Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Publication year range
1.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(5): 1315-1321, 2023 Oct.
Article in Chinese | MEDLINE | ID: mdl-37846678

ABSTRACT

OBJECTIVE: To explore the effect of cytokine levels on early death and coagulation function of patients with newly diagnosed acute promyelocytic leukemia (APL). METHODS: Routine examination was performed on 69 newly diagnosed APL patients at admission. Meanwhile, 4 ml fasting venous blood was extracted from the patients. And then the supernatant was taken after centrifugation. The concentrations of cytokines, lactate dehydrogenase (LDH) and ferritin were detected by using the corresponding kits. RESULTS: It was confirmed that cerebral hemorrhage was a major cause of early death in APL patients. Elevated LDH, decreased platelets (PLT) count and prolonged prothrombin time (PT) were high risk factors for early death (P <0.05). The increases of IL-5, IL-6, IL-10, IL-12p70 and IL-17A were closely related to the early death of newly diagnosed APL patients, and the increases of IL-5 and IL-17A also induced coagulation disorder in APL patients by prolonging PT (P <0.05). In newly diagnosed APL patients, ferritin and LDH showed a positive effect on the expression of IL-5, IL-10 and IL-17A, especially ferritin had a highly positive correlation with IL-5 (r =0.867) and IL-17A (r =0.841). Moreover, there was a certain correlation between these five high-risk cytokines, among which IL-5 and IL-17A (r =0.827), IL-6 and IL-10 (r =0.823) were highly positively correlated. CONCLUSION: Elevated cytokine levels in newly diagnosed APL patients increase the risk of early bleeding and death. In addition to the interaction between cytokines themselves, ferritin and LDH positively affect the expression of cytokines, thus affecting the prognosis of APL patients.


Subject(s)
Blood Coagulation Disorders , Leukemia, Promyelocytic, Acute , Humans , Leukemia, Promyelocytic, Acute/diagnosis , Cytokines/metabolism , Interleukin-10 , Interleukin-17/metabolism , Interleukin-6/metabolism , Interleukin-5/metabolism , Ferritins , Tretinoin
2.
Neuropharmacology ; 208: 108981, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35149135

ABSTRACT

Blockade of adenosine A2A receptors (A2ARs) protects against neuronal damage caused by various brain insults including mitochondrial toxicity, but the precise neuroprotective mechanisms are unclear. Here, we studied the effects of the A2AR antagonist KW6002 on retinal injury induced by the mitochondrial oxidative phosphorylation uncoupler, carbonylcyanide m-chlorophenyl hydrazine (CCCP) and alterations in competing endogenous RNA (ceRNA) network. We found that KW6002 treatment partially reversed CCCP-induced reduction in retinal thickness and retinal ganglia cell number by increasing mitochondrial content and reducing retinal ganglia cells apoptosis. Furthermore, we employed whole-transcriptome sequencing to explore ceRNA network changes associated with CCCP-induced retinal injury and its reversal by KW6002. This analysis revealed that A2AR blockade reduced the number of CCCP-induced microRNAs by ∼60%, but increased the number of CCCP-induced circular RNAs by ∼50%. Among CeRNA network changes, CCCP-induced retinal injury was associated with a possible enrichment of the tumor necrosis factor signaling pathway and its related 126 microRNAs, 237 long non-coding RNAs, 58 circular RNAs competing. Moreover, the A2AR antagonist-mediated protection against CCCP-induced retinal injury was possibly associated with the up-regulation of mature brain-derived neurotrophic factor and its related 4 microRNAs competed by 43 long non-coding RNAs and 9 circular RNAs competing. These ceRNA network alterations by CCCP treatment and its reversal by A2AR antagonist may contribute to understanding the transcriptome mechanism for protection against CCCP-induced retinal injury by A2AR antagonists.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Adenosine , Carbonyl Cyanide m-Chlorophenyl Hydrazone , MicroRNAs/genetics , RNA, Circular , Receptor, Adenosine A2A/genetics
3.
FASEB J ; 35(9): e21842, 2021 09.
Article in English | MEDLINE | ID: mdl-34418159

ABSTRACT

Retinopathy of prematurity (ROP) remains one of the major causes of blindness in children worldwide. While current ROP treatments are mostly disruptive to reduce proliferative neovascularization by targeting the hypoxic phase, protection against early hyperoxia-induced retinal vascular loss represents an effective therapeutic window, but no such therapeutic strategy is available. Built upon our recent demonstration that the protection against oxygen-induced retinopathy by adenosine A2A receptor (A2A R) antagonists is most effective when administered at the hyperoxia (not hypoxic) phase, we here uncovered the cellular mechanism underlying the A2A R-mediated protection against early hyperoxia-induced retinal vascular loss by reversing the inhibition of cellular proliferation via possibly multiple signaling pathways. Specifically, we revealed two distinct stages of the hyperoxia phase with greater cellular proliferation and apoptosis activities and upregulation of adenosine signaling at postnatal 9 day (P9) but reduced cellular activities and adenosine-A2A R signaling at P12. Importantly, the A2A R-mediated protection at P9 was associated with the reversal of hyperoxia-induced inhibition of progenitor cells at the peripheral retina at P9 and of retinal endothelial proliferation at P9 and P12. The critical role of cellular proliferation in the hyperoxia-induced retinal vascular loss was validated by the increased avascular areas by siRNA knockdown of the multiple signaling molecules involved in modulation of cellular proliferation, including activin receptor-like kinase 1, DNA-binding protein inhibitor 1, and vascular endothelial growth factor-A.


Subject(s)
Adenosine A2 Receptor Antagonists/pharmacology , Cell Proliferation/drug effects , Hyperoxia/metabolism , Protective Agents/pharmacology , Receptor, Adenosine A2A/metabolism , Retinal Neovascularization , Retinal Vessels/drug effects , Activin Receptors, Type II/metabolism , Animals , Apoptosis/drug effects , Inhibitor of Differentiation Protein 1/metabolism , Mice , Neovascularization, Pathologic , Oxygen/adverse effects , Retina/cytology , Retina/drug effects , Retina/pathology , Retinal Vessels/cytology , Retinal Vessels/metabolism , Retinal Vessels/pathology , Retinopathy of Prematurity/metabolism , Retinopathy of Prematurity/pathology , Signal Transduction/drug effects , Transforming Growth Factor beta2/metabolism , Vascular Endothelial Growth Factor A/metabolism
5.
Medicine (Baltimore) ; 97(9): e0029, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29489651

ABSTRACT

RATIONALE: Patients with Parkinson's disease (PD) frequently suffer from psychiatric disorders, and treating these symptom whereas managing the motor symptoms associated with PD can be a therapeutic challenge. PATIENT CONCERNS: We report a case of PD patient with severe depression and anxiety that refused to be treated with dopaminagonists or SSRIs, the most common treatments for PD patients suffering from psychiatric symptoms. DIAGNOSES: Parkinson's disease with severe depression and anxiety. INTERVENTIONS: This man was treated with hyperbaric oxygen treatment for 30 days. OUTCOMES: Clinical assessment scores for depression and anxiety, including Unified Parkinson's Disease Rating ScaleI (UPDRS I), UPDRS II, Hanmilton Depression Rating Scale, and Hamiliton Anxiety Rating Scale, were improved following the hyperbaric oxygen treatment. LESSONS: Hyperbaric oxygen treatment may be a potential therapeutic method for PD patient suffering from depression and anxiety. Further research is needed to validate this finding and explore a potential mechanism.


Subject(s)
Anxiety/therapy , Depression/therapy , Hyperbaric Oxygenation , Parkinson Disease/psychology , Humans , Male , Middle Aged , Severity of Illness Index , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL