, multimodal treatment for Wolman disease. ERT and DSR stabilises the sick infant and reduces the formerly described prohibitively high, transplant-associated mortality in this condition. HCT abrogates the problems of ERT, namely attenuating ADA, the need for continuing venous access, and continuing high cost drug treatment. HCT also brings improved efficacy, particularly evident in improved gastrointestinal function and histology. Multimodal therapy should be considered a new paradigm of treatment for Wolman disease patients where there is an attenuated response to ERT, and for all patients where there is a well-matched transplant donor, in order to improve long term gut function, tolerance of a normal diet and quality of life.


Enzyme Replacement Therapy , Hematopoietic Stem Cell Transplantation , Wolman Disease/therapy , Humans , Infant , Quality of Life , Sterol Esterase/therapeutic use
6.
Pediatr Clin North Am ; 68(1): 81-102, 2021 02.
Article En | MEDLINE | ID: mdl-33228944

Advances in technology, methodology, and deep phenotyping are increasingly driving the understanding of the pathologic basis of disease. Improvements in patient identification and treatment are impacting survival. This is true in endocrinology and inborn errors of metabolism, where disease-modifying therapies are developing. Inherent to this evolution is the increasing awareness of the respiratory manifestations of these rare diseases. This review updates clinicians, stratifying diseases spirometerically; pulmonary hypertension and diseases with a predisposition to recurrent pulmonary infection are discussed. This division is artificial; many diseases have multiple pathologic effects on respiration. This review does not cover the impact of obesity.


Endocrine System Diseases/complications , Lung Diseases/etiology , Metabolic Diseases/complications , Child , Endocrine System Diseases/diagnosis , Endocrine System Diseases/therapy , Humans , Lung Diseases/diagnosis , Lung Diseases/therapy , Metabolic Diseases/diagnosis , Metabolic Diseases/therapy , Phenotype
7.
Front Pediatr ; 8: 548839, 2020.
Article En | MEDLINE | ID: mdl-33102405

The number of children on long-term ventilation (LTV) has exponentially increased over the past few decades. Improvements in management of ventilation coupled with improvements in standards of medical care are increasingly allowing young people on LTV to survive into adulthood. The process of transition from the pediatric to the adult healthcare system is challenging and requires special attention. This review aims to provide an overview on transition to adult care for children on LTV. Firstly, examining effective models of transition in other childhood onset chronic conditions as a template, whilst highlighting the unique aspects of transition in LTV patients and secondly, summarizing the main relevant findings in the literature on the topic and emphasizing the importance of a multidisciplinary approach to this process.

8.
Orphanet J Rare Dis ; 15(1): 140, 2020 06 05.
Article En | MEDLINE | ID: mdl-32503603

OBJECTIVE: Thoracolumbar kyphosis is a common indication for spinal surgery in children with Mucopolysaccharidosis. Functional outcome of spinal surgical intervention has never been published in patients with this rare disease. We present a cohort of patients with Mucopolysaccharidosis 1(Hurler syndrome) who underwent thoraco-lumbar spinal deformity correction and functional outcome assessed by pre-operative and post-operative gait analysis. This study represents the first attempt at presenting a functional assessment of surgical outcome in any Mucopolysaccharidosis subtype. METHODS: A retrospective analysis of prospectively collected data was carried out from 11 children diagnosed with this subtype of Mucopolysaccharidosis. All patients underwent thoracolumbar kyphosis correction between the years 2013 to 2016. Gait assessment was performed using GAITRite™ electronic walkway pre-operatively and post-operatively within 9 to 24 months from the index surgery. Walking distance, cadence and gait velocity were the three spatio-temporal parameters analysed. Wilcoxon signed rank test was used to analyse the data and P-Value ≤0.05 was deemed significant. RESULTS: There was a statistically significant improvement in walking distance in 9 out of 11 patient post-operatively with a mean increase of 232.06 cms (P = 0.05). There was marginal improvement in cadence by 6.33 steps/min post-operatively (P-value 0.79). Gait velocity also showed a marginal increase by 8.73 cms/sec post-operatively (P-value 0.32). CONCLUSION: The results of our study suggest that correction of thoracolumbar kyphosis in children with Mucopolysaccharidosis 1 resulted in a significant improvement of walking distance with a trend towards improved gait in the other parameters. Post-operative change in cadence was not statistically significant suggesting that physiological maturation of gait had minimal effect in the specified post-operative assessment timeframe. This study emphasizes that outcomes of spinal surgery in children with Mucopolysaccharidosis 1 should be determined by functional measures aiming to maintain or improve quality of life.


Kyphosis , Mucopolysaccharidosis I , Child , Gait , Humans , Kyphosis/surgery , Lumbar Vertebrae/surgery , Mucopolysaccharidosis I/surgery , Quality of Life , Retrospective Studies , Treatment Outcome
9.
Am J Hum Genet ; 106(1): 92-101, 2020 01 02.
Article En | MEDLINE | ID: mdl-31866046

Leigh syndrome is one of the most common neurological phenotypes observed in pediatric mitochondrial disease presentations. It is characterized by symmetrical lesions found on neuroimaging in the basal ganglia, thalamus, and brainstem and by a loss of motor skills and delayed developmental milestones. Genetic diagnosis of Leigh syndrome is complicated on account of the vast genetic heterogeneity with >75 candidate disease-associated genes having been reported to date. Candidate genes are still emerging, being identified when "omics" tools (genomics, proteomics, and transcriptomics) are applied to manipulated cell lines and cohorts of clinically characterized individuals who lack a genetic diagnosis. NDUFAF8 is one such protein; it has been found to interact with the well-characterized complex I (CI) assembly factor NDUFAF5 in a large-scale protein-protein interaction screen. Diagnostic next-generation sequencing has identified three unrelated pediatric subjects, each with a clinical diagnosis of Leigh syndrome, who harbor bi-allelic pathogenic variants in NDUFAF8. These variants include a recurrent splicing variant that was initially overlooked due to its deep-intronic location. Subject fibroblasts were found to express a complex I deficiency, and lentiviral transduction with wild-type NDUFAF8-cDNA ameliorated both the assembly defect and the biochemical deficiency. Complexome profiling of subject fibroblasts demonstrated a complex I assembly defect, and the stalled assembly intermediates corroborate the role of NDUFAF8 in early complex I assembly. This report serves to expand the genetic heterogeneity associated with Leigh syndrome and to validate the clinical utility of orphan protein characterization. We also highlight the importance of evaluating intronic sequence when a single, definitively pathogenic variant is identified during diagnostic testing.


Electron Transport Complex I/deficiency , Fibroblasts/pathology , Leigh Disease/etiology , Mitochondrial Diseases/etiology , Mitochondrial Proteins/genetics , Mutation , NADH Dehydrogenase/genetics , Alleles , Female , Fibroblasts/metabolism , Humans , Infant , Leigh Disease/pathology , Male , Mitochondrial Diseases/pathology , Pedigree , Phenotype
10.
JIMD Rep ; 45: 1-8, 2019.
Article En | MEDLINE | ID: mdl-30209781

BACKGROUND: Inclusion cell disease (I-cell) is a rare autosomal recessive metabolic disease involving multiple organ systems, associated with a severely restricted life expectancy. No curative therapy is currently available, with management aimed at symptom palliation. METHODS: We present a retrospective, single-centre, case series of children referred to a tertiary paediatric metabolic service. The clinical presentation, demographics, genetics and natural history of the condition are investigated. RESULTS: Five patients with I-cell disease were referred over a 10-year period. All patients were born with dysmorphic features and had a family history of I-cell disease on further exploration. Phenotypic variation was seen within patients with the same genetic profile. Airway problems were common with 100% of the documented sleep oximetry studies suggesting sleep-disordered breathing. Of the two patients who had tracheal intubation anaesthetic difficulties we encountered, one required intraoperative reintubation, and one suffered a failed intubation with subsequent death. All five patients required oxygen therapy with the use of CPAP and BiPAP also seen. Feeding issues were almost universal with four of the five patients requiring nasogastric feeding. Four patients had died in the 10-year period with a mean life expectancy of 36 months. Cause of death for three of the four patients was respiratory failure. CONCLUSIONS: Airway problems, including sleep-disordered breathing, were ubiquitous in this cohort of children. Any intervention requiring a general anaesthetic needs careful multidisciplinary consideration due to significant associated risks and possibly death. Management as a result is generally non-surgical and symptomatic. This case series demonstrates universal involvement of the airway and respiratory systems, an important consideration when selecting meaningful outcomes for future effectiveness studies of novel therapies.

11.
Acta Paediatr ; 107(12): 2059-2065, 2018 12.
Article En | MEDLINE | ID: mdl-30242902

AIM: Mucopolysaccharidosis type I is a lysosomal storage disorder that can result in significant disease burden, disability and premature death, if left untreated. The aim of this review was to elaborate on the diagnosis of mucopolysaccharidosis type I and the pros and cons of newborn screening. METHODS: An international working group was established to discuss ways to improve the early diagnosis of mucopolysaccharidosis type I. It consisted of 13 experts in paediatrics, rare diseases and inherited metabolic diseases from Europe and the Middle East. RESULTS: It is becoming increasingly clearer that the delay between symptom onset and clinical diagnosis is considerable for mucopolysaccharidosis type I and other rare lysosomal storage disorders, despite numerous awareness campaigns since therapies became available. Diagnosis currently depends on recognising the signs and symptoms of the disease. The practice of newborn screening, which is being explored by pilot programmes around the world, enables early diagnosis and consequently early treatment. However, these studies have highlighted numerous new problems and pitfalls that must be faced before newborn screening becomes generally available. CONCLUSION: Newborn screening for mucopolysaccharidosis type I offers the potential for early diagnosis and early pre-symptomatic treatment, but existing hurdles need to be overcome.


Mucopolysaccharidosis I/diagnosis , Neonatal Screening , Humans , Infant, Newborn
12.
Arch Dis Child ; 102(11): 1019-1029, 2017 11.
Article En | MEDLINE | ID: mdl-28468868

BACKGROUND: Inborn errors of metabolism (IEMs) underlie a substantial proportion of paediatric disease burden but their genetic diagnosis can be challenging using the traditional approaches. METHODS: We designed and validated a next-generation sequencing (NGS) panel of 226 IEM genes, created six overlapping phenotype-based subpanels and tested 102 individuals, who presented clinically with suspected childhood-onset IEMs. RESULTS: In 51/102 individuals, NGS fully or partially established the molecular cause or identified other actionable diagnoses. Causal mutations were identified significantly more frequently when the biochemical phenotype suggested a specific IEM or a group of IEMs (p<0.0001), demonstrating the pivotal role of prior biochemical testing in guiding NGS analysis. The NGS panel helped to avoid further invasive, hazardous, lengthy or expensive investigations in 69% individuals (p<0.0001). Additional functional testing due to novel or unexpected findings had to be undertaken in only 3% of subjects, demonstrating that the use of NGS does not significantly increase the burden of subsequent follow-up testing. Even where a molecular diagnosis could not be achieved, NGS-based approach assisted in the management and counselling by reducing the likelihood of a high-penetrant genetic cause. CONCLUSION: NGS has significant clinical utility for the diagnosis of IEMs. Biochemical testing and NGS analysis play complementary roles in the diagnosis of IEMs. Incorporating NGS into the diagnostic algorithm of IEMs can improve the accuracy of diagnosis.


High-Throughput Nucleotide Sequencing/methods , Metabolism, Inborn Errors/diagnosis , Adolescent , Child , Child, Preschool , Female , Humans , Infant , Male , Metabolism, Inborn Errors/genetics , Young Adult
13.
J Inherit Metab Dis ; 40(3): 357-368, 2017 05.
Article En | MEDLINE | ID: mdl-28251416

OBJECTIVES: This UK-wide study defines the natural history of argininosuccinic aciduria and compares long-term neurological outcomes in patients presenting clinically or treated prospectively from birth with ammonia-lowering drugs. METHODS: Retrospective analysis of medical records prior to March 2013, then prospective analysis until December 2015. Blinded review of brain MRIs. ASL genotyping. RESULTS: Fifty-six patients were defined as early-onset (n = 23) if symptomatic < 28 days of age, late-onset (n = 23) if symptomatic later, or selectively screened perinatally due to a familial proband (n = 10). The median follow-up was 12.4 years (range 0-53). Long-term outcomes in all groups showed a similar neurological phenotype including developmental delay (48/52), epilepsy (24/52), ataxia (9/52), myopathy-like symptoms (6/52) and abnormal neuroimaging (12/21). Neuroimaging findings included parenchymal infarcts (4/21), focal white matter hyperintensity (4/21), cortical or cerebral atrophy (4/21), nodular heterotopia (2/21) and reduced creatine levels in white matter (4/4). 4/21 adult patients went to mainstream school without the need of additional educational support and 1/21 lives independently. Early-onset patients had more severe involvement of visceral organs including liver, kidney and gut. All early-onset and half of late-onset patients presented with hyperammonaemia. Screened patients had normal ammonia at birth and received treatment preventing severe hyperammonaemia. ASL was sequenced (n = 19) and 20 mutations were found. Plasma argininosuccinate was higher in early-onset compared to late-onset patients. CONCLUSIONS: Our study further defines the natural history of argininosuccinic aciduria and genotype-phenotype correlations. The neurological phenotype does not correlate with the severity of hyperammonaemia and plasma argininosuccinic acid levels. The disturbance in nitric oxide synthesis may be a contributor to the neurological disease. Clinical trials providing nitric oxide to the brain merit consideration.


Argininosuccinic Aciduria/pathology , Argininosuccinic Aciduria/therapy , Adolescent , Adult , Ammonia/metabolism , Argininosuccinic Acid/blood , Argininosuccinic Aciduria/blood , Argininosuccinic Aciduria/genetics , Child , Child, Preschool , Female , Follow-Up Studies , Genotype , Humans , Hyperammonemia/metabolism , Hyperammonemia/pathology , Infant , Infant, Newborn , Male , Middle Aged , Mutation/genetics , Phenotype , Prospective Studies , Retrospective Studies , Young Adult
14.
J Inherit Metab Dis ; 40(3): 455-460, 2017 05.
Article En | MEDLINE | ID: mdl-28283844

Premature death in untreated children with Hurler syndrome (HS) in the first decade of life is largely due to life-threatening cardiopulmonary complications. We examined the long-term survival and cardiopulmonary outcome in 54 children undergoing haematopoietic stem cell transplantation (HSCT) at the Royal Manchester Children's Hospital from 1985 to 2008. The median age at first HSCT was 15.1 months. Eighteen had graft failure and nine died after first HSCT. Of 18 patients with graft failure, 17 underwent second HSCT and the remaining one was lost to follow-up (LOF). Twelve were alive-and-engrafted after second HSCT. The overall survival at one year and 20-years was the same at 73.7%. Six children were followed up at the referral centers and excluded from cardiopulmonary endpoint review. Of the 33 evaluable children for the cardiopulmonary endpoints, nine (27.3%) had normal cardiac assessment. Of the four children on angiotensin-converting-enzyme inhibitors, two had mild cardiomyopathy and two had aortic valvular replacement. Twenty (60%) had mild/moderate mitral and/or aortic insufficiencies. Two had overnight hypoxia needing nocturnal non-invasive support. Enzyme level and donor chimerism are important predictors of long-term cardiac outcome.


Heart Diseases/etiology , Lung Diseases/etiology , Mucopolysaccharidosis I/complications , Mucopolysaccharidosis I/mortality , Child, Preschool , Female , Graft vs Host Disease/mortality , Heart Diseases/mortality , Heart Diseases/pathology , Hematopoietic Stem Cell Transplantation , Humans , Infant , Lung Diseases/mortality , Male , Treatment Outcome
15.
Mol Genet Metab Rep ; 8: 67-73, 2016 Sep.
Article En | MEDLINE | ID: mdl-27536552

UNLABELLED: Mucopolysaccharidosis type I (MPS I) is an inherited lysosomal storage disease. Affected individuals have disease ranging from attenuated to severe with significant disease burden, disability, and premature death. Early treatment with enzyme replacement therapy and/or stem cell transplantation can reduce disease progression and improve outcomes. However, diagnosis is often delayed, particularly for patients with attenuated phenotypes. We conducted a survey of 168 patients and 582 physicians to explore health care seeking patterns and familiarity of physicians with MPS I symptoms. Patients with attenuated MPS I typically first presented with stiff joints or hernia/bulging abdomen, and patients with severe disease with noisy/difficult breathing, or hernia/bulging abdomen. There was a mean delay from time of symptom presentation to diagnosis of 2.7 years for patients with attenuated disease, with a mean of 5 physicians consulted before receiving a correct diagnosis. MPS I was most commonly misidentified by physicians as rheumatoid arthritis (48-72%), with a wide variety of suspected diseases, including lupus. CONCLUSION: Patient and physician real-world surveys show that MPS I is under-recognized and diagnosis of MPS I remains delayed, particularly in patients with attenuated disease. Across regions and specialties, physicians require differential diagnosis education in order to improve early detection and early treatment initiation of MPS I.

17.
J Inherit Metab Dis ; 38(3): 417-26, 2015 May.
Article En | MEDLINE | ID: mdl-25326274

OBJECTIVES: TMEM70 deficiency is the most common nuclear-encoded defect affecting the ATP synthase. In this multicentre retrospective study we characterise the natural history of the disease, treatment and outcome in 48 patients with mutations in TMEM70. Eleven centers from eight European countries, Turkey and Israel participated. RESULTS: All 27 Roma and eight non-Roma patients were homozygous for the common mutation c.317-2A > G. Five patients were compound heterozygotes for the common mutation and mutations c.470 T > A, c.628A > C, c.118_119insGT or c.251delC. Six Arab Muslims and two Turkish patients were homozygous for mutations c.238C > T, c.316 + 1G > T, c.336 T > A, c.578_579delCA, c.535C > T, c.359delC. Age of onset was neonatal in 41 patients, infantile in six cases and two years in one child. The most frequent symptoms at onset were poor feeding, hypotonia, lethargy, respiratory and heart failure, accompanied by lactic acidosis, 3-methylglutaconic aciduria and hyperammonaemia. Symptoms further included: developmental delay (98%), hypotonia (95%), faltering growth (94%), short stature (89%), non-progressive cardiomyopathy (89%), microcephaly (71%), facial dysmorphism (66%), hypospadias (50% of the males), persistent pulmonary hypertension of the newborn (22%) and Wolff-Parkinson-White syndrome (13%). One or more acute metabolic crises occurred in 24 surviving children, frequently followed by developmental regression. Hyperammonaemic episodes responded well to infusion with glucose and lipid emulsion, and ammonia scavengers or haemodiafiltration. Ten-year survival was 63%, importantly for prognostication, no child died after the age of five years. CONCLUSION: TMEM70 deficiency is a panethnic, multisystemic disease with variable outcome depending mainly on adequate management of hyperammonaemic crises in the neonatal period and early childhood.


Hyperammonemia/genetics , Membrane Proteins/deficiency , Membrane Proteins/genetics , Mitochondrial Proteins/deficiency , Mitochondrial Proteins/genetics , Muscle, Skeletal/pathology , Acidosis, Lactic/genetics , Adolescent , Adult , Cardiomyopathies/genetics , Child , Child, Preschool , Disease Management , Europe , Female , Heterozygote , Homozygote , Humans , Infant , Infant, Newborn , Israel , Kaplan-Meier Estimate , Male , Metabolism, Inborn Errors/genetics , Mutation , Retrospective Studies , Turkey , Young Adult
18.
J Inherit Metab Dis ; 38(3): 445-57, 2015 May.
Article En | MEDLINE | ID: mdl-25352051

BACKGROUND: Single large-scale mitochondrial DNA (mtDNA) deletions (SLSMDs) are amongst the most frequently diagnosed mtDNA disorders in childhood, yet their natural history remains poorly understood. We report the natural history of a large multicentre cohort of such children. METHODS: We reviewed case notes from three different UK centres to determine the clinical course of 34 patients (16 female, 18 male) with childhood-onset mitochondrial disease caused by SLSMDs. Kaplan-Meier analysis was used to compare survival of patients presenting with haematological features (Pearson syndrome) and those with nonhaematological presentations. RESULTS: The most frequent initial presentation was with isolated ptosis (16/34, 47%). Eleven (32%) patients presented with transfusion-dependent anaemia soon after birth and were diagnosed with Pearson syndrome, whilst ten were classified as having Kearns-Sayre syndrome, three as having progressive external ophthalmoplegia (PEO) and seven as having PEO-plus. Three patients did not conform to any specific mitochondrial syndrome. The most frequently affected organ during the disease course was the kidney, with documented tubular or glomerular dysfunction in 17 of 20 (85%) cases who had detailed investigations. SLSMDs were present in blood and/or urine cells in all cases tested, indicating that muscle biopsy is not necessary for diagnosis in the paediatric age range. Kaplan-Meier survival analysis revealed significantly worse mortality in patients with Pearson syndrome compared with the rest of the cohort. CONCLUSIONS: Mitochondrial disease caused by SLSMDs is clinically heterogeneous, and not all cases conform to a classical mitochondrial syndrome. Multisystem disease is the norm, with anaemia, renal impairment and endocrine disturbance being the most frequent extraneurological features. SLSMDs should be considered in the differential diagnosis of all children presenting with ptosis.


Acyl-CoA Dehydrogenase, Long-Chain/deficiency , Blepharoptosis/genetics , DNA, Mitochondrial/genetics , Kearns-Sayre Syndrome/genetics , Lipid Metabolism, Inborn Errors/genetics , Mitochondrial Diseases/genetics , Muscle, Skeletal/pathology , Muscular Diseases/genetics , Sequence Deletion/genetics , Acyl-CoA Dehydrogenase, Long-Chain/genetics , Adolescent , Adult , Child , Child, Preschool , Cohort Studies , Congenital Bone Marrow Failure Syndromes , Female , Humans , Infant , Infant, Newborn , Kaplan-Meier Estimate , Male , Young Adult
19.
Brain ; 137(Pt 1): 44-56, 2014 Jan.
Article En | MEDLINE | ID: mdl-24253200

Childhood onset motor neuron diseases or neuronopathies are a clinically heterogeneous group of disorders. A particularly severe subgroup first described in 1894, and subsequently called Brown-Vialetto-Van Laere syndrome, is characterized by progressive pontobulbar palsy, sensorineural hearing loss and respiratory insufficiency. There has been no treatment for this progressive neurodegenerative disorder, which leads to respiratory failure and usually death during childhood. We recently reported the identification of SLC52A2, encoding riboflavin transporter RFVT2, as a new causative gene for Brown-Vialetto-Van Laere syndrome. We used both exome and Sanger sequencing to identify SLC52A2 mutations in patients presenting with cranial neuropathies and sensorimotor neuropathy with or without respiratory insufficiency. We undertook clinical, neurophysiological and biochemical characterization of patients with mutations in SLC52A2, functionally analysed the most prevalent mutations and initiated a regimen of high-dose oral riboflavin. We identified 18 patients from 13 families with compound heterozygous or homozygous mutations in SLC52A2. Affected individuals share a core phenotype of rapidly progressive axonal sensorimotor neuropathy (manifesting with sensory ataxia, severe weakness of the upper limbs and axial muscles with distinctly preserved strength of the lower limbs), hearing loss, optic atrophy and respiratory insufficiency. We demonstrate that SLC52A2 mutations cause reduced riboflavin uptake and reduced riboflavin transporter protein expression, and we report the response to high-dose oral riboflavin therapy in patients with SLC52A2 mutations, including significant and sustained clinical and biochemical improvements in two patients and preliminary clinical response data in 13 patients with associated biochemical improvements in 10 patients. The clinical and biochemical responses of this SLC52A2-specific cohort suggest that riboflavin supplementation can ameliorate the progression of this neurodegenerative condition, particularly when initiated soon after the onset of symptoms.


Bulbar Palsy, Progressive/genetics , Hearing Loss, Sensorineural/genetics , Mutation/genetics , Receptors, G-Protein-Coupled/genetics , Adolescent , Brain/pathology , Bulbar Palsy, Progressive/drug therapy , Carnitine/analogs & derivatives , Carnitine/blood , Child , Child, Preschool , Exome/genetics , Female , Genotype , Hearing Loss, Sensorineural/drug therapy , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Microarray Analysis , Motor Neuron Disease/physiopathology , Neurologic Examination , Pedigree , RNA/biosynthesis , RNA/genetics , Riboflavin/therapeutic use , Sequence Analysis, DNA , Sural Nerve/pathology , Vitamins/therapeutic use , Young Adult
20.
Arch Dis Child Educ Pract Ed ; 97(2): 72-7; answer to quiz pg 80, 2012 Apr.
Article En | MEDLINE | ID: mdl-22101094

Hyperammonaemia is a potentially extremely important indicator of impairment in intermediate metabolism. However, lack of experience in sample handling and confusion about what level is significant, can lead to its devaluation as a test. The aim of this article is to help the non-metabolic specialist to decide when it is appropriate to investigate for hyperammonaemia, to discuss potential investigatory pitfalls and to help in interpretation of results.


Ammonia/blood , Hyperammonemia/blood , Hyperammonemia/diagnosis , Metabolic Diseases/blood , Metabolic Diseases/diagnosis , Child , Child, Preschool , Education, Medical, Continuing , Humans , Hyperammonemia/epidemiology , Infant , Metabolic Diseases/epidemiology , Prognosis , Risk Factors
...