Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Adv ; 9(30): eadi0286, 2023 07 28.
Article in English | MEDLINE | ID: mdl-37506203

ABSTRACT

Polypyrimidine tract binding protein 1 (PTBP1) is thought to be expressed only at embryonic stages in central neurons. Its down-regulation triggers neuronal differentiation in precursor and non-neuronal cells, an approach recently tested for generation of neurons de novo for amelioration of neurodegenerative disorders. Moreover, PTBP1 is replaced by its paralog PTBP2 in mature central neurons. Unexpectedly, we found that both proteins are coexpressed in adult sensory and motor neurons, with PTBP2 restricted mainly to the nucleus, while PTBP1 also shows axonal localization. Levels of axonal PTBP1 increased markedly after peripheral nerve injury, and it associates in axons with mRNAs involved in injury responses and nerve regeneration, including importin ß1 (KPNB1) and RHOA. Perturbation of PTBP1 affects local translation in axons, nociceptor neuron regeneration and both thermal and mechanical sensation. Thus, PTBP1 has functional roles in adult axons. Hence, caution is required before considering targeting of PTBP1 for therapeutic purposes.


Subject(s)
Axons , Nerve Regeneration , Neurons , Peripheral Nerve Injuries , Adult , Humans , Axons/metabolism , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Interneurons/metabolism , Nerve Regeneration/genetics , Neurons/metabolism , Peripheral Nerve Injuries/genetics , Peripheral Nerve Injuries/metabolism
2.
Cell Rep Med ; 2(5): 100281, 2021 05 18.
Article in English | MEDLINE | ID: mdl-34095883

ABSTRACT

Anxiety and stress-related conditions represent a significant health burden in modern society. Unfortunately, most anxiolytic drugs are prone to side effects, limiting their long-term usage. Here, we employ a bioinformatics screen to identify drugs for repurposing as anxiolytics. Comparison of drug-induced gene-expression profiles with the hippocampal transcriptome of an importin α5 mutant mouse model with reduced anxiety identifies the hypocholesterolemic agent ß-sitosterol as a promising candidate. ß-sitosterol activity is validated by both intraperitoneal and oral application in mice, revealing it as the only clear anxiolytic from five closely related phytosterols. ß-sitosterol injection reduces the effects of restraint stress, contextual fear memory, and c-Fos activation in the prefrontal cortex and dentate gyrus. Moreover, synergistic anxiolysis is observed when combining sub-efficacious doses of ß-sitosterol with the SSRI fluoxetine. These preclinical findings support further development of ß-sitosterol, either as a standalone anxiolytic or in combination with low-dose SSRIs.


Subject(s)
Anti-Anxiety Agents/pharmacology , Anxiety Disorders/drug therapy , Anxiety/drug therapy , Sitosterols/pharmacology , Animals , Fear/drug effects , Fluoxetine/pharmacology , Mice, Inbred C57BL , Motor Activity/drug effects , Pharmaceutical Preparations/metabolism , Prefrontal Cortex/drug effects , Proto-Oncogene Proteins c-fos/pharmacology , Selective Serotonin Reuptake Inhibitors/pharmacology , Tranquilizing Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL