Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Cell Host Microbe ; 29(11): 1693-1708.e7, 2021 11 10.
Article in English | MEDLINE | ID: mdl-34637781

ABSTRACT

Leveraging systems biology approaches, we illustrate how metabolically distinct species of Clostridia protect against or worsen Clostridioides difficile infection in mice by modulating the pathogen's colonization, growth, and virulence to impact host survival. Gnotobiotic mice colonized with the amino acid fermenter Paraclostridium bifermentans survive infection with reduced disease severity, while mice colonized with the butyrate-producer, Clostridium sardiniense, succumb more rapidly. Systematic in vivo analyses revealed how each commensal alters the gut-nutrient environment to modulate the pathogen's metabolism, gene regulatory networks, and toxin production. Oral administration of P. bifermentans rescues conventional, clindamycin-treated mice from lethal C. difficile infection in a manner similar to that of monocolonized animals, thereby supporting the therapeutic potential of this commensal species. Our findings lay the foundation for mechanistically informed therapies to counter C. difficile disease using systems biology approaches to define host-commensal-pathogen interactions in vivo.


Subject(s)
Clostridiales/physiology , Clostridioides difficile/pathogenicity , Clostridium Infections/microbiology , Clostridium Infections/therapy , Clostridium/physiology , Symbiosis , Amino Acids/metabolism , Animals , Arginine/metabolism , Butyrates/metabolism , Cecum/metabolism , Cecum/microbiology , Clostridiales/growth & development , Clostridioides difficile/genetics , Clostridioides difficile/physiology , Clostridium/growth & development , Fermentation , Gene Expression Profiling , Gene Expression Regulation, Bacterial , Gene Regulatory Networks , Germ-Free Life , Mice , Severity of Illness Index , Systems Biology , Virulence
2.
Clin Infect Dis ; 73(7): e1727-e1736, 2021 10 05.
Article in English | MEDLINE | ID: mdl-32676661

ABSTRACT

BACKGROUND: Clostridioides difficile infections (CDIs) are among the most prevalent hospital-associated infections (HAIs), particularly for intensive care unit (ICU) patients. The risks for developing active CDI from asymptomatic carriage of C. difficile are not well understood. METHODS: We identified asymptomatic C. difficile carriage among 1897 ICU patients using rectal swabs from an existing ICU vancomycin-resistant enterococci (VRE) surveillance program. C. difficile isolates from VRE swabs, and from C. difficile-positive stool samples, were genome sequenced. Spatial-temporal data from hospital records assessed genomically identified clusters for potential transmission events. RESULTS: Genomic analyses identified a diverse set of strains in infected patients and asymptomatic carriers. A total of 7.4% of ICU patients asymptomatically carried C. difficile; 69% of isolates carried an intact toxin locus. In contrast, 96% of C. difficile stool isolates were toxin encoding. CDI rates in asymptomatic carriers of toxin-encoding strains were 5.3% versus 0.57% in noncarriers. The relative risk for CDI with asymptomatic carriage of a toxin-encoding strain was 9.32 (95% confidence interval, 3.25-26.7). Genomic identification of clonal clusters supported analyses for asymptomatic transmission events, with spatial-temporal overlaps identified in 13 of 28 cases. CONCLUSIONS: Our studies provide the first genomically confirmed assessments of CDI relative risk from asymptomatic carriage of toxin-encoding strains and highlight the complex dynamics of asymptomatic transmission in ICUs. Asymptomatic carriers are an active reservoir of C. difficile in the nosocomial environment. C. difficile screening can be implemented within existing HAI surveillance programs and has the potential to support infection-control efforts against this pathogen.


Subject(s)
Clostridioides difficile , Clostridium Infections , Clostridioides , Clostridioides difficile/genetics , Clostridium Infections/epidemiology , Genomics , Humans , Intensive Care Units , Risk
SELECTION OF CITATIONS
SEARCH DETAIL