Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 696
Filter
1.
bioRxiv ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38979204

ABSTRACT

Type I interferons (IFN-I) are cytokines with potent antiviral and inflammatory capacities. IFN-I signaling drives the expression of hundreds of IFN-I stimulated genes (ISGs), whose aggregate function results in the control of viral infection. A few of these ISGs are tasked with negatively regulating the IFN-I response to prevent overt inflammation. ISG15 is a negative regulator whose absence leads to persistent, low-grade elevation of ISG expression and concurrent, self-resolving mild autoinflammation. The limited breadth and low-grade persistence of ISGs expressed in ISG15 deficiency are sufficient to confer broad-spectrum antiviral resistance. Inspired by ISG15 deficiency, we have identified a nominal collection of 10 ISGs that recapitulate the broad antiviral potential of the IFN-I system. The expression of the 10 ISG collection in an IFN-I non-responsive cell line increased cellular resistance to Zika, Vesicular Stomatitis, Influenza A (IAV), and SARS-CoV-2 viruses. A deliverable prophylactic formulation of this syndicate of 10 ISGs significantly inhibited IAV PR8 replication in vivo in mice and protected hamsters against a lethal SARS-CoV-2 challenge, suggesting its potential as a broad-spectrum antiviral against many current and future emerging viral pathogens. One-Sentence Summary: Human inborn error of immunity-guided discovery and development of a broad-spectrum RNA antiviral therapy.

2.
Nat Microbiol ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009691

ABSTRACT

Influenza A viruses (IAV) pose substantial burden on human and animal health. Avian, swine and human IAV bind sialic acid on host glycans as receptor, whereas some bat IAV require MHC class II complexes for cell entry. It is unknown how this difference evolved and whether dual receptor specificity is possible. Here we show that human H2N2 IAV and related avian H2N2 possess dual receptor specificity in cell lines and primary human airway cultures. Using sialylation-deficient cells, we reveal that entry via MHC class II is independent of sialic acid. We find that MHC class II from humans, pigs, ducks, swans and chickens but not bats can mediate H2 IAV entry and that this is conserved in Eurasian avian H2. Our results demonstrate that IAV can possess dual receptor specificity for sialic acid and MHC class II, and suggest a role for MHC class II-dependent entry in zoonotic IAV infections.

4.
Nat Commun ; 15(1): 5426, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926343

ABSTRACT

Zika and dengue virus nonstructural protein 5 antagonism of STAT2, a critical interferon signaling transcription factor, to suppress the host interferon response is required for viremia and pathogenesis in a vertebrate host. This affects viral species tropism, as mouse STAT2 resistance renders only immunocompromised or humanized STAT2 mice infectable. Here, we explore how STAT2 evolution impacts antagonism. By measuring the susceptibility of 38 diverse STAT2 proteins, we demonstrate that resistance arose numerous times in mammalian evolution. In four species, resistance requires distinct sets of multiple amino acid changes that often individually disrupt STAT2 signaling. This reflects an evolutionary ridge where progressive resistance is balanced by the need to maintain STAT2 function. Furthermore, resistance may come with a fitness cost, as resistance that arose early in lemur evolution was subsequently lost in some lemur lineages. These findings underscore that while it is possible to evolve resistance to antagonism, complex evolutionary trajectories are required to avoid detrimental host fitness consequences.


Subject(s)
Evolution, Molecular , STAT2 Transcription Factor , Viral Nonstructural Proteins , STAT2 Transcription Factor/metabolism , STAT2 Transcription Factor/genetics , Animals , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Humans , Mice , Dengue Virus/genetics , Dengue Virus/physiology , Zika Virus/genetics , Flavivirus/genetics , Flavivirus/physiology , Phylogeny , Host-Pathogen Interactions/genetics
5.
EBioMedicine ; 105: 105185, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38848648

ABSTRACT

BACKGROUND: In order to prevent the emergence and spread of future variants of concern of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), developing vaccines capable of stopping transmission is crucial. The SARS-CoV-2 vaccine NDV-HXP-S can be administered live intranasally (IN) and thus induce protective immunity in the upper respiratory tract. The vaccine is based on Newcastle disease virus (NDV) expressing a stabilised SARS-CoV-2 spike protein. NDV-HXP-S can be produced as influenza virus vaccine at low cost in embryonated chicken eggs. METHODS: The NDV-HXP-S vaccine was genetically engineered to match the Omicron variants of concern (VOC) BA.1 and BA.5 and tested as an IN two or three dose vaccination regimen in female mice. Furthermore, female mice intramuscularly (IM) vaccinated with mRNA-lipid nanoparticles (LNPs) were IN boosted with NDV-HXP-S. Systemic humoral immunity, memory T cell responses in the lungs and spleens as well as immunoglobulin A (IgA) responses in distinct mucosal tissues were characterised. FINDINGS: NDV-HXP-S Omicron variant vaccines elicited high mucosal IgA and serum IgG titers against respective SARS-CoV-2 VOC in female mice following IN administration and protected against challenge from matched variants. Additionally, antigen-specific memory B cells and local T cell responses in the lungs were induced. Host immunity against the NDV vector did not interfere with boosting. Intramuscular vaccination with mRNA-LNPs was enhanced by IN NDV-HXP-S boosting resulting in improvement of serum neutralization titers and induction of mucosal immunity. INTERPRETATION: We demonstrate that NDV-HXP-S Omicron variant vaccines utilised for primary immunizations or boosting efficiently elicit humoral and cellular immunity. The described induction of systemic and mucosal immunity has the potential to reduce infection and transmission. FUNDING: This work was partially funded by the NIAIDCenters of Excellence for Influenza Research and Response (CEIRR) and by the NIAID Collaborative Vaccine Innovation Centers and by institutional funding from the Icahn School of Medicine at Mount Sinai. See under Acknowledgements for details.


Subject(s)
Administration, Intranasal , Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Immunity, Humoral , Immunity, Mucosal , Newcastle disease virus , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Animals , Female , SARS-CoV-2/immunology , SARS-CoV-2/genetics , Mice , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , COVID-19/immunology , Antibodies, Viral/immunology , Antibodies, Viral/blood , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Newcastle disease virus/immunology , Newcastle disease virus/genetics , Immunity, Cellular , Immunoglobulin A/immunology , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Antibodies, Neutralizing/immunology , Vaccination/methods , Humans , Liposomes
6.
Cell Host Microbe ; 32(7): 1089-1102.e10, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38889725

ABSTRACT

Avian influenza A virus (IAV) surveillance in Northern California, USA, revealed unique IAV hemagglutinin (HA) genome sequences in cloacal swabs from lesser scaups. We found two closely related HA sequences in the same duck species in 2010 and 2013. Phylogenetic analyses suggest that both sequences belong to the recently discovered H19 subtype, which thus far has remained uncharacterized. We demonstrate that H19 does not bind the canonical IAV receptor sialic acid (Sia). Instead, H19 binds to the major histocompatibility complex class II (MHC class II), which facilitates viral entry. Unlike the broad MHC class II specificity of H17 and H18 from bat IAV, H19 exhibits a species-specific MHC class II usage that suggests a limited host range and zoonotic potential. Using cell lines overexpressing MHC class II, we rescued recombinant H19 IAV. We solved the H19 crystal structure and identified residues within the putative Sia receptor binding site (RBS) that impede Sia-dependent entry.


Subject(s)
Ducks , Hemagglutinin Glycoproteins, Influenza Virus , Histocompatibility Antigens Class II , Influenza A virus , Phylogeny , Receptors, Virus , Animals , Influenza A virus/genetics , Influenza A virus/immunology , Receptors, Virus/metabolism , Receptors, Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Histocompatibility Antigens Class II/metabolism , Histocompatibility Antigens Class II/genetics , Ducks/virology , Humans , Virus Internalization , Influenza in Birds/virology , Binding Sites , Protein Binding , Crystallography, X-Ray , Cell Line , N-Acetylneuraminic Acid/metabolism , Host Specificity , Species Specificity
7.
Front Immunol ; 15: 1394114, 2024.
Article in English | MEDLINE | ID: mdl-38873610

ABSTRACT

Introduction: Several effective vaccines for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been developed and implemented in the population. However, the current production capacity falls short of meeting global demand. Therefore, it is crucial to further develop novel vaccine platforms that can bridge the distribution gap. AVX/COVID-12 is a vector-based vaccine that utilizes the Newcastle Disease virus (NDV) to present the SARS-CoV-2 spike protein to the immune system. Methods: This study aims to analyze the antigenicity of the vaccine candidate by examining antibody binding and T-cell activation in individuals infected with SARS-CoV-2 or variants of concern (VOCs), as well as in healthy volunteers who received coronavirus disease 2019 (COVID-19) vaccinations. Results: Our findings indicate that the vaccine effectively binds antibodies and activates T-cells in individuals who received 2 or 3 doses of BNT162b2 or AZ/ChAdOx-1-S vaccines. Furthermore, the stimulation of T-cells from patients and vaccine recipients with AVX/COVID-12 resulted in their proliferation and secretion of interferon-gamma (IFN-γ) in both CD4+ and CD8+ T-cells. Discussion: The AVX/COVID-12 vectored vaccine candidate demonstrates the ability to stimulate robust cellular responses and is recognized by antibodies primed by the spike protein present in SARS-CoV-2 viruses that infected patients, as well as in the mRNA BNT162b2 and AZ/ChAdOx-1-S vaccines. These results support the inclusion of the AVX/COVID-12 vaccine as a booster in vaccination programs aimed at addressing COVID-19 caused by SARS-CoV-2 and its VOCs.


Subject(s)
Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Lymphocyte Activation , Newcastle disease virus , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Humans , COVID-19/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Antibodies, Viral/immunology , Newcastle disease virus/immunology , COVID-19 Vaccines/immunology , Spike Glycoprotein, Coronavirus/immunology , Lymphocyte Activation/immunology , Adult , Female , Male , Middle Aged , T-Lymphocytes/immunology , BNT162 Vaccine/immunology , Vaccination , Genetic Vectors/genetics , Genetic Vectors/immunology , Interferon-gamma/immunology , Interferon-gamma/metabolism
8.
Front Immunol ; 15: 1370564, 2024.
Article in English | MEDLINE | ID: mdl-38711520

ABSTRACT

There are considerable avenues through which currently licensed influenza vaccines could be optimized. We tested influenza vaccination in a mouse model with two adjuvants: Sendai virus-derived defective interfering (SDI) RNA, a RIG-I agonist; and an amphiphilic imidazoquinoline (IMDQ-PEG-Chol), a TLR7/8 agonist. The negatively charged SDI RNA was formulated into lipid nanoparticles (LNPs) facilitating direct delivery of SDI RNA to the cytosol, where RIG-I sensing induces inflammatory and type I interferon responses. We previously tested SDI RNA and IMDQ-PEG-Chol as standalone and combination adjuvants for influenza and SARS-CoV-2 vaccines. Here, we tested two different ionizable lipids, K-Ac7-Dsa and S-Ac7-Dog, for LNP formulations. The LNPs were incorporated with SDI RNA to determine its potential as a combination adjuvant with IMDQ-PEG-Chol by evaluating the host immune response to vaccination and infection in immunized BALB/c mice. Adjuvanticity of IMDQ-PEG-Chol with and without empty or SDI-loaded LNPs was validated with quadrivalent inactivated influenza vaccine (QIV), showing robust induction of antibody titers and T-cell responses. Depending on the adjuvant combination and LNP formulation, humoral and cellular vaccine responses could be tailored towards type 1 or type 2 host responses with specific cytokine profiles that correlated with the protective responses to viral infection. The extent of protection conferred by different vaccine/LNP/adjuvant combinations was tested by challenging mice with a vaccine-matched strain of influenza A virus A/Singapore/gp1908/2015 IVR-180 (H1N1). Groups that received either LNP formulated with SDI or IMDQ-PEG-Chol, or both, showed very low levels of viral replication in their lungs at 5 days post-infection (DPI). These studies provide evidence that the combination of vaccines with LNPs and/or adjuvants promote antigen-specific cellular responses that can contribute to protection upon infection. Interestingly, we observed differences in humoral and cellular responses to vaccination between different groups receiving K-Ac7-Dsa or S-Ac7-Dog lipids in LNP formulations. The differences were also reflected in inflammatory responses in lungs of vaccinated animals to infection, depending on LNP formulations. Therefore, this study suggests that the composition of the LNPs, particularly the ionizable lipid, plays an important role in inducing inflammatory responses in vivo, which is important for vaccine safety and to prevent adverse effects upon viral exposure.


Subject(s)
Adjuvants, Immunologic , Influenza Vaccines , Liposomes , Mice, Inbred BALB C , Nanoparticles , Orthomyxoviridae Infections , Animals , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Mice , Adjuvants, Immunologic/administration & dosage , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/immunology , Female , Lipids , Vaccination/methods , Adjuvants, Vaccine , Antibodies, Viral/blood , Antibodies, Viral/immunology , Disease Models, Animal , Sendai virus/immunology , Influenza, Human/prevention & control , Influenza, Human/immunology
9.
EBioMedicine ; 104: 105153, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38805853

ABSTRACT

BACKGROUND: The development of a universal influenza virus vaccine, to protect against both seasonal and pandemic influenza A viruses, is a long-standing public health goal. The conserved stalk domain of haemagglutinin (HA) is a promising vaccine target. However, the stalk is immunosubdominant. As such, innovative approaches are required to elicit robust immunity against this domain. In a previously reported observer-blind, randomised placebo-controlled phase I trial (NCT03300050), immunisation regimens using chimeric HA (cHA)-based immunogens formulated as inactivated influenza vaccines (IIV) -/+ AS03 adjuvant, or live attenuated influenza vaccines (LAIV), elicited durable HA stalk-specific antibodies with broad reactivity. In this study, we sought to determine if these vaccines could also boost T cell responses against HA stalk, and nucleoprotein (NP). METHODS: We measured interferon-γ (IFN-γ) responses by Enzyme-Linked ImmunoSpot (ELISpot) assay at baseline, seven days post-prime, pre-boost and seven days post-boost following heterologous prime:boost regimens of LAIV and/or adjuvanted/unadjuvanted IIV-cHA vaccines. FINDINGS: Our findings demonstrate that immunisation with adjuvanted cHA-based IIVs boost HA stalk-specific and NP-specific T cell responses in humans. To date, it has been unclear if HA stalk-specific T cells can be boosted in humans by HA-stalk focused universal vaccines. Therefore, our study will provide valuable insights for the design of future studies to determine the precise role of HA stalk-specific T cells in broad protection. INTERPRETATION: Considering that cHA-based vaccines also elicit stalk-specific antibodies, these data support the further clinical advancement of cHA-based universal influenza vaccine candidates. FUNDING: This study was funded in part by the Bill and Melinda Gates Foundation (BMGF).


Subject(s)
Antibodies, Viral , Hemagglutinin Glycoproteins, Influenza Virus , Immunity, Cellular , Influenza Vaccines , Influenza, Human , Humans , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza, Human/prevention & control , Influenza, Human/immunology , Antibodies, Viral/immunology , Female , Adult , Male , T-Lymphocytes/immunology , Immunization, Secondary , Interferon-gamma/metabolism , Nucleoproteins/immunology , Young Adult , Influenza A virus/immunology
10.
Proc Natl Acad Sci U S A ; 121(22): e2314166121, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38768348

ABSTRACT

The nonstructural protein 1 (Nsp1) of SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) is a virulence factor that targets multiple cellular pathways to inhibit host gene expression and antiviral response. However, the underlying mechanisms of the various Nsp1-mediated functions and their contributions to SARS-CoV-2 virulence remain unclear. Among the targets of Nsp1 is the mRNA (messenger ribonucleic acid) export receptor NXF1-NXT1, which mediates nuclear export of mRNAs from the nucleus to the cytoplasm. Based on Nsp1 crystal structure, we generated mutants on Nsp1 surfaces and identified an acidic N-terminal patch that is critical for interaction with NXF1-NXT1. Photoactivatable Nsp1 probe reveals the RNA Recognition Motif (RRM) domain of NXF1 as an Nsp1 N-terminal binding site. By mutating the Nsp1 N-terminal acidic patch, we identified a separation-of-function mutant of Nsp1 that retains its translation inhibitory function but substantially loses its interaction with NXF1 and reverts Nsp1-mediated mRNA export inhibition. We then generated a recombinant (r)SARS-CoV-2 mutant on the Nsp1 N-terminal acidic patch and found that this surface is key to promote NXF1 binding and inhibition of host mRNA nuclear export, viral replication, and pathogenicity in vivo. Thus, these findings provide a mechanistic understanding of Nsp1-mediated mRNA export inhibition and establish the importance of this pathway in the virulence of SARS-CoV-2.


Subject(s)
Active Transport, Cell Nucleus , COVID-19 , Nucleocytoplasmic Transport Proteins , RNA, Messenger , RNA-Binding Proteins , SARS-CoV-2 , Viral Nonstructural Proteins , Humans , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , SARS-CoV-2/genetics , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/chemistry , RNA, Messenger/genetics , RNA, Messenger/metabolism , Nucleocytoplasmic Transport Proteins/metabolism , Nucleocytoplasmic Transport Proteins/genetics , Animals , COVID-19/virology , COVID-19/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Virus Replication , Cell Nucleus/metabolism , Vero Cells , Virulence , Chlorocebus aethiops , HEK293 Cells
11.
Nat Commun ; 15(1): 3059, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637500

ABSTRACT

The 2023 monkeypox (mpox) epidemic was caused by a subclade IIb descendant of a monkeypox virus (MPXV) lineage traced back to Nigeria in 1971. Person-to-person transmission appears higher than for clade I or subclade IIa MPXV, possibly caused by genomic changes in subclade IIb MPXV. Key genomic changes could occur in the genome's low-complexity regions (LCRs), which are challenging to sequence and are often dismissed as uninformative. Here, using a combination of highly sensitive techniques, we determine a high-quality MPXV genome sequence of a representative of the current epidemic with LCRs resolved at unprecedented accuracy. This reveals significant variation in short tandem repeats within LCRs. We demonstrate that LCR entropy in the MPXV genome is significantly higher than that of single-nucleotide polymorphisms (SNPs) and that LCRs are not randomly distributed. In silico analyses indicate that expression, translation, stability, or function of MPXV orthologous poxvirus genes (OPGs), including OPG153, OPG204, and OPG208, could be affected in a manner consistent with the established "genomic accordion" evolutionary strategies of orthopoxviruses. We posit that genomic studies focusing on phenotypic MPXV differences should consider LCR variability.


Subject(s)
Mpox (monkeypox) , Orthopoxvirus , Poxviridae , Humans , Monkeypox virus/genetics , Genomics , Mpox (monkeypox)/genetics
12.
Emerg Microbes Infect ; 13(1): 2337673, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38572517

ABSTRACT

Influenza A viruses (IAVs) pose a persistent potential threat to human health because of the spillover from avian and swine infections. Extensive surveillance was performed in 12 cities of Guangxi, China, during 2018 and 2023. A total of 2540 samples (including 2353 nasal swabs and 187 lung tissues) were collected from 18 pig farms with outbreaks of respiratory disease. From these, 192 IAV-positive samples and 19 genomic sequences were obtained. We found that the H1 and H3 swine influenza A viruses (swIAVs) of multiple lineages and genotypes have continued to co-circulate during that time in this region. Genomic analysis revealed the Eurasian avian-like H1N1 swIAVs (G4) still remained predominant in pig populations. Strikingly, the novel multiple H3N2 genotypes were found to have been generated through the repeated introduction of the early H3N2 North American triple reassortant viruses (TR H3N2 lineage) that emerged in USA and Canada in 1998 and 2005, respectively. Notably, when the matrix gene segment derived from the H9N2 avian influenza virus was introduced into endemic swIAVs, this produced a novel quadruple reassortant H1N2 swIAV that could pose a potential risk for zoonotic infection.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A Virus, H9N2 Subtype , Influenza, Human , Orthomyxoviridae Infections , Swine Diseases , Swine , Animals , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H3N2 Subtype/genetics , China/epidemiology , Swine Diseases/epidemiology , Orthomyxoviridae Infections/epidemiology , Orthomyxoviridae Infections/veterinary , Influenza, Human/epidemiology , Reassortant Viruses/genetics , Phylogeny
13.
medRxiv ; 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38562892

ABSTRACT

COVID-19 has been a significant public health concern for the last four years; however, little is known about the mechanisms that lead to severe COVID-associated kidney injury. In this multicenter study, we combined quantitative deep urinary proteomics and machine learning to predict severe acute outcomes in hospitalized COVID-19 patients. Using a 10-fold cross-validated random forest algorithm, we identified a set of urinary proteins that demonstrated predictive power for both discovery and validation set with 87% and 79% accuracy, respectively. These predictive urinary biomarkers were recapitulated in non-COVID acute kidney injury revealing overlapping injury mechanisms. We further combined orthogonal multiomics datasets to understand the mechanisms that drive severe COVID-associated kidney injury. Functional overlap and network analysis of urinary proteomics, plasma proteomics and urine sediment single-cell RNA sequencing showed that extracellular matrix and autophagy-associated pathways were uniquely impacted in severe COVID-19. Differentially abundant proteins associated with these pathways exhibited high expression in cells in the juxtamedullary nephron, endothelial cells, and podocytes, indicating that these kidney cell types could be potential targets. Further, single-cell transcriptomic analysis of kidney organoids infected with SARS-CoV-2 revealed dysregulation of extracellular matrix organization in multiple nephron segments, recapitulating the clinically observed fibrotic response across multiomics datasets. Ligand-receptor interaction analysis of the podocyte and tubule organoid clusters showed significant reduction and loss of interaction between integrins and basement membrane receptors in the infected kidney organoids. Collectively, these data suggest that extracellular matrix degradation and adhesion-associated mechanisms could be a main driver of COVID-associated kidney injury and severe outcomes.

14.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167193, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38648902

ABSTRACT

SARS-CoV-2 infection can cause severe pneumonia, wherein exacerbated inflammation plays a major role. This is reminiscent of the process commonly termed cytokine storm, a condition dependent on a disproportionated production of cytokines. This state involves the activation of the innate immune response by viral patterns and coincides with the biosynthesis of the biomass required for viral replication, which may overwhelm the capacity of the endoplasmic reticulum and drive the unfolded protein response (UPR). The UPR is a signal transduction pathway composed of three branches that is initiated by a set of sensors: inositol-requiring protein 1 (IRE1), protein kinase RNA-like ER kinase (PERK), and activating transcription factor 6 (ATF6). These sensors control adaptive processes, including the transcriptional regulation of proinflammatory cytokines. Based on this background, the role of the UPR in SARS-CoV-2 replication and the ensuing inflammatory response was investigated using in vivo and in vitro models of infection. Mice and Syrian hamsters infected with SARS-CoV-2 showed a sole activation of the Ire1α-Xbp1 arm of the UPR associated with a robust production of proinflammatory cytokines. Human lung epithelial cells showed the dependence of viral replication on the expression of UPR-target proteins branching on the IRE1α-XBP1 arm and to a lower extent on the PERK route. Likewise, activation of the IRE1α-XBP1 branch by Spike (S) proteins from different variants of concern was a uniform finding. These results show that the IRE1α-XBP1 system enhances viral replication and cytokine expression and may represent a potential therapeutic target in SARS-CoV-2 severe pneumonia.


Subject(s)
COVID-19 , Endoribonucleases , Protein Serine-Threonine Kinases , SARS-CoV-2 , Unfolded Protein Response , Virus Replication , X-Box Binding Protein 1 , Animals , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Endoribonucleases/metabolism , Endoribonucleases/genetics , X-Box Binding Protein 1/metabolism , X-Box Binding Protein 1/genetics , SARS-CoV-2/metabolism , Humans , COVID-19/metabolism , COVID-19/virology , COVID-19/pathology , COVID-19/immunology , Mice , Mesocricetus , Signal Transduction , Mice, Inbred C57BL , Cytokines/metabolism , Female
15.
bioRxiv ; 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38586014

ABSTRACT

Current COVID-19 mRNA vaccines delivered intramuscularly (IM) induce effective systemic immunity, but with suboptimal immunity at mucosal sites, limiting their ability to impart sterilizing immunity. There is strong interest in rerouting immune responses induced in the periphery by parenteral vaccination to the portal entry site of respiratory viruses, such as SARS-CoV-2, by mucosal vaccination. We previously demonstrated the combination adjuvant, NE/IVT, consisting of a nanoemulsion (NE) and an RNA-based RIG-I agonist (IVT) induces potent systemic and mucosal immune responses in protein-based SARS-CoV-2 vaccines administered intranasally (IN). Herein, we demonstrate priming IM with mRNA followed by heterologous IN boosting with NE/IVT adjuvanted recombinant antigen induces strong mucosal and systemic antibody responses and enhances antigen-specific T cell responses in mucosa-draining lymph nodes compared to IM/IM and IN/IN prime/boost regimens. While all regimens induced cross-neutralizing antibodies against divergent variants and sterilizing immunity in the lungs of challenged mice, mucosal vaccination, either as homologous prime/boost or heterologous IN boost after IM mRNA prime was required to impart sterilizing immunity in the upper respiratory tract. Our data demonstrate the benefit of hybrid regimens whereby strong immune responses primed via IM vaccination are rerouted by IN vaccination to mucosal sites to provide optimal protection to SARS-CoV-2.

16.
iScience ; 27(3): 109210, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38433913

ABSTRACT

Despite multiple research efforts to characterize coronavirus disease 2019 (COVID-19) in humans, there is no clear data on the specific role of mucosal immunity on COVID-19 disease. Here, we longitudinally profile the antibody response against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and seasonal HCoV-OC43 S proteins in serum and nasopharyngeal swabs from COVID-19 patients. Results showed that specific antibody responses against SARS-CoV-2 and HCoV-OC43 S proteins can be detected in the upper respiratory tract. We found that COVID-19 patients mounted a robust mucosal antibody response against SARS-CoV-2 S with specific secretory immunoglobulin A (sIgA), IgA, IgG, and IgM antibody subtypes detected in the nasal swabs. Additionally, COVID-19 patients showed IgG, IgA, and sIgA responses against HCoV-OC43 S in the local mucosa, whereas no specific IgM was detected. Interestingly, mucosal antibody titers against SARS-CoV-2 peaked at day 7, whereas HCoV-OC43 titers peaked earlier at day 3 post-recruitment, suggesting an immune memory recall to conserved epitopes of beta-HCoVs in the upper respiratory tract.

17.
bioRxiv ; 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38328256

ABSTRACT

Understanding the molecular mechanisms that underpin diverse vaccination responses is a critical step toward developing efficient vaccines. Molecular subtyping approaches can offer valuable insights into the heterogeneous nature of responses and aid in the design of more effective vaccines. In order to explore the molecular signatures associated with the vaccine response, we analyzed baseline transcriptomics data from paired samples of whole blood, proteomics and glycomics data from serum, and metabolomics data from urine, obtained from influenza vaccine recipients (2019-2020 season) prior to vaccination. After integrating the data using a network-based model, we performed a subtyping analysis. The integration of multiple data modalities from 62 samples resulted in five baseline molecular subtypes with distinct molecular signatures. These baseline subtypes differed in the expression of pre-existing adaptive or innate immunity signatures, which were linked to significant variation across subtypes in baseline immunoglobulin A (IgA) and hemagglutination inhibition (HAI) titer levels. It is worth noting that these significant differences persisted through day 28 post-vaccination, indicating the effect of initial immune state on vaccination response. These findings highlight the significance of interpersonal variation in baseline immune status as a crucial factor in determining vaccine response and efficacy. Ultimately, incorporating molecular profiling could enable personalized vaccine optimization.

18.
Viruses ; 16(2)2024 02 07.
Article in English | MEDLINE | ID: mdl-38400039

ABSTRACT

SARS-CoV-2 infection remains a global burden. Despite intensive research, the mechanism and dynamics of early viral replication are not completely understood, such as the kinetics of the formation of genomic RNA (gRNA), sub-genomic RNA (sgRNA), and replication centers/organelles (ROs). We employed single-molecule RNA-fluorescence in situ hybridization (smRNA-FISH) to simultaneously detect viral gRNA and sgRNA and immunofluorescence to detect nsp3 protein, a marker for the formation of RO, and carried out a time-course analysis. We found that single molecules of gRNA are visible within the cytoplasm at 30 min post infection (p.i.). Starting from 2 h p.i., most of the viral RNA existed in clusters/speckles, some of which were surrounded by single molecules of sgRNA. These speckles associated with nsp3 protein starting at 3 h p.i., indicating that these were precursors to ROs. Furthermore, RNA replication was asynchronous, as cells with RNA at all stages of replication were found at any given time point. Our probes detected the SARS-CoV-2 variants of concern, and also suggested that the BA.1 strain exhibited a slower rate of replication kinetics than the WA1 strain. Our results provide insights into the kinetics of SARS-CoV-2 early post-entry events, which will facilitate identification of new therapeutic targets for early-stage replication to combat COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , COVID-19/metabolism , RNA Replication , In Situ Hybridization, Fluorescence/methods , Reactive Oxygen Species/metabolism , Subgenomic RNA , RNA, Guide, CRISPR-Cas Systems , Fluorescent Antibody Technique , Proteins/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism
19.
J Immunol ; 212(8): 1307-1318, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38416036

ABSTRACT

Plitidepsin is a host-targeted compound known for inducing a strong anti-SARS-CoV-2 activity, as well as for having the capacity of reducing lung inflammation. Because IL-6 is one of the main cytokines involved in acute respiratory distress syndrome, the effect of plitidepsin in IL-6 secretion in different in vitro and in vivo experimental models was studied. A strong plitidepsin-mediated reduction of IL-6 was found in human monocyte-derived macrophages exposed to nonproductive SARS-CoV-2. In resiquimod (a ligand of TLR7/8)-stimulated THP1 human monocytes, plitidepsin-mediated reductions of IL-6 mRNA and IL-6 levels were also noticed. Additionally, although resiquimod-induced binding to DNA of NF-κB family members was unaffected by plitidepsin, a decrease in the regulated transcription by NF-κB (a key transcription factor involved in the inflammatory cascade) was observed. Furthermore, the phosphorylation of p65 that is required for full transcriptional NF-κB activity was significantly reduced by plitidepsin. Moreover, decreases of IL-6 levels and other proinflammatory cytokines were also seen in either SARS-CoV-2 or H1N1 influenza virus-infected mice, which were treated at low enough plitidepsin doses to not induce antiviral effects. In summary, plitidepsin is a promising therapeutic agent for the treatment of viral infections, not only because of its host-targeted antiviral effect, but also for its immunomodulatory effect, both of which were evidenced in vitro and in vivo by the decrease of proinflammatory cytokines.


Subject(s)
Depsipeptides , Influenza A Virus, H1N1 Subtype , NF-kappa B , Humans , Animals , Mice , NF-kappa B/metabolism , Interleukin-6/pharmacology , Antiviral Agents/pharmacology , Immunologic Factors/pharmacology , Cytokines/metabolism , SARS-CoV-2/metabolism
20.
mBio ; 15(2): e0292823, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38193729

ABSTRACT

Serum titers of SARS-CoV-2-neutralizing antibodies (nAbs) correlate well with protection from symptomatic COVID-19 but decay rapidly in the months following vaccination or infection. In contrast, measles-protective nAb titers are lifelong after measles vaccination, possibly due to persistence of the live-attenuated virus in lymphoid tissues. We, therefore, sought to generate a live recombinant measles vaccine capable of driving high SARS-CoV-2 nAb responses. Since previous clinical testing of a live measles vaccine encoding a SARS-CoV-2 spike glycoprotein resulted in suboptimal anti-spike antibody titers, our new vectors were designed to encode prefusion-stabilized SARS-CoV-2 spike glycoproteins, trimerized via an inserted peptide domain, and displayed on a dodecahedral miniferritin scaffold. Additionally, to circumvent the blunting of vaccine efficacy by preformed anti-measles antibodies, we extensively modified the measles surface glycoproteins. Comprehensive in vivo mouse testing demonstrated the potent induction of high titer nAbs in measles-immune mice and confirmed the significant contributions to overall potency afforded by prefusion stabilization, trimerization, and miniferritin display of the SARS-CoV-2 spike glycoprotein. In animals primed and boosted with a measles virus (MeV) vaccine encoding the ancestral SARS-CoV-2 spike, high-titer nAb responses against ancestral virus strains were only weakly cross-reactive with the Omicron variant. However, in primed animals that were boosted with a MeV vaccine encoding the Omicron BA.1 spike, antibody titers to both ancestral and Omicron strains were robustly elevated, and the passive transfer of serum from these animals protected K18-ACE2 mice from infection and morbidity after exposure to BA.1 and WA1/2020 strains. Our results demonstrate that by engineering the antigen, we can develop potent measles-based vaccine candidates against SARS-CoV-2.IMPORTANCEAlthough the live-attenuated measles virus (MeV) is one of the safest and most efficacious human vaccines, a measles-vectored COVID-19 vaccine candidate expressing the SARS-CoV-2 spike failed to elicit neutralizing antibody (nAb) responses in a phase-1 clinical trial, especially in measles-immune individuals. Here, we constructed a comprehensive panel of MeV-based COVID-19 vaccine candidates using a MeV with extensive modifications on the envelope glycoproteins (MeV-MR). We show that artificial trimerization of the spike is critical for the induction of nAbs and that their magnitude can be significantly augmented when the spike protein is synchronously fused to a dodecahedral scaffold. Furthermore, preexisting measles immunity did not abolish heterologous immunity elicited by our vector. Our results highlight the importance of antigen optimization in the development of spike-based COVID-19 vaccines and therapies.


Subject(s)
COVID-19 , Measles , Humans , Animals , Mice , COVID-19 Vaccines , Antibodies, Neutralizing , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , COVID-19/prevention & control , Measles Vaccine/genetics , Measles virus/genetics , Antibodies, Viral , Membrane Glycoproteins
SELECTION OF CITATIONS
SEARCH DETAIL
...