Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 259(Pt 2): 129420, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38219945

ABSTRACT

Chronic constipation has been associated with depression-like behavior. Previous study identified the crucial role of gut microbiota in the development of constipation and depression. Dietary inulin (INU) could regulate gut microbiota. Whether INU treatment could ameliorate constipation induced depression was not clear. For this purpose, male CD-1 mice were administered diphenoxylate (20 mg/kg body weight/day) to induce constipation. We found that INU (10 % in standard diet) alleviated the diphenoxylate-induced constipation, manifested as the increase weight and moisture content of feces. Furthermore, the associated depression and anxiety-like behavior disorders were improved by inhibiting neuro-inflammation and preventing synaptic ultrastructure damage under INU treatment. Moreover, INU pretreatment improved the diphenoxylate-induced gut barrier damage by upregulating tight junction protein expression. INU also reshaped gut microbiota in constipation mice by increasing the relative abundance of Bacteroides and Proteobacteria and downregulating the abundance of Muribacalum and Melaminabacteria. The effects of INU on diphenoxylate-induced depression were abolished by gut microbiota depletion via antibiotic treatment. In addition, INU increased the concentration of short chain fatty acids (SCFAs) in feces contents. Meanwhile, supplementation of SCFAs could also partly improve diphenoxylate-induced depression. In conclusion, INU intake was a potential nutritional intervention strategy to prevent constipation induced depression via microbiota-gut-SCFAs axis.


Subject(s)
Gastrointestinal Microbiome , Inulin , Male , Mice , Animals , Inulin/pharmacology , Depression/chemically induced , Depression/drug therapy , Diphenoxylate , Fatty Acids, Volatile , Constipation/chemically induced , Constipation/drug therapy , Diet , Anxiety/drug therapy
2.
J Phys Condens Matter ; 36(10)2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38011735

ABSTRACT

Four kinds of spinel NiAl2O4were synthesized by the polyacrylamide gel method using Al2(SO4)3·18H2O and Al(NO3)3·9H2O as aluminum salts and anhydrous NiSO4and NiSO4·6H2O as nickel salts. The effects of different aluminum salts and nickel salts on the structure, optical and photocatalytic activity of spinel NiAl2O4were confirmed by various characterizations. There is no NiO impurity in the spinel NiAl2O4synthesized with Al2(SO4)3·18H2O as aluminum salt, while NiAl2O4, NiO and C-O functional group coexist in the target product with Al(NO3)3·9H2O as aluminum salt, and C-O functional group and NiO inhibits the photocatalytic activity of the system. Based on photocatalytic experiment, response surface methodology and free radical verification experiment, the influence of experimental parameters including synthesis pathway, initial drug concentration, initialpHand catalyst content on the photocatalytic activity of spinel NiAl2O4and the main active species involved in the reaction were investigated. The degradation percentage of spinel NiAl2O4synthesized with Al2(SO4)3·18H2O as aluminum salt and NiSO4·6H2O as nickel salt was 86.3% at the initial concentration of 50 mg l-1,pH= 5.33 and catalyst content of 1 g l-1. The mechanism investigation confirmed that the C-O functional group plays the dual role of impurity level and electron transfer in the degradation of tetracycline hydrochloride by spinel NiAl2O4.

3.
Molecules ; 28(19)2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37836674

ABSTRACT

Photocatalyst is the core of photocatalysis and directly determines photocatalytic performance. However, low quantum efficiency and low utilization of solar energy are important technical problems in the application of photocatalysis. In this work, a series of polyoxometalates (POMs) [H3PW12O40] (PW12)-doped titanium dioxide (TiO2) nanofibers modified with various amount of silver (Ag) nanoparticles (NPs) were prepared by utilizing electrospinning/photoreduction strategy, and were labelled as x wt% Ag/PW12/TiO2 (abbr. x% Ag/PT, x = 5, 10, and 15, respectively). The as-prepared materials were characterized with a series of techniques and exhibited remarkable catalytic activities for visible-light degradation tetracycline (TC), enrofloxacin (ENR), and methyl orange (MO). Particularly, the 10% Ag/PT catalyst with a specific surface area of 155.09 m2/g and an average aperture of 4.61 nm possessed the optimal photodegradation performance, with efficiencies reaching 78.19% for TC, 93.65% for ENR, and 99.29% for MO, which were significantly higher than those of PW12-free Ag/TiO2 and PT nanofibers. Additionally, various parameters (the pH of the solution, catalyst usage, and TC concentration) influencing the degradation process were investigated in detail. The optimal conditions are as follows: catalyst usage: 20 mg; TC: 20 mL of 20 ppm; pH = 7. Furthermore, the photodegradation intermediates and pathways were demonstrated by HPLC-MS measurement. We also investigated the toxicity of products generated during TC removal by employing quantitative structure-activity relationship (QSAR) prediction through a toxicity estimation software tool (T.E.S.T. Version 5.1.2.). The mechanism study showed that the doping of PW12 and the modification of Ag NPs on TiO2 broadened the visible-light absorption, accelerating the effective separation of photogenerated carriers, therefore resulting in an enhanced photocatalytic performance. The research provided some new thoughts for exploiting efficient and durable photocatalysts for environmental remediation.


Subject(s)
Anti-Bacterial Agents , Nanoparticles , Anti-Bacterial Agents/chemistry , Titanium/chemistry , Light , Tetracycline , Catalysis
4.
Polymers (Basel) ; 15(13)2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37447430

ABSTRACT

Heavy metal wastewater poses a significant environmental challenge due to its harmful effect on organisms and difficult biodegradation. To address this issue, hydrogel has been used as a promising solution for the adsorption of heavy metal ions in water, offering advantages such as low cost, simple design, and environmental friendliness. In this study, we synthetized a novel poly-acrylamide/acrylic acid/vinyl imidazole bromide (PAM/AA/[Vim]Br2) hydrogel as an effective adsorbent for the removal of NiII, CuII, ZnII, and CrIII from water. The structure of the hydrogel was characterized by using techniques such as Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). By exploring various parameters such as monomer ratio, neutralization degree, crosslinking agent addition amount, and initiator addition amount, the highest swelling ratio of the PAM/AA/[Vim]Br2 hydrogel reached 40,012%. One of the notable aspects of this study lay in the investigation of the adsorption behavior of the hydrogel towards heavy metal ions at different concentrations. The adsorption isotherm calculations and X-ray photoelectron spectroscopy (XPS) analysis revealed distinct adsorption mechanisms. At low concentrations, the hydrogel exhibits a multilayer physical adsorption mechanism, with heavy metal ion removal rates exceeding 80%; while at high concentrations, it demonstrates a monolayer chemical adsorption mechanism, with heavy metal ion removal rates above 90%. This dual mechanism approach distinguishes our study from previous reports on the removal of heavy metal ions using hydrogels and shows good ion adsorption efficiency at both high and low concentrations. To the best of our knowledge, this is the first report to explore the removal of heavy metal ions from water using hydrogels with such intriguing dual mechanisms. Overall, the utilization of the PAM/PAA/[Vim]Br2 hydrogel as an adsorbent for heavy metal ion removal presents a promising and innovative approach, contributing to the development of environmentally friendly solutions for heavy metal wastewater treatment.

5.
Clin Transl Med ; 13(7): e1310, 2023 07.
Article in English | MEDLINE | ID: mdl-37461266

ABSTRACT

BACKGROUND: Down syndrome (DS), which is characterized by various malfunctions, is the most common chromosomal disorder. As the DS population continues to grow and most of those with DS live beyond puberty, early-onset health problems have become apparent. However, the cellular landscape and molecular alterations have not been thoroughly studied. METHODS: This study utilized single-cell resolution techniques to examine DS in humans and mice, spanning seven distinct organs. A total of 71 934 mouse and 98 207 human cells were analyzed to uncover the molecular alterations occurring in different cell types and organs related to DS, specifically starting from the fetal stage. Additionally, SA-ß-Gal staining, western blot, and histological study were employed to verify the alterations. RESULTS: In this study, we firstly established the transcriptomic profile of the mammalian DS, deciphering the cellular map and molecular mechanism. Our analysis indicated that DS cells across various types and organs experienced senescence stresses from as early as the fetal stage. This was marked by elevated SA-ß-Gal activity, overexpression of cell cycle inhibitors, augmented inflammatory responses, and a loss of cellular identity. Furthermore, we found evidence of mitochondrial disturbance, an increase in ribosomal protein transcription, and heightened apoptosis in fetal DS cells. This investigation also unearthed a regulatory network driven by an HSA21 gene, which leads to genome-wide expression changes. CONCLUSION: The findings from this study offer significant insights into the molecular alterations that occur in DS, shedding light on the pathological processes underlying this disorder. These results can potentially guide future research and treatment development for DS.


Subject(s)
Down Syndrome , Humans , Mice , Animals , Down Syndrome/genetics , Down Syndrome/metabolism , Down Syndrome/pathology , Mammals
6.
Molecules ; 28(13)2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37446793

ABSTRACT

Acrylamide (ACR) is produced under high-temperature cooking of carbohydrate-rich foods via the Maillard reaction. It has been reported that ACR has hepatic toxicity and can induce liver circadian disorder. A high fat diet (HFD) could dysregulate liver detoxification. The current study showed that administration of ACR (100 mg/kg) reduced the survival rate in HFD-fed mice, which was more pronounced when treated during the night phase than during the day phase. Furthermore, ACR (25 mg/kg) treatment could cause chronotoxicity in mice fed a high-fat diet, manifested as more severe mitochondrial damage of liver during the night phase than during the day phase. Interestingly, HFD induced a higher CYP2E1 expressions for those treated during the night phase, leading to more severe DNA damage. Meanwhile, the expression of gut tight junction proteins also significantly decreases at night phase, leading to the leakage of LPSs and exacerbating the inflammatory response at night phase. These results indicated that a HFD could induce the chronotoxicity of ACR in mice liver, which may be associated with increases in CYP2E1 expression in the liver and gut leak during the night phase.


Subject(s)
Cytochrome P-450 CYP2E1 , Diet, High-Fat , Animals , Mice , Diet, High-Fat/adverse effects , Cytochrome P-450 CYP2E1/genetics , Cytochrome P-450 CYP2E1/metabolism , Up-Regulation , Acrylamide/metabolism , Liver/metabolism , Mice, Inbred C57BL
7.
Phys Chem Chem Phys ; 24(14): 8279-8295, 2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35319037

ABSTRACT

In this study, we have adopted a one-step hydrothermal route to synthesize an interesting type of Bi2O2CO3 hierarchical nanotubes self-assembled from ordered nanosheets. The effects of reaction time on the morphological and structural evolution, light absorption properties, photoelectrochemical performance, and photocatalytic performance of the prepared hierarchical nanotubes were investigated. Among the products synthesized at different reaction times, the 3-hour-derived Bi2O2CO3 hierarchical nanotubes were identified to possess the highest photocatalytic performance. To promote the photocatalytic application of the as-synthesized Bi2O2CO3 hierarchical nanotubes, their performance was systematically evaluated via the photodegradation of various organic pollutants (e.g., methyl orange (MO), rhodamine B (RhB), methylene blue (MB), ciprofloxacin (CIP), sulfamethoxazole (SMX) and tetracycline hydrochloride (TC)) and the photoreduction of Cr(VI) under simulated-sunlight irradiation. Furthermore, their photocatalytic performance was also evaluated by purifying simulated industrial wastewater (i.e., a MO/RhB/MB mixed solution) at different pH values and containing different inorganic anions. Based on the experimental data and density functional theory (DFT) calculations, the involved photocatalytic mechanism was discussed.

8.
ACS Omega ; 6(42): 28063-28071, 2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34723006

ABSTRACT

A several of basic ionic liquids (ILs) were synthesized as green solvents and catalysts for the preparation of 1,8-naphthyridyl derivatives via the Friedlander reaction. [Bmmim][Im] exhibited remarkable catalytic activity to achieve the synthetic targets, and the reaction conditions were optimized. The model product 2,3-diphenyl-1,8-naphthyridine (1,8-Nap), with carboxyethylthiosuccinic acid (CETSA) to form an IL corrosion inhibitor ([1,8-Nap][CETSA]), and its corrosion inhibition performance for Q235 steel in 1 M HCl were researched by weight loss measurements, and the results showed that the inhibition efficiency was 96.95% when the concentration of [1,8-Nap][CETSA] was 1 mM at 35 °C. The electrochemical test verified that [1,8-Nap][CETSA] acted as a mixed-type inhibitor but mainly exhibited cathodic behavior. The inhibitor adsorbed on the metal surface was further proved by surface topography analysis.

9.
Neuron ; 107(3): 538-551.e7, 2020 08 05.
Article in English | MEDLINE | ID: mdl-32502461

ABSTRACT

Pain is a source of substantial discomfort. Abnormal activity in both the zona incerta (ZI) and posterior complex of the thalamus (Po) are implicated in neuropathic pain, but their exact roles remain unclear. In particular, the precise cell types and molecular mechanisms of the ZI-Po circuit that regulate nociception are largely uncharacterized. Here, we found that parvalbumin (PV)-positive neuronal projections from the ventral ZI (ZIv) to the Po (ZIv-Po) are critical for promoting nocifensive behaviors, whereas selectively inhibiting ZIv-Po activity reduces nocifensive withdrawal responses. Furthermore, cannabinoid type 1 receptors (CB1Rs) are expressed specifically at ZIv-Po axon terminals in this circuit, and cannabinoids attenuate nocifensive responses through presynaptic inhibition. Selective inhibition of the ZIv-Po circuit or administration of cannabinoids into the Po are sufficient to ameliorate pathological pain. These findings identify the critical role of the ZIv-Po circuit and its modulation by endocannabinoids in controlling nocifensive behaviors.


Subject(s)
Neurons/physiology , Nociception/physiology , Pain/physiopathology , Posterior Thalamic Nuclei/physiology , Receptor, Cannabinoid, CB1/metabolism , Zona Incerta/physiology , Animals , Behavior, Animal , Endocannabinoids , Mice , Neural Inhibition , Neural Pathways , Neurons/metabolism , Pain/metabolism , Parvalbumins , Posterior Thalamic Nuclei/cytology , Receptor, Cannabinoid, CB1/agonists , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Zona Incerta/cytology
10.
ACS Omega ; 4(7): 11888-11892, 2019 Jul 31.
Article in English | MEDLINE | ID: mdl-31460299

ABSTRACT

A label-free electrochemical immunosensor for cardiac troponin I was prepared by using a helical carbon nanotube-supported aldehyde-functionalized ionic liquid. Because of the good conductivity of ionic liquid and helical carbon nanotubes, high sensitivity of the immunosensor was obtained. Functionalized ionic liquid provided binding sites for antibody, which simplified the process of sensor construction. Cardiac troponin I was detected by this immunosensor with a linear range of 0.05-30 ng/mL and a detection limit of 0.03 ng/mL. The electrochemical immunosensor had satisfactory reproducibility, high sensitivity, and acceptable specificity.

11.
Micromachines (Basel) ; 10(9)2019 Aug 23.
Article in English | MEDLINE | ID: mdl-31450790

ABSTRACT

A carbon quantum dot (CQDs)/Ag3PO4/BiPO4 heterostructure photocatalyst was constructed by a simple hydrothermal synthesis method. The as-prepared CQDs/Ag3PO4/BiPO4 photocatalyst has been characterized in detail by X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, ultraviolet-visible spectroscopy, and photoelectrochemical measurements. It is demonstrated that the CQDs/Ag3PO4/BiPO4 composite is constructed by assembling Ag3PO4 fine particles and CQDs on the surface of rice-like BiPO4 granules. The CQDs/Ag3PO4/BiPO4 heterostructure photocatalyst exhibits a higher photocatalytic activity for the degradation of the rhodamine B dye than that of Ag3PO4, BiPO4, and Ag3PO4/BiPO4. The synergistic effects of light absorption capacity, band edge position, separation, and utilization efficiency of photogenerated carriers play the key role for the enhanced photodegradation of the rhodamine B dye.

SELECTION OF CITATIONS
SEARCH DETAIL
...