Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 5219, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890312

ABSTRACT

With resistance to most antimalarials increasing, it is imperative that new drugs are developed. We previously identified an aryl acetamide compound, MMV006833 (M-833), that inhibited the ring-stage development of newly invaded merozoites. Here, we select parasites resistant to M-833 and identify mutations in the START lipid transfer protein (PF3D7_0104200, PfSTART1). Introducing PfSTART1 mutations into wildtype parasites reproduces resistance to M-833 as well as to more potent analogues. PfSTART1 binding to the analogues is validated using organic solvent-based Proteome Integral Solubility Alteration (Solvent PISA) assays. Imaging of invading merozoites shows the inhibitors prevent the development of ring-stage parasites potentially by inhibiting the expansion of the encasing parasitophorous vacuole membrane. The PfSTART1-targeting compounds also block transmission to mosquitoes and with multiple stages of the parasite's lifecycle being affected, PfSTART1 represents a drug target with a new mechanism of action.


Subject(s)
Acetamides , Antimalarials , Plasmodium falciparum , Protozoan Proteins , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Plasmodium falciparum/metabolism , Plasmodium falciparum/growth & development , Acetamides/pharmacology , Acetamides/chemistry , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Antimalarials/pharmacology , Antimalarials/chemistry , Animals , Carrier Proteins/metabolism , Carrier Proteins/genetics , Mutation , Malaria, Falciparum/parasitology , Malaria, Falciparum/prevention & control , Malaria, Falciparum/drug therapy , Humans , Drug Resistance/genetics , Drug Resistance/drug effects , Life Cycle Stages/drug effects
2.
ACS Infect Dis ; 9(9): 1695-1710, 2023 09 08.
Article in English | MEDLINE | ID: mdl-37639221

ABSTRACT

With the resistance increasing to current antimalarial medicines, there is an urgent need to discover new drug targets and to develop new medicines against these targets. We therefore screened the Open Global Health Library of Merck KGaA, Darmstadt, Germany, of 250 compounds against the asexual blood stage of the deadliest malarial parasite Plasmodium falciparum, from which eight inhibitors with low micromolar potency were found. Due to its combined potencies against parasite growth and inhibition of red blood cell invasion, the pyridyl-furan compound OGHL250 was prioritized for further optimization. The potency of the series lead compound (WEHI-518) was improved 250-fold to low nanomolar levels against parasite blood-stage growth. Parasites selected for resistance to a related compound, MMV396797, were also resistant to WEHI-518 as well as KDU731, an inhibitor of the phosphatidylinositol kinase PfPI4KIIIB, suggesting that this kinase is the target of the pyridyl-furan series. Inhibition of PfPI4KIIIB blocks multiple stages of the parasite's life cycle and other potent inhibitors are currently under preclinical development. MMV396797-resistant parasites possess an E1316D mutation in PfPKI4IIIB that clusters with known resistance mutations of other inhibitors of the kinase. Building upon earlier studies that showed that PfPI4KIIIB inhibitors block the development of the invasive merozoite parasite stage, we show that members of the pyridyl-furan series also block invasion and/or the conversion of merozoites into ring-stage intracellular parasites through inhibition of protein secretion and export into red blood cells.


Subject(s)
Parasites , Animals , Plasmodium falciparum/genetics , Global Health , Erythrocytes , Protein Transport , Furans
3.
Dis Model Mech ; 16(2)2023 02 01.
Article in English | MEDLINE | ID: mdl-36715290

ABSTRACT

Phenotypic cell-based screens are critical tools for discovering candidate drugs for development, yet identification of the cellular target and mode of action of a candidate drug is often lacking. Using an imaging-based screen, we recently discovered an N-[(4-hydroxychroman-4-yl)methyl]-sulphonamide (N-4HCS) compound, DDD01035881, that blocks male gamete formation in the malaria parasite life cycle and subsequent transmission of the parasite to the mosquito with nanomolar activity. To identify the target(s) of DDD01035881, and of the N-4HCS class of compounds more broadly, we synthesised a photoactivatable derivative, probe 2. Photoaffinity labelling of probe 2 coupled with mass spectrometry identified the 16 kDa Plasmodium falciparum parasitophorous vacuole membrane protein Pfs16 as a potential parasite target. Complementary methods including cellular thermal shift assays confirmed that the parent molecule DDD01035881 stabilised Pfs16 in lysates from activated mature gametocytes. Combined with high-resolution, fluorescence and electron microscopy data, which demonstrated that parasites inhibited with N-4HCS compounds phenocopy the targeted deletion of Pfs16 in gametocytes, these data implicate Pfs16 as a likely target of DDD01035881. This finding establishes N-4HCS compounds as being flexible and effective starting candidates from which transmission-blocking antimalarials can be developed in the future.


Subject(s)
Malaria , Plasmodium , Animals , Male , Membrane Proteins/metabolism , Vacuoles/metabolism , Sulfonamides/pharmacology , Sulfonamides/therapeutic use , Sulfonamides/metabolism
4.
Front Plant Sci ; 10: 984, 2019.
Article in English | MEDLINE | ID: mdl-31417596

ABSTRACT

Artemisinin, a sesquiterpene lactone produced by Artemisia annua glandular secretory trichomes, is the active ingredient in the most effective treatment for uncomplicated malaria caused by Plasmodium falciparum parasites. Other metabolites in A. annua or related species, particularly flavonoids, have been proposed to either act as antimalarials on their own or act synergistically with artemisinin to enhance antimalarial activity. We identified a mutation that disrupts the CHALCONE ISOMERASE 1 (CHI1) enzyme that is responsible for the second committed step of flavonoid biosynthesis. Detailed metabolite profiling revealed that chi1-1 lacks all major flavonoids but produces wild-type artemisinin levels, making this mutant a useful tool to test the antiplasmodial effects of flavonoids. We used whole-leaf extracts from chi1-1 and mutant lines impaired in artemisinin production in bioactivity in vitro assays against intraerythrocytic P. falciparum Dd2. We found that chi1-1 extracts did not differ from wild-type extracts in antiplasmodial efficacy nor initial rate of cytocidal action. Furthermore, extracts from the A. annua cyp71av1-1 mutant and RNAi lines impaired in amorpha-4,11-diene synthase gene expression, which are both severely compromised in artemisinin biosynthesis but unaffected in flavonoid metabolism, showed very low or no antiplasmodial activity. These results demonstrate that in vitro bioactivity against P. falciparum of flavonoids is negligible when compared to that of artemisinin.

SELECTION OF CITATIONS
SEARCH DETAIL
...