Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
Inn Med (Heidelb) ; 2024 Jun 03.
Article in German | MEDLINE | ID: mdl-38831047

ABSTRACT

Elevated high-sensitivity cardiac troponin (hs-cTn) levels should be expected in about half of all patients with acute ischemic stroke (AIS). Since those patients are at risk of increased morbidity and mortality, often attributable to cardiac causes, an adequate work-up of the underlying etiology is required. This can only be achieved by a team of cardiologists and neurologists. Since underlying causes of hs-cTn elevation in AIS patients are diverse, often atypical or silent in their clinical presentation and some, such as an accompanying myocardial infarction, can be acutely life-threatening, the work-up should follow a standardized clinical algorithm. The vast majority of hs-cTn elevations are caused by non-ischemic myocardial injury associated with AIS. This work presents a practice-oriented approach to differential diagnosis with the update of the Mannheim clinical algorithm for acute ischemic stroke and troponin elevation.

2.
Sci Adv ; 10(5): eadi9091, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38306431

ABSTRACT

H3K27M, a driver mutation with T and B cell neoepitope characteristics, defines an aggressive subtype of diffuse glioma with poor survival. We functionally dissect the immune response of one patient treated with an H3K27M peptide vaccine who subsequently entered complete remission. The vaccine robustly expanded class II human leukocyte antigen (HLA)-restricted peripheral H3K27M-specific T cells. Using functional assays, we characterized 34 clonally unique H3K27M-reactive T cell receptors and identified critical, conserved motifs in their complementarity-determining region 3 regions. Using detailed HLA mapping, we further demonstrate that diverse HLA-DQ and HLA-DR alleles present immunogenic H3K27M epitopes. Furthermore, we identified and profiled H3K27M-reactive B cell receptors from activated B cells in the cerebrospinal fluid. Our results uncover the breadth of the adaptive immune response against a shared clonal neoantigen across multiple HLA allelotypes and support the use of class II-restricted peptide vaccines to stimulate tumor-specific T and B cells harboring receptors with therapeutic potential.


Subject(s)
Glioma , T-Lymphocytes , Humans , HLA-DR Antigens , Vaccination , Glioma/genetics , Epitopes
3.
Front Neurosci ; 18: 1326108, 2024.
Article in English | MEDLINE | ID: mdl-38332857

ABSTRACT

Introduction: Multiple sclerosis (MS) is a chronic neurological disorder characterized by the progressive loss of myelin and axonal structures in the central nervous system. Accurate detection and monitoring of MS-related changes in brain structures are crucial for disease management and treatment evaluation. We propose a deep learning algorithm for creating Voxel-Guided Morphometry (VGM) maps from longitudinal MRI brain volumes for analyzing MS disease activity. Our approach focuses on developing a generalizable model that can effectively be applied to unseen datasets. Methods: Longitudinal MS patient high-resolution 3D T1-weighted follow-up imaging from three different MRI systems were analyzed. We employed a 3D residual U-Net architecture with attention mechanisms. The U-Net serves as the backbone, enabling spatial feature extraction from MRI volumes. Attention mechanisms are integrated to enhance the model's ability to capture relevant information and highlight salient regions. Furthermore, we incorporate image normalization by histogram matching and resampling techniques to improve the networks' ability to generalize to unseen datasets from different MRI systems across imaging centers. This ensures robust performance across diverse data sources. Results: Numerous experiments were conducted using a dataset of 71 longitudinal MRI brain volumes of MS patients. Our approach demonstrated a significant improvement of 4.3% in mean absolute error (MAE) against the state-of-the-art (SOTA) method. Furthermore, the algorithm's generalizability was evaluated on two unseen datasets (n = 116) with an average improvement of 4.2% in MAE over the SOTA approach. Discussion: Results confirm that the proposed approach is fast and robust and has the potential for broader clinical applicability.

4.
Commun Med (Lond) ; 3(1): 186, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38110626

ABSTRACT

BACKGROUND: Concurrent malignant brain tumors in patients with multiple sclerosis (MS) constitute a rare but paradigmatic phenomenon for studying neuroimmunological mechanisms from both molecular and clinical perspectives. METHODS: A multicenter cohort of 26 patients diagnosed with both primary brain tumors and multiple sclerosis was studied for disease localization, tumor treatment-related MS activity, and molecular characteristics specific for diffuse glioma in MS patients. RESULTS: MS neither predisposes nor protects from the development of gliomas. Patients with glioblastoma WHO grade 4 without isocitratdehydrogenase (IDH) mutations have a longstanding history of MS, whereas patients diagnosed with IDH-mutant astrocytoma WHO grade 2 receive multiple sclerosis diagnosis mostly at the same time or later. Concurrent MS is associated with a lesser extent of tumor resection and a worse prognosis in IDH-mutant glioma patients (PFS 32 vs. 64 months, p = 0.0206). When assessing tumor-intrinsic differences no distinct subgroup-defining methylation pattern is identified in gliomas of MS patients compared to other glioma samples. However, differential methylation of immune-related genetic loci including human leukocyte antigen locus on 6p21 and interleukin locus on 5q31 is found in MS patients vs. matched non-MS patients. In line, inflammatory disease activity increases in 42% of multiple sclerosis patients after brain tumor radiotherapy suggesting a susceptibility of multiple sclerosis brain tissue to pro-inflammatory stimuli such as ionizing radiation. CONCLUSIONS: Concurrent low-grade gliomas should be considered in multiple sclerosis patients with slowly progressive, expansive T2/FLAIR lesions. Our findings of typically reduced extent of resection in MS patients and increased MS activity after radiation may inform future treatment decisions.


Brain tumors such as gliomas can evade attacks by the immune system. In contrast, some diseases of the central nervous system such as multiple sclerosis (MS) are caused by an overactive immune system. Our study looks at a cohort of rare patients with both malignant glioma and concurrent MS and examines how each disease and their treatments affect each other. Our data suggest that even in patients with known MS, if medical imaging findings are unusual, a concurrent brain tumor should be excluded at an early stage. Radiotherapy, as is the standard of care for malignant brain tumors, may worsen the inflammatory disease activity in MS patients, which may be associated with certain genetic risk factors. Our findings may help to inform treatment of patients with brain tumors and MS.

5.
Acta Neuropathol ; 146(5): 707-724, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37715818

ABSTRACT

In multiple sclerosis (MS), sustained inflammatory activity can be visualized by iron-sensitive magnetic resonance imaging (MRI) at the edges of chronic lesions. These paramagnetic rim lesions (PRLs) are associated with clinical worsening, although the cell type-specific and molecular pathways of iron uptake and metabolism are not well known. We studied two postmortem cohorts: an exploratory formalin-fixed paraffin-embedded (FFPE) tissue cohort of 18 controls and 24 MS cases and a confirmatory snap-frozen cohort of 6 controls and 14 MS cases. Besides myelin and non-heme iron imaging, the haptoglobin-hemoglobin scavenger receptor CD163, the iron-metabolizing markers HMOX1 and HAMP as well as immune-related markers P2RY12, CD68, C1QA and IL10 were visualized in myeloid cell (MC) subtypes at RNA and protein levels across different MS lesion areas. In addition, we studied PRLs in vivo in a cohort of 98 people with MS (pwMS) via iron-sensitive 3 T MRI and haptoglobin genotyping by PCR. CSF samples were available from 38 pwMS for soluble CD163 (sCD163) protein level measurements by ELISA. In postmortem tissues, we observed that iron uptake was linked to rim-associated C1QA-expressing MC subtypes, characterized by upregulation of CD163, HMOX1, HAMP and, conversely, downregulation of P2RY12. We found that pwMS with [Formula: see text] 4 PRLs had higher sCD163 levels in the CSF than pwMS with [Formula: see text] 3 PRLs with sCD163 correlating with the number of PRLs. The number of PRLs was associated with clinical worsening but not with age, sex or haptoglobin genotype of pwMS. However, pwMS with Hp2-1/Hp2-2 haplotypes had higher clinical disability scores than pwMS with Hp1-1. In summary, we observed upregulation of the CD163-HMOX1-HAMP axis in MC subtypes at chronic active lesion rims, suggesting haptoglobin-bound hemoglobin but not transferrin-bound iron as a critical source for MC-associated iron uptake in MS. The correlation of CSF-associated sCD163 with PRL counts in MS highlights the relevance of CD163-mediated iron uptake via haptoglobin-bound hemoglobin. Also, while Hp haplotypes had no noticeable influence on PRL counts, pwMS carriers of a Hp2 allele might have a higher risk to experience clinical worsening.


Subject(s)
Multiple Sclerosis , Humans , Multiple Sclerosis/pathology , Iron/metabolism , Haptoglobins/genetics , Haptoglobins/metabolism , Biomarkers , Hemoglobins/metabolism , Myeloid Cells/pathology , Magnetic Resonance Imaging
6.
Nat Med ; 29(10): 2586-2592, 2023 10.
Article in English | MEDLINE | ID: mdl-37735561

ABSTRACT

Substitution of lysine 27 to methionine in histone H3 (H3K27M) defines an aggressive subtype of diffuse glioma. Previous studies have shown that a H3K27M-specific long peptide vaccine (H3K27M-vac) induces mutation-specific immune responses that control H3K27M+ tumors in major histocompatibility complex-humanized mice. Here we describe a first-in-human treatment with H3K27M-vac of eight adult patients with progressive H3K27M+ diffuse midline glioma on a compassionate use basis. Five patients received H3K27M-vac combined with anti-PD-1 treatment based on physician's discretion. Repeat vaccinations with H3K27M-vac were safe and induced CD4+ T cell-dominated, mutation-specific immune responses in five of eight patients across multiple human leukocyte antigen types. Median progression-free survival after vaccination was 6.2 months and median overall survival was 12.8 months. One patient with a strong mutation-specific T cell response after H3K27M-vac showed pseudoprogression followed by sustained complete remission for >31 months. Our data demonstrate safety and immunogenicity of H3K27M-vac in patients with progressive H3K27M+ diffuse midline glioma.


Subject(s)
Brain Neoplasms , Glioma , Vaccines , Humans , Adult , Animals , Mice , Brain Neoplasms/genetics , Brain Neoplasms/therapy , Histones/genetics , Glioma/genetics , Glioma/therapy , Mutation/genetics
7.
J Neuroimaging ; 33(6): 904-908, 2023.
Article in English | MEDLINE | ID: mdl-37491626

ABSTRACT

BACKGROUND AND PURPOSE: In multiple sclerosis (MS), brain atrophy measurements have emerged as an important biomarker reflecting neurodegeneration and disability progression. However, due to several potential confounders, investigation of brain atrophy in clinical routine and even in controlled clinical studies can be challenging. The aim of this study was to investigate the short-term dynamics of brain atrophy development after initiation of disease-modifying therapy (DMT) in a "real-world setting." METHODS: In this retrospective study, we included MS patients starting DMT (natalizumab, fingolimod, dimethyl fumarate, or interferon-ß1a) or without DMT, availability of a baseline MRI, and two annual follow-up scans on the same MRI system. Two-timepoint percentage brain volume changes (PBVCs) were calculated. RESULTS: Fifty-five MS patients (12 patients starting DMT with natalizumab, 7 fingolimod, 14 dimethyl fumarate, 11 interferon-ß1a, and 11 patients without DMT) were included. We found the highest PBVCs in the first 12 months after initiation of natalizumab treatment. Furthermore, the PBVCs in our study were very much comparable to the results observed by other groups, as well as for fingolimod, dimethyl fumarate, and interferon-ß1a. CONCLUSION: We found PBVCs that are comparable to the results of previous studies, suggesting that brain atrophy, assessed on 3D MRI data sets acquired on the same 3T MRI, provides a robust MS biomarker.


Subject(s)
Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , Humans , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/drug therapy , Multiple Sclerosis/pathology , Fingolimod Hydrochloride/therapeutic use , Immunosuppressive Agents/therapeutic use , Natalizumab/therapeutic use , Dimethyl Fumarate/therapeutic use , Retrospective Studies , Brain/diagnostic imaging , Brain/pathology , Interferons/therapeutic use , Immunotherapy , Atrophy/pathology , Biomarkers , Multiple Sclerosis, Relapsing-Remitting/pathology
8.
Mult Scler ; 29(4-5): 549-558, 2023 04.
Article in English | MEDLINE | ID: mdl-37119207

ABSTRACT

BACKGROUND: In multiple sclerosis (MS), iron rim lesions (IRLs) are associated with pronounced tissue damage, higher disease severity and have been suggested as an imaging marker of chronic active inflammation behind the blood-brain barrier indicating progression. Furthermore, chronic intrathecal compartmentalized inflammation has been suggested to be a mediator of a cerebrospinal fluid (CSF)-related tissue damage. OBJECTIVE: To investigate CSF markers of intrathecal inflammation in patients with at least one IRL compared to patients without IRLs and to investigate tissue damage in lesions and normal-appearing white matter (NAWM) with proximity to CSF spaces. METHODS: A total of 102 patients (51 with at least 1 IRL and 51 age-/sex-matched patients without IRL) scanned with the same 3T magnetic resonance imaging (MRI) and having CSF analysis data were included. RESULTS: Patients with at least one IRL had higher disability scores, higher lesion volumes, lower brain volumes and a higher intrathecal immunoglobulin G (IgG) synthesis. Apparent diffusion coefficient (ADC) values in IRLs were higher compared to non-IRLs. We observed a negative linear correlation of ADC values in all tissue classes and distance to CSF, which was stronger in patients with high IgG quotients. CONCLUSION: IRLs are associated with higher intrathecal IgG synthesis. CSF-mediated intrathecal smouldering inflammation could explain a CSF-related gradient of tissue damage.


Subject(s)
Multiple Sclerosis , Humans , Multiple Sclerosis/complications , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/cerebrospinal fluid , Iron , Magnetic Resonance Imaging , Immunoglobulin G , Inflammation/pathology , Brain/pathology
9.
J Neuroimaging ; 33(2): 240-246, 2023 03.
Article in English | MEDLINE | ID: mdl-36504270

ABSTRACT

BACKGROUND AND PURPOSE: In multiple sclerosis (MS), iron rim lesions (IRLs) are characterized by pronounced tissue matrix damage. The T1/T2-weighted (T1/T2w) ratio represents a postprocessing MRI approach to investigate tissue integrity, but studies investigating spinal cord pathology are missing until now. The aim of this study was to characterize tissue integrity using the T1/T2w ratio in lesions and the normal-appearing white and gray matter (NAWM, NAGM) in the spinal cord and brain in MS patients with and without brain IRLs. METHODS: Forty MS patients (20 patients with at least one brain IRL and 20 age- and sex-matched patients without IRLs) were included. Normalized cross-sectional area (nCSA) of the upper cervical cord was calculated in addition to T1/T2w values and standard brain and spinal cord MRI parameters. RESULTS: Patients with IRLs had higher disability scores, a smaller nCSA, and a higher cervical T2 lesion volume. T1/T2w values of brain IRLs were significantly lower compared to non-IRLs (p < .001). Furthermore, T1/T2w values of lesions were significantly lower compared to the NAGM and NAWM, both in the brain and the spinal cord (p < .05 for all comparisons). T1/T2w values of the NAGM and NAWM in the brain and spinal cord did not statistically differ between the IRL group and the non-IRL group. CONCLUSION: IRLs constitute an imaging marker of disease severity. T1/T2w ratio maps represent an interesting technique to capture diffuse tissue properties. Calculation of T1/T2w ratio maps of the spinal cord might provide additional insights into the pathophysiological processes of MS.


Subject(s)
Cervical Cord , Multiple Sclerosis , Humans , Multiple Sclerosis/pathology , Cervical Cord/pathology , Spinal Cord/pathology , Magnetic Resonance Imaging/methods , Brain/pathology
10.
Magn Reson Imaging ; 95: 12-18, 2023 01.
Article in English | MEDLINE | ID: mdl-36270415

ABSTRACT

OBJECTIVE: In multiple sclerosis (MS), iron rim lesions (IRLs) on magnetic resonance imaging (MRI) are associated with pronounced intralesional tissue damage. The aim of this study was to investigate (peri-)lesional and structural connectivity tissue damage in IRLs compared to non-IRLs. MATERIAL AND METHODS: MRI was acquired on a 3 T system. Tissue integrity was assessed using the T1/T2-weighted (T1/T2w) ratio. Furthermore, we assessed the impact on structural network connectivity accounting for differences in lesion volumes and T1/T2w values. RESULTS: Seventy-six patients (38 with at least one IRL and 38 age- and sex-matched patients without IRLs) were included. In the IRL-group, T1/T2w ratios of IRLs were significantly lower compared to non-IRLs (p < 0.05). When comparing the T1/T2w ratios in non-IRLs between the IRL-group and non-IRL group, there was no significant difference (p = 0.887). We observed a centrifugal decrease in microstructural damage from lesions to the perilesional white matter. In the IRL-group, T1/T2w ratios in the perilesional white matter 3-8 mm distant to the lesion were significantly lower in IRLs compared to non-IRLs. We found no significant differences in the amount of network disruption between both lesion types (p = 0.122). CONCLUSION: T1/T2w represents an interesting candidate to capture a pronounced intra- and perilesional tissue damage of IRLs. However, our preliminary results suggest that a pronounced tissue damage might not result in a higher disruption to structural connectivity networks in IRLs.


Subject(s)
Multiple Sclerosis , White Matter , Humans , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology , Iron , Brain/pathology , White Matter/pathology , Magnetic Resonance Imaging/methods
11.
J Neurol Neurosurg Psychiatry ; 94(1): 10-18, 2023 01.
Article in English | MEDLINE | ID: mdl-36171105

ABSTRACT

OBJECTIVES: To evaluate the combined contribution of brain and cervical cord damage in predicting 5-year clinical worsening in a multicentre cohort of definite multiple sclerosis (MS) patients. METHODS: Baseline 3.0T brain and cervical cord T2-weighted and three-dimensional T1-weighted MRI was acquired in 367 patients with MS (326 relapse-onset and 41 progressive-onset) and 179 healthy controls. Expanded Disability Status Scale (EDSS) score was obtained at baseline and after a median follow-up of 5.1 years (IQR=4.8-5.2). At follow-up, patients were classified as clinically stable/worsened according to EDSS changes. Generalised linear mixed models identified predictors of clinical worsening, evolution to secondary progressive (SP) MS and reaching EDSS=3.0, 4.0 and 6.0 milestones at 5 years. RESULTS: At follow-up, 120/367 (33%) patients with MS worsened clinically; 36/256 (14%) patients with relapsing-remitting evolved to SPMS. Baseline predictors of EDSS worsening were progressive-onset versus relapse-onset MS (standardised beta (ß)=0.97), higher EDSS (ß=0.41), higher cord lesion number (ß=0.41), lower normalised cortical volume (ß=-0.15) and lower cord area (ß=-0.28) (C-index=0.81). Older age (ß=0.86), higher EDSS (ß=1.40) and cord lesion number (ß=0.87) independently predicted SPMS conversion (C-index=0.91). Predictors of reaching EDSS=3.0 after 5 years were higher baseline EDSS (ß=1.49), cord lesion number (ß=1.02) and lower normalised cortical volume (ß=-0.56) (C-index=0.88). Baseline age (ß=0.30), higher EDSS (ß=2.03), higher cord lesion number (ß=0.66) and lower cord area (ß=-0.41) predicted EDSS=4.0 (C-index=0.92). Finally, higher baseline EDSS (ß=1.87) and cord lesion number (ß=0.54) predicted EDSS=6.0 (C-index=0.91). CONCLUSIONS: Spinal cord damage and, to a lesser extent, cortical volume loss helped predicting worse 5-year clinical outcomes in MS.


Subject(s)
Multiple Sclerosis, Chronic Progressive , Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , Spinal Cord Diseases , Humans , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology , Gray Matter/diagnostic imaging , Gray Matter/pathology , Magnetic Resonance Imaging/methods , Multiple Sclerosis, Chronic Progressive/diagnostic imaging , Multiple Sclerosis, Chronic Progressive/pathology , Atrophy/pathology , Spinal Cord Diseases/pathology , Brain/diagnostic imaging , Brain/pathology , Recurrence , Multiple Sclerosis, Relapsing-Remitting/diagnostic imaging , Multiple Sclerosis, Relapsing-Remitting/pathology , Spinal Cord/diagnostic imaging , Spinal Cord/pathology , Disability Evaluation
12.
Mult Scler ; 28(14): 2294-2298, 2022 12.
Article in English | MEDLINE | ID: mdl-35778799

ABSTRACT

We investigated the impact of disease-modifying therapies (DMTs) on the evolving tissue damage in iron rim multiple sclerosis lesions using a novel post-processing magnetic resonance imaging (MRI) approach, the T1/T2 ratio. In this study, on baseline and 1-year follow-up, T1/T2 ratios of iron rim lesions (IRLs) in patients starting DMT (dimethyl fumarate, fingolimod, ocrelizumab) did not statistically differ compared to patients without DMT. At the second follow-up, T1/T2 ratios were significantly lower in IRLs in patients without DMT (p = 0.002), suggesting that DMTs have a beneficial delayed effect on lesion evolution and tissue matrix damage in IRLs.


Subject(s)
Multiple Sclerosis , Humans , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/drug therapy , Multiple Sclerosis/pathology , Iron , Fingolimod Hydrochloride , Dimethyl Fumarate , Magnetic Resonance Imaging
13.
Mult Scler Relat Disord ; 64: 103967, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35728430

ABSTRACT

BACKGROUND: In multiple sclerosis (MS), iron rim lesions (IRLs) on magnetic resonance imaging (MRI) have been suggested as an imaging marker of disease progression. However, the exact mechanisms how they contribute to disability are yet not completely known. Strategic lesion location may be an important factor concerning the impact of focal lesions on clinical disability. Therefore, the aim of this study was to investigate the spatial distribution of IRLs compared to non-IRLs and their impact on disability. METHODS: We retrospectively identified 67 patients with at least one IRL on MRI and 67 age- and sex-matched patients without IRLs. We compared the spatial distribution of lesions between both groups and between IRLs and non-IRLs in patients with IRLs. Furthermore, we assessed the relationship between lesion localisation and disability on a voxel-by-voxel basis and investigated the impact on structural network disruptions. RESULTS: Patients with IRLs had higher disability scores (median Expanded Disability Status Scale score (range): 3.0 (0 - 8.5) versus 1.5 (0 - 6.5); p = 0.001; median pyramidal functional system score (range): 1.0 (0 - 5) versus 0 (0 - 4); p = 0.003), significantly lower brain volumes (mean normal-appearing grey matter volume: 749.66 ± 60.58 versus 785.83 ± 53.71 mL; mean normal-appearing white matter volume: 723.58 ± 60.13 versus 753.25 ± 69.61 mL; mean deep grey matter volume: 33.21 ± 4.19 versus 35.85 ± 4.89 mL; p < 0.05 for all comparisons) and a significantly higher total T2 lesion volume (mean: 9.96 ± 11.6 versus 4.31 ± 8.9 mL; p < 0.001). We found no neuroanatomical regions that were more often affected by IRLs. Furthermore, comparing the overall network disruption in the IRL group, IRLs caused less network disruption/mL lesion size compared to non-IRLs (1.54% / mL versus 2.0% / mL; p < 0.05). CONCLUSION: IRLs are associated with higher disability scores. However, our results suggest that a higher disability is not explained by the sheer topography of IRLs or their network disruption.


Subject(s)
Multiple Sclerosis , White Matter , Brain/diagnostic imaging , Brain/pathology , Humans , Iron , Magnetic Resonance Imaging/methods , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology , Retrospective Studies , White Matter/pathology
14.
J Neurol ; 269(8): 4414-4420, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35332392

ABSTRACT

BACKGROUND: In multiple sclerosis (MS), iron rim lesions (IRLs) are characterized by progressive tissue matrix damage. Therefore, early identification could represent an interesting target for therapeutic intervention to minimize evolving tissue damage. The aim of this study was to identify magnetic resonance imaging (MRI) parameters predicting the conversion from contrast-enhancing to IRLs. METHODS: We retrospective identified MS patients scanned on the same 3 T MRI system presenting at least one supratentorial contrast-enhancing lesion (CEL) and a second MRI including susceptibility-weighted images after at least 3 months. On baseline MRI, pattern of contrast-enhancement was categorized as "nodular" or "ring-like", apparent diffusion coefficient (ADC) maps were assessed for the presence of a peripheral hypointense rim. Lesion localization, quantitative volumes (ADC, lesion volume) and the presence of a central vein were assessed. RESULTS: Eighty-nine acute contrast-enhancing lesions in 54 MS patients were included. On follow-up, 16/89 (18%) initially CELs converted into IRLs. CELs that converted into IRLs were larger and demonstrated significantly more often a ring-like contrast-enhancement pattern and a peripheral hypointense rim on ADC maps. Logistic regression model including the covariables pattern of contrast-enhancement and presence of a hypointense rim on ADC maps showed the best predictive performance (area under the curve = 0.932). DISCUSSION: The combination of a ring-like contrast-enhancement pattern and a peripheral hypointense rim on ADC maps has the ability to predict the evolution from acute to IRLs. This could be of prognostic value and become a target for early therapeutic intervention to minimize the associated tissue damage.


Subject(s)
Multiple Sclerosis , Brain/pathology , Diffusion Magnetic Resonance Imaging/methods , Humans , Iron , Magnetic Resonance Imaging , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology , Retrospective Studies
15.
Mult Scler Relat Disord ; 57: 103340, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35158450

ABSTRACT

BACKGROUND: Several studies have pointed out that seemingly chronic multiple sclerosis (MS) lesions may also be in inflammatory states. In pathological studies, up to 40% of chronic MS lesions are characterized as "chronic active" or "smoldering" lesions that are characterized by a rim of iron-laden proinflammatory macrophages/microglial cells at the lesion edge with low-grade continuous myelin breakdown. In vivo, these lesions can be visualized as "iron rim lesions" (IRLs) on susceptibility-weighted imaging (SWI). The aim of this study was to investigate the long-term dynamics of IRLs in vivo for a more detailed evolution of dynamic lesion volume changes occurring over time. METHODS: We retrospectively identified patients with MS who were followed for at least 36 months (up to 72 months) and underwent at least an annual MRI on the same 3 Tsystem. Using Voxel-Guided Morphometry (VGM) we investigated regional volume changes within lesions and correlated these findings with SWI for the presence of a characteristic hypointense lesion rim. To estimate tissue damage, apparent diffusion coefficient (ADC) values for every lesion at baseline and follow-up MRIs were determined. RESULTS: Forty-three patients were included in the study. Overall, we identified 302 supratentorial non-confluent MS lesions (52 persistent IRLs, nine transient IRLs, 228 non-IRLs and 13 acute contrast-enhancing lesions). During follow-up, persistent IRLs significantly enlarged, whereas non-IRLs showed a tendency to shrink. At baseline MRI, ADC values were significantly higher in persistent IRLs (1.23 × 10-3 mm/s2) compared to non-IRLs (1.01 × 10-3 mm/s2; p < 0.001), but not compared to transient IRLs (1.06 × 10-3 mm/s2; p = 0.15) and contrast-enhancing lesions (1.15 × 10-3 mm/s2; p = 1.0). During follow-up, ADC values significantly increased more often in persistent IRLs compared to all other lesion types (p < 0.0001). CONCLUSIONS: Our long-term data demonstrate that persistent IRLs enlarge during disease duration, whereas non-IRLs show a tendency to shrink. Furthermore, IRLs are associated with sustained tissue damage, supporting the notion that IRLs could represent a new imaging biomarker in MS.


Subject(s)
Multiple Sclerosis , Brain/diagnostic imaging , Humans , Iron , Magnetic Resonance Imaging , Multiple Sclerosis/diagnostic imaging , Retrospective Studies
16.
Mult Scler Relat Disord ; 58: 103530, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35066270

ABSTRACT

BACKGROUND: In recent years, there has been an increasing interest in the central vein sign (CVS) as a new imaging marker and previous cross-sectional studies demonstrated that the CVS has the potential to discriminate multiple sclerosis (MS) lesions from non-MS lesions. The aim of this study was to investigate the consistency of the CVS in a longitudinal magnetic resonance imaging (MRI) data set. METHODS: 3T MRI datasets from seventy-one people with MS acquired at baseline and after 12 months-follow-up were analyzed. Chronic lesions were identified on fluid-attenuated inversion recovery (FLAIR) images. Co-registered susceptibility-weighted/FLAIR images were analyzed for the presence of a CVS at baseline and follow-up. RESULTS: A total of 183 chronic lesions were included in the final analysis. At baseline MRI, a CVS was detectable in 141/183 (77%) lesions. Overall, the CVS was consistent in 114/141 (81%) lesions (Cohen's kappa = 0.46, standard error = 0.07). CONCLUSION: The CVS is a rather stable feature in chronic MS lesions and therefore represents a robust imaging marker that could increase the specificity of MRI in MS.


Subject(s)
Multiple Sclerosis , Biomarkers , Brain/diagnostic imaging , Brain/pathology , Cross-Sectional Studies , Humans , Magnetic Resonance Imaging/methods , Multiple Sclerosis/diagnosis , Veins/pathology
17.
Mult Scler ; 28(6): 885-899, 2022 05.
Article in English | MEDLINE | ID: mdl-34605323

ABSTRACT

BACKGROUND: Spatio-temporal evolution of cord atrophy in multiple sclerosis (MS) has not been investigated yet. OBJECTIVE: To evaluate voxel-wise distribution and 1-year changes of cervical cord atrophy in a multicentre MS cohort. METHODS: Baseline and 1-year 3D T1-weighted cervical cord scans and clinical evaluations of 54 healthy controls (HC) and 113 MS patients (14 clinically isolated syndromes (CIS), 77 relapsing-remitting (RR), 22 progressive (P)) were used to investigate voxel-wise cord volume loss in patients versus HC, 1-year volume changes and clinical correlations (SPM12). RESULTS: MS patients exhibited baseline cord atrophy versus HC at anterior and posterior/lateral C1/C2 and C4-C6 (p < 0.05, corrected). While CIS patients showed baseline volume increase at C4 versus HC (p < 0.001, uncorrected), RRMS exhibited posterior/lateral C1/C2 atrophy versus CIS, and PMS showed widespread cord atrophy versus RRMS (p < 0.05, corrected). At 1 year, 13 patients had clinically worsened. Cord atrophy progressed in MS, driven by RRMS, at posterior/lateral C2 and C3-C6 (p < 0.05, corrected). CIS patients showed no volume changes, while PMS showed circumscribed atrophy progression. Baseline cord atrophy at posterior/lateral C1/C2 and C3-C6 correlated with concomitant and 1-year disability (r = -0.40/-0.62, p < 0.05, corrected). CONCLUSIONS: Voxel-wise analysis characterized spinal cord neurodegeneration over 1 year across MS phenotypes and helped to explain baseline and 1-year disability.


Subject(s)
Cervical Cord , Demyelinating Diseases , Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , Atrophy/pathology , Brain , Cervical Cord/diagnostic imaging , Cervical Cord/pathology , Demyelinating Diseases/pathology , Disease Progression , Humans , Magnetic Resonance Imaging , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology , Multiple Sclerosis, Relapsing-Remitting/diagnostic imaging , Multiple Sclerosis, Relapsing-Remitting/pathology , Phenotype , Spinal Cord/diagnostic imaging , Spinal Cord/pathology
18.
Eur Radiol ; 32(3): 2012-2022, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34549326

ABSTRACT

OBJECTIVES: In multiple sclerosis (MS), iron rim lesions (IRLs) are indicators of chronic low-grade inflammation and ongoing tissue destruction. The aim of this study was to assess the relationship of IRLs with clinical measures and magnetic resonance imaging (MRI) markers, in particular brain and cervical cord volume. METHODS: Clinical and MRI parameters from 102 relapsing MS patients (no relapses for at least 6 months, no contrast-enhancing lesions) were included; follow-up data obtained after 12 months was available in 49 patients. IRLs were identified on susceptibility-weighted images (SWIs). In addition to standard brain and spinal cord MRI parameters, normalised cross-sectional area (nCSA) of the upper cervical cord was calculated. RESULTS: Thirty-eight patients had at least one IRL on SWI MRI. At baseline, patients with IRLs had higher EDSS scores, higher lesion loads (brain and spinal cord), and lower cortical grey matter volumes and a lower nCSA. At follow-up, brain atrophy rates were higher in patients with IRLs. IRLs correlated spatially with T1-hypointense lesions. CONCLUSIONS: Relapsing MS patients with IRLs showed more aggressive MRI disease characteristics in both the cross-sectional and longitudinal analyses. KEY POINTS: • Multiple sclerosis patients with iron rim lesions had higher EDSS scores, higher brain and spinal cord lesion loads, lower cortical grey matter volumes, and a lower normalised cross-sectional area of the upper cervical spinal cord. • Iron rim lesions are a new lesion descriptor obtained from susceptibility-weighted MRI. Our data suggests that further exploration of this lesion characteristic in regard to a poorer prognosis in multiple sclerosis patients is warranted.


Subject(s)
Cervical Cord , Multiple Sclerosis , Brain/diagnostic imaging , Cervical Cord/diagnostic imaging , Disability Evaluation , Humans , Iron , Magnetic Resonance Imaging , Multiple Sclerosis/diagnostic imaging , Spinal Cord
19.
J Neuroimaging ; 31(3): 471-474, 2021 05.
Article in English | MEDLINE | ID: mdl-33793026

ABSTRACT

BACKGROUND AND PURPOSE: Internuclear ophthalmoplegia is a dysfunction of conjugate eye movements, caused by lesions affecting the medial longitudinal fasciculus (MLF). Multiple sclerosis (MS) and ischemic stroke represent the most common pathophysiologies. While magnetic resonance imaging (MRI) allows for localizing lesions affecting the MLF, comprehensive comparative studies exploring potential different spatial characteristics of lesions affecting the MLF are missing until now. METHODS: We retrospectively investigated MRI examinations of 82 patients (40 patients with MS and 42 patients with ischemic stroke). For lesion localization, the brainstem was segmented into (1) ponto-medullary junction, (2) mid pons, (3) upper pons, and (4) mesencephalon. RESULTS: Corresponding lesions affecting the MLF were observed in 29/40 (72.5%) MS and 38/42 (90.5%) stroke patients. Compared to stroke patients, MS patients had significantly more lesions in multiple locations (P < .001). Stroke patients showed more lesions at the level of the mesencephalon (P < .001), while lesions at the level of the ponto-medullary junction, mid, and upper pons did not statistically differ between the groups. CONCLUSION: Our results demonstrate that multiple lesions affecting the MLF make inflammatory-demyelination due to MS more likely, while lesion localization at the level of the mesencephalon favors ischemia.


Subject(s)
Brain Ischemia/pathology , Ischemic Stroke/pathology , Multiple Sclerosis/pathology , Ocular Motility Disorders/diagnostic imaging , Ocular Motility Disorders/pathology , Adult , Aged , Brain Ischemia/diagnostic imaging , Brain Stem/pathology , Female , Humans , Ischemic Stroke/diagnostic imaging , Magnetic Resonance Imaging/methods , Male , Mesencephalon/pathology , Middle Aged , Multiple Sclerosis/diagnostic imaging , Pons/pathology , Retrospective Studies
20.
Eur J Neurol ; 28(7): 2392-2395, 2021 07.
Article in English | MEDLINE | ID: mdl-33864730

ABSTRACT

BACKGROUND AND PURPOSE: There has been an increasing interest in chronic active multiple sclerosis (MS) lesions as a new magnetic resonance imaging (MRI) marker of disease progression. Chronic active lesions are characterized by progressive tissue matrix damage, axonal loss and chronic inflammation. Sodium (23 Na) MRI provides a biochemical marker of cell integrity and tissue viability in a quantitative manner. The aim of this study was to investigate with 23 Na MRI tissue abnormalities in chronic active lesions as indicators of tissue destruction. METHODS: To identify chronic active lesions, two 3D magnetization-prepared rapid acquisition gradient-echo datasets obtained 12 months apart were processed using the voxel-guided morphometry algorithm. Cross-sectional 23 Na MRI was performed during the 12-month follow-up period. Total sodium concentration was calculated in chronic active lesions compared to shrinking, chronic stable and acute contrast-enhancing lesions. RESULTS: Overall, 70 MS lesions (21 chronic active, 10 shrinking, 29 chronic stable lesions, 10 acute contrast-enhancing lesions) in 12 patients were included. Total sodium concentration in chronic active lesions (49.57 ± 8.47 mM) was significantly higher than in shrinking (42.16 ± 3.9 mM; p = 0.03) and chronic stable lesions (39.92 ± 4.82 mM; p < 0.001). Chronic active lesions showed similar sodium values compared to acute contrast-enhancing lesions (48.06 ± 6.65 mM; p = 0.97). No differences between shrinking and chronic stable lesions were observed (p = 0.89). CONCLUSION: High sodium values in chronic active MS lesions may be an indicator of ongoing inflammation and tissue damage.


Subject(s)
Multiple Sclerosis , Sodium , Brain/diagnostic imaging , Cross-Sectional Studies , Disease Progression , Humans , Magnetic Resonance Imaging , Multiple Sclerosis/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...